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Abstract

Poroelastic magnetic resonance elastography is an imaging technique that could recover 

mechanical and hydrodynamical material properties of in vivo tissue. To date, mechanical 

properties have been estimated while hydrodynamical parameters have been assumed 

homogeneous with literature-based values. Estimating spatially-varying hydraulic conductivity 

would likely improve model accuracy and provide new image information related to a tissue’s 

interstitial fluid compartment. A poroelastic model was reformulated to recover hydraulic 

conductivity with more appropriate fluid-flow boundary conditions. Simulated and physical 

experiments were conducted to evaluate the accuracy and stability of the inversion algorithm. 

Simulations were accurate (property errors were < 2%) even in the presence of Gaussian 

measurement noise up to 3%. The reformulated model significantly decreased variation in the 

shear modulus estimate (p≪0.001) and eliminated the homogeneity assumption and the need to 

assign hydraulic conductivity values from literature. Material property contrast was recovered 

experimentally in three different tofu phantoms and the accuracy was improved through soft-prior 

regularization. A frequency-dependence in hydraulic conductivity contrast was observed 

suggesting that fluid-solid interactions may be more prominent at low frequency. In vivo recovery 

of both structural and hydrodynamical characteristics of tissue could improve detection and 

diagnosis of neurological disorders such as hydrocephalus and brain tumors.
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I. Introduction

MANUAL palpation is a well-established clinical standard for detecting changes in tissue 

health associated with pathological processes such as tumor growth, liver cirrhosis, and 

inflammation. In effect, the technique exploits the relationship between an applied force and 

the resulting displacement of tissue to characterize its local elastic modulus, and is a 

common diagnostic tool for breast cancers and hepatic fibrosis. Elastography is the 

quantitative imaging equivalent that produces mechanical property maps of tissue [1]. 

Magnetic resonance elastography (MRE) captures the internal tissue displacements resulting 

from an applied low frequency vibration [2], [3]. The resulting displacement field can be 

interpreted through a mechanical model to estimate the local mechanical properties of tissue 

like its shear modulus or damping ratio, which may inform differential diagnosis of disease. 

These elastograms can yield image information at high contrast that may not be evident 

from standard imaging techniques [4], [5].

MRE has been applied to a variety of organs and tissues including breast, heart, liver, brain, 

and muscle with varying levels of success [6]–[10]. The material models used to date in 

these cases have been linear elasticity or viscoelasticity, even though tissues exhibit a wide 

range of responses to applied stresses. For example, a viscoelastic model describes a single 

solid phase with both elastic and viscous behaviors, but does not otherwise represent the 

fluid phase in tissue and may be less appropriate for high water content tissues like brain 

(which is upwards of 75% fluid by volume). Poroelastic constitutive relations have enjoyed 

positive results when applied to these types of biological materials [11]–[13]. One form of 

poroelasticity is based on Biot’s consolidation theory [14], where a biphasic environment is 

assumed to consist of a porous elastic solid impregnated with a viscous fluid. The quasi-

static equivalent of this poroelastic model has been used to describe hydrocephalus [15], 

[16] and intraoperative brain shift [17], [18]. More recently, the time-harmonic version has 

been developed for MRE and has been found to characterize porous materials more 

accurately than the corresponding linear elastic approach [19].

The poroelastic constitutive relation involves a set of structural and hydrodynamical material 

properties that are commonly assumed based on literature reports or empirical results. These 

properties include hydraulic conductivity, porosity, apparent mass density, fluid density, and 

solid density. While the relevant tissue densities are fairly well characterized, hydraulic 

conductivity and porosity are poorly understood and have been estimated through Darcy’s 

Law [20], [21] or by morphological staining techniques [22]. Moreover, neglecting the 

frequency dependence of hydrodynamic properties by using values derived from quasistatic 

experiments for MRE actuation frequencies will also lead to inaccurate modeling. 

Additionally, tissues such as brain have spatially-varying structural and fluid property 

parameters, in which case homogeneous assumptions are insufficient.

Hydraulic conductivity (κ) and porosity (ϕ) are interrelated properties where the former is a 

measure of the ease with which fluid travels through the pores of a material and the latter is 

a measure of the available void space, defined as a ratio of the void to total volumes. The 

influence of these properties on material response to an applied stress was examined by 

Perrinez et al. [19]. Displacement fields were calculated with varying values of κ, ϕ, and C 
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(a function of the apparent mass density), and κ was found to cause the largest changes in 

displacement for a given material property change.

Hydraulic conductivity is a potentially important tissue property to consider because of the 

array of applications in which it could reveal clinically-significant information. For example, 

normal and malignant tissue have very different vasculatures [23], where perfusion 

properties can change dramatically based on tumor type [24]. Benign processes usually lack 

the vasculature of a malignancy, which is commonly described as being irregular, tortuous, 

and heterogeneous [25]. Fluid flow can be high or low as well, depending on the cellular 

mass that is present [26]. Furthermore, previous work [27] has related fluid-flow changes to 

disorders characterized by increased intracranial pressure (ICP). Specifically, hydrocephalus 

is caused by a blockage in cerebrospinal fluid transport, resulting in increased ventricular 

size and, in some cases, increased ICP. Currently, diagnosis occurs through standard 

imaging techniques that only depict a change in ventricular size, which can be confused with 

ex vacuo disease like cerebral atrophy. Alterations in structural and fluid-flow properties 

detected by MRE could increase the diagnostic accuracy of imaging and potentially 

eliminate the need for more invasive techniques such as lumbar puncture in the case of 

hydrocephalus.

This work reformulates the appropriate poroelastic finite element model (FEM) for spatially-

varying hydraulic conductivity (previous studies assumed homogeneous values [19], [28]) 

and appropriate fluid flow boundary conditions. Simulated porous environments were 

evaluated to explore the accuracy and consistency of estimating κ in the presence of 

measurement noise. Inversion of shear modulus was robust in all cases, whereas κ was more 

sensitive to the added noise, yet its recovery was still spatially accurate with the correct 

contrast. Tofu phantoms were created with different contrasts and actuated at MRE 

frequencies to validate the new inversion algorithm with experimental data. Results show 

that the new model significantly improved the estimation of shear modulus while also 

producing κ contrast when spatial priors were encoded into the inversion technique. Also, a 

frequency dependence was found in κ, suggesting that poroelasticity may be a more accurate 

model, at least of tofu mechanical behavior, at low frequencies. These findings indicate the 

resulting poroelastic model can be applied to in vivo brain disease to characterize both the 

structural and hydrodynamical material properties through simultaneous recovery of images 

of spatially-resolved shear modulus and hydraulic conductivity.

II. Model Formulation For Spatially-Varying Hydraulic Conductivity

The constitutive relations describing a biphasic material experiencing a time-dependent 

applied load were first developed in the form of Biot’s theory of consolidation [14]. The 

model was extended to the time-harmonic case by Cheng et al. [29] and later by Perrinez et 

al. [28] to the frequency-domain equivalent set of equations for tissue elastography 

applications (known as poroelastic magnetic resonance elastography, or pMRE). The 

original coupled set of equations in the frequency domain for a fully-saturated porous 

medium undergoing time-harmonic forcing were given as
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(1a)

(1b)

with β as

(2)

The vector ū is the complex-valued 3-D displacement, scalar p̄ is similarly for the pore-

pressure, μ is the shear modulus, λ is Lamé’s first parameter, ω is the actuation frequency, ρ 

is the solid density, and ρf is the fluid density. The β term is a compilation of material 

properties including hydraulic conductivity (κ), porosity (ϕ), and apparent mass density (ρa). 

The overbar (—) symbolizes the frequency-dependent time-invariant amplitude of the 

variable of interest.

A. Spatially-Varying Hydraulic Conductivity

The original coupled set of (1) locates β outside of the divergence operator in (1b) because 

the properties within β were assumed to be constant. Spatially-varying κ (and therefore β) 

results in a form of the equations with β repositioned inside the divergence operator, 

resulting in

(3)

B. Finite Element Implementation

Fluid flow boundary conditions (BCs) are directly related to κ through Darcy’s Law, which 

in the quasistatic case is given by

(4)

where q̄ is the fluid flow and ∇p̄ is the pressure gradient. In a poroelastic material, q̄ · n̂ is 

the fluid flux, which represents the discharge through a boundary surface per unit area 

(given in (m/s)), and is related to the velocity of the fluid and the material porosity. Thus, 

based on the frequency domain poroelastic equations developed in Cheng et al. [29], the 

following four governing equations hold:

(5a)
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(5b)

(5c)

(5d)

where q̄ is a generalized form of Darcy’s Law, ζ is the water content, R is a measure of the 

change in water content, v̄ is the relative fluid-solid displacement vector that represents the 

fluid velocity, α is the Biot effective stress coefficient, and F describes the outside forces 

acting on the body. Under steady-state time-harmonic motion mediated by displacement 

BCs as in pMRE, no external forces are present (F = 0) and if we assume incompressible 

constituents, α and R reduce to 1 and ∞, respectively. Under these conditions, simplification 

of (5b) and (5d) produces

(6)

and (5a) and (5c) reduce to

(7)

which is the new version of the pressure equation shown in (1b) and is a more compact form 

of (3) that is illustrative for FEM formulation and concomitant application of the appropriate 

fluid-related boundary conditions. The associated weighted residual weak form of (7) 

becomes

(8)

after application of the divergence theorem to the ∇ · q̄ term where n̂ is the outward pointing 

vector normal to the boundary surface and ϕi is the typical FEM weighting function for node 

i chosen here to be the same as the FEM basis function at this location—a piecewise 

continuous linear Lagrange interpolating polynomial with local support on an individual 

tetrahedral-shaped finite element. The symbol 〈 〉 indicates integration over the 

computational volume and ∮ denotes integration over its boundary surface.

The resulting system of equations (for N weighting and basis functions associated with N 

nodes in the FEM mesh) can be solved as
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(9)

where matrix [A] is comprised of integrals of the basis functions, their derivatives, and the 

continuum’s physical properties, {x̂}is the unknown solution vector, and {b} is the known 

forcing vector. For the linear tetrahedral elements used in this work, the contribution to the 

stiffness matrix terms for weighting function i and node j, corresponding to the reformulated 

pressure equation with spatially-varying κ (and thus β), is expressed as

(10a)

(10b)

(10c)

(10d)

and {b} becomes

(11)

which allows fluid flow boundary conditions to be applied. The ′ in (10) and (11) represent 

additive contributions to the global system in (9).

C. Nonlinear Inversion

With the reformulated poroelastic model serving as the governing equations, an overlapping 

subzone, iterative parameter estimation algorithm analogous to the methods we have used in 

the past [28], [30] was implemented to recover spatial maps (images) of shear modulus and 

hydraulic conductivity. The inversion minimizes the difference between the computed (by 

the reformulated poroelastic model) and measured (via MRE) 3-D vector displacement field 

throughout the image acquisition volume by dividing the domain into a set of overlapping 

sub-zones and seeking minimization on the individual subzones by applying the measured 

displacements as boundary data on the subzone surface. The individual subzone 

minimization problem is solved with a Gauss-Newton (GN) method [31], which iteratively 

finds the solution of the nonlinear system of equations generated by setting the first 

derivatives of the sum-of-squared-differences between data and model (internal to the 

subzone surface) with respect to each material property parameter to be estimated (here 

shear modulus, μ, and hydraulic conductivity, κ) to zero. Regularization is added to stabilize 
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the subzone inversion at each iteration [32]. The subzones are created randomly and change 

at each global iteration to reduce property bias. Based on previous experience, subzone size 

of approximately 25 mm in diameter has been empirically determined to balance 

computation time with minimizing any influence of the subzone boundaries on the property 

distribution (i.e., final image), while attaining spatial resolution commensurate with the 

displacement data sampling.

We also incorporated the option to include soft-prior regularization following the methods 

outlined in detail elsewhere [33] in which individual property parameters (i.e., nodes in the 

FEM mesh) are assigned a predefined and consistent property region index (for example, by 

segmenting another MR image acquisition into regions based on its contrast), and a region-

based regularization matrix is constructed to favor similar property updates for nodes within 

a subzone identified as belonging to the same region (i.e., property variation within a 

predefined region is penalized). In this scheme, inter-subzone property variation is not 

penalized; hence, property variation at the subzone scale (25 mm) can occur.

III. Simulations and Experiments

A. Simulated Phantom Studies

Simulated phantoms were created to evaluate the accuracy and stability of the parameter 

estimation (inversion) algorithm. Specifically, a block phantom of size 50 mm ×50 mm × 

100 mm incorporated two conical inclusions with a base diameter of 25 mm. The 

background property values were assigned to be μ = 3 kPa and κ = 1 × 10−9(m3s/kg), 

whereas the left cone had a positive μ contrast (μ = 3.2 kPa) and negative κ contrast (9 × 

10−10(m3s/kg)) while the right cone had the opposite contrasts (μ = 2.8 kPa and κ = 2 × 

10−9(m3s/kg)). The FEM mesh consisted of 34 081 nodes and 192 000 elements with an 

average nodal separation of 2.5 mm.

A second simulated phantom had three inclusions and was used to evaluate parameter 

coupling between estimates in the inclusions and background. This phantom was 50 mm × 

50 mm × 120 mm with three 16-mm-diameter spherical inclusions. Here, the background 

property distribution was the same as the first simulated phantom (μ = 3 kPa and κ = 1 × 

10−9(m3s/kg)), but the left inclusion had only shear modulus contrast (μ = 3.2 kPa), the 

center inclusion had shear modulus (μ = 3.2 kPa) and hydraulic conductivity (κ = 2 × 

10−9(m3s/kg))contrast, and the right inclusion had only hydraulic conductivity contrast (κ = 

2 × 10−9(m3s/kg)).

Gaussian noise was added to the displacement fields in all simulations to resemble data 

acquired during an MRE experiment. The level of displacement noise necessary to mimic 

MRE data was estimated from the error accrued in the phase and the number of 

measurements (phase offsets) acquired in typical MRE experiments (1.5% and 3% Gaussian 

noise was applied).

B. Experimental Phantom Studies

Tofu is commonly used to model porous materials [19], [34] and contrast phantoms were 

constructed from silken Mori-Nu tofu which can be purchased in three different stiffness 
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grades. Here, a cylindrical coring tool (d = 28.5 mm) extracted columns of different tofu 

stiffnesses from tofu blocks creating voids that were replaced with the columns from a 

different tofu stiffness block to form contrast inclusions. The phantoms were placed on a 

plate and vibrated at 50 Hz with a piezoelectric actuator driven by an amplified signal 

generator. The displacement field was acquired on a Philips 3T Achieva MRI (Philips 

Medical Systems, Best, The Netherlands) with a standard segmented spin echo phase-

contrast pulse sequence with motion sensitizing gradients. Imaging parameters included a 

800/80 ms full slice block repetition/echo time, 150 mm field-of-view, and 2.0 mm × 2.0 

mm × 1.8 mm voxel size (with 0.2 mm slice separation), and 10–16 slices were captured 

based on phantom size. Motion sensitization was repeated along three orthogonal directions 

with eight phase offsets acquired during one sinusoidal motion period. For one phantom, 

MRE data was recorded during 25, 50, 75, and 100 Hz vibrations. A shear strain signal-to-

noise metric was applied to the measured data to ensure sufficient shear strain was 

introduced [35].

The original (assuming uniform hydraulic conductivity) and augmented (with spatially-

varying hydraulic conductivity) poroelastic models were used to evaluate the influence of 

this property on the estimated shear modulus. Shear modulus images were generated with 

the original model having a homogeneous κ inserted over a range of values (1 × 

10−6(m3s/kg) −1 × 10−11(m3s/kg)) that covers those reported in the literature [20]–[22]. 

Analogous results were generated with the augmented model having initial κ estimates over 

the same range that were subsequently updated by the inversion algorithm to produce the 

final κ image. F-test comparisons of variances were performed under the null hypothesis 

that the standard deviations of the shear modulus estimates over the hydraulic conductivity 

range were the same in the two models.

C. Dynamic Mechanical Analysis

To quantify whether the pMRE material contrast was recovered correctly in the phantom 

experiments for shear modulus and hydraulic conductivity, properties were measured with 

an independent dynamic mechanical analysis (DMA) approach developed specifically for 

porous materials [36]. Dynamic mechanical analysis is a material property measurement 

technique where a sinusoidal force is applied to the material of interest, and the 

corresponding displacement is acquired. The measured force-displacement information is 

supplied to an algorithm or expression which approximates the equations of motion for a 

viscoelastic material given the geometry and excitation under test, and reports the resulting 

complex-valued shear modulus. Implicit in the technique is the assumption that the material 

under test is best represented by a viscoelastic model. In [36], we substituted the viscoelastic 

assumption with the poroelastic equivalent [(1a) and (1b)] and used finite element modeling 

of equations to infer shear modulus and hydraulic conductivity from the DMA measurement 

data. For the phantom materials used here, shear modulus and hydraulic conductivity values 

were calculated from 1–14 Hz for the samples of the three types of tofu, and the property 

estimates derived from the DMA data are shown in Table I. While the same type and brand 

of tofu was measured in the subsequent MRE imaging experiments, the blocks were not 

identical because of the specimen preparation requirements involved in creating samples for 

use in the DMA.
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IV. Results

A. Simulated Phantom Studies

The results for both shear modulus and hydraulic conductivity in simulated phantoms are 

shown in Figs. 1 and 2. For the two-inclusion case, degradation increases in both parameters 

at the higher noise levels as expected. The shear modulus recovery is more robust and 

resolution of the tips of the cones remains intact with only a slight rounding effect caused by 

the spatial filtering applied during the inversion.

In Fig. 2, the three spherical inclusions were similarly depicted, even with some inclusions 

only having contrast in one of the two properties of interest. Little coupling between 

parameters is evident and little change occurs in the expected property contrast from a 

change in the other property. The averaged properties in the background and the three 

inclusions are close to their expected values (see Table II)—relative errors between the 

estimated and exact values are less than 2% of the background in all cases. Errors in the 

inclusions are higher (given average values), likely because blurring caused by spatial 

filtering influences a larger percentage of the total voxels in the inclusion that appear on the 

interface between the two regions relative to the background. The standard deviation in both 

properties increased with higher displacement noise, especially in hydraulic conductivity at 

the highest noise level where spatial degradation is apparent, but the absolute values remain 

close to the truth. As expected, shear modulus is less susceptible to displacement noise 

relative to hydraulic conductivity.

B. Experimental Phantom Studies

Fig. 3 demonstrates improvement in the shear modulus estimate when hydraulic 

conductivity varies spatially. Fig. 3(a) shows shear modulus elastograms from the same tofu 

image slices (background = soft tofu, inclusion = extra firm tofu), based on the original 

poroelastic model (top row) with assumed homogeneous κ-values and the new poroelastic 

model (bottom row) with spatially-varying and estimated κ-values. Clearly, assuming a 

known homogeneous value of κ causes significant bias in shear modulus values in cases 

where κ is not known accurately. Shear modulus estimates vary widely with different 

assumed κ-values (σ = 14 kPa), but become less variable when hydraulic conductivity is 

allowed to vary spatially (σ = 2.0 kPa). The differences in these standard deviations are 

statistically significant (p ≪ 0.001). With hydraulic conductivity less than 1 × 10−10(m3s/

kg), the algorithm suffers in both cases, but reaches a more reasonable shear modulus 

estimate when κ varies spatially, although at very low κ-values the equations are 

approaching the incompressible linear elastic equivalent, which poorly estimates the shear 

modulus of porous media where fluid flow occurs [28].

While the estimated shear modulus was more consistent when κ was allowed to vary 

spatially, the hydraulic conductivity image exhibited lower than expected contrast and 

localization of an inclusion. Some examples are presented in Fig. 4, where shear modulus 

images effectively localize the inclusion and correctly recover its contrast, however, 

hydraulic conductivity images are not as clear. To improve the κ images, soft-prior 

regularization was incorporated and these results appear in Fig. 5. The average shear 
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modulus and hydraulic conductivity values in the background and inclusions of these 

phantoms are reported in Table III and indicate the recovered contrasts are consistent with 

values in Table I which were obtained through independent mechanical testing specifically 

designed to evaluate the material properties of porous media [36].

Finally, one phantom (soft tofu background, extra firm tofu inclusion) was scanned at four 

different frequencies spanning 25–100 Hz, and shear modulus and hydraulic conductivity 

images are shown in Fig. 6. These results indicate that the contrast in shear modulus is 

consistent across the four frequencies, whereas the hydraulic conductivity contrast increases 

at lower frequencies. Specifically, background-to-inclusion κ contrast at 100 Hz is small 

(1.4:1), while at 25 Hz it increases substantially (to 7.5:1).

V. Discussion

Accurate estimates of shear modulus and hydraulic conductivity are recovered from both 

simulated and experimental phantom data. Results from these two environments 

(simulations and experiments) suggest that shear modulus images are spatially accurate and 

consistent and hydraulic conductivity images are consistent but more susceptible to 

measurement noise. Images recovered from simulated two- and three-inclusion data 

demonstrate high property accuracy but with better spatial resolution for the dominant shear 

modulus property whereas variations increase more rapidly for hydraulic conductivity with 

increasing noise.

In experimental tofu phantoms, improvement in the recovered shear modulus was found for 

poroelastic MRE when hydraulic conductivity was allowed to vary spatially. A statistically 

significant decrease in shear modulus variation was observed in this case. Poor shear 

modulus images (values grew increasingly large) were recovered at very low hydraulic 

conductivity values in both models [Fig. 3(b)], which resulted from the material being 

incorrectly represented as a nearly linear elastic solid. Low hydraulic conductivity indicates 

that the deformation is dominated by the elastic solid matrix because of the increased 

resistance to fluid flow. Linear elastic solids have been shown previously to suffer from 

numerical instabilities and resonances that are better characterized by time-dependent 

behavior represented by viscoelasticity or poroelasticity [28]. Further, when hydraulic 

conductivity is assumed to be known and homogeneous (Fig. 3(a), top row), shear modulus 

variation is higher in the inclusion, likely because of the incorrect assumption of equal 

hydraulic conductivities in the two different types of tofu.

Hydraulic conductivity estimates recovered in the tofu phantoms produced excellent results 

when spatial priors were encoded. Noise introduced from the MRI/MRE acquisition and 

data processing had a larger influence on hydraulic conductivity as expected from the 

simulation results. Soft-prior regularization stabilized these effects by enforcing property 

values to be similar in preselected regions, but still allows the boundaries between material 

types to be described with high resolution. Further, for the subzone-based minimization 

technique used here, the effect of the spatial encoding of prior information is limited to the 

subzone level. In MRE, high resolution spatial information is already acquired with 

companion MRI sequences that can be readily used to inform the hydraulic conductivity 
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estimation; hence, incorporation of spatial priors on this property parameter should be 

possible in practice. However, recovery of hydraulic conductivity without the use of spatial 

information is still possible and could be enhanced further with other stabilization 

techniques or other inversion methods that may be less susceptible to measurement noise.

Biological materials commonly exhibit frequency-dependent behavior, suggesting the need 

for viscoelastic or poroelastic characterization of tissue. However, the damping 

characteristics of these models vary—in a viscoelastic material, energy is lost in regions 

where shear strain is occurring whereas a poroelastic material has energy loss where 

differential displacement of the fluid and solid phases occurs (i.e., volumetric strain of the 

solid matrix). While viscoelastic damping forces increase at higher frequencies, the relative 

poroelastic fluid-solid differential displacement is more prominent at lower frequencies 

because there is more time for fluid redistribution. Hydraulic conductivity is not indicative 

of a damping term per se, but is directly related to the interaction between the fluid and solid 

phases, which is responsible for the energy losses in a porous material. Specifically, a low 

hydraulic conductivity represents high resistance to fluid flow, and concomitantly greater 

mechanical energy losses in the material, whereas high hydraulic conductivity represents 

low resistance and less energy loss within the system. The level of fluid flow in a material 

also strongly depends on hydraulic conductivity, therefore, maximum damping effect occurs 

at some intermediate value. The results in Fig. 6 indicate more contrast is recovered at lower 

frequencies, suggesting a poroelastic model may prove to be superior for low-frequency 

vibrations. Comparisons of images generated with a viscoelastic model using the same data 

may illustrate the frequency ranges for which one model is superior to the other. Further, 

poroviscoelasticity is another option for representing the full range of damping responses in 

tissues over the frequencies of interest.

Small variations in the recovered mechanical properties occurred for the three types of tofu 

(see Table III), but could have resulted from a number of experimental factors. For example, 

variation in the composition and consistency of store-purchased tofu is unknown and could 

be substantial between batches. Also, creating the contrast tofu phantoms is technically 

challenging because one material must be inserted into another material. Here, the 

cylindrical inclusions that were inserted do not necessarily adhere uniformly to the inside 

boundary surface of the background portion of the phantom, potentially causing slip 

boundary conditions to occur over portions of these interfaces. Hydrogels are common 

poroelastic materials that could alleviate these challenges. Another option is to create tofu 

through combinations of coagulant and soybean curd, or inject a cross-linker into the interior 

of the material to locally alter its property distribution eliminating the need for inclusion 

insertion.

The recovered values reported here vary modestly from those acquired by independent 

mechanical testing. A main difference between the two methods (pMRE and mechanical 

testing) is the assumption of Poisson’s ratio during mechanical testing, which is estimated 

from the MRE data in the experiments described in this paper. Changes in Poisson’s ratio 

influence the recovered property values; hence, some differences in their absolute values are 

expected. Additionally, the property estimates reported here were obtained at 50 Hz, a 

frequency significantly higher than the range attained in mechanical testing (limited to 14 
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Hz due to machine resonance). An independent measurement technique more suited to high 

frequency of very soft materials is necessary to compare poroelastic mechanical property 

estimates with poroelastic MRE in the same frequency range.

VI. CONCLUSION

In this paper, we successfully developed and evaluated a new pMRE algorithm which 

generates spatially-varying hydraulic conductivity images rather than assuming 

homogeneous values of this hydrodynamical property as in the past. Estimation of hydraulic 

conductivity also increased the accuracy of the recovered shear modulus in both simulation 

and physical phantom experiments. The lower sensitivity of this parameter (relative to shear 

modulus) was mitigated by encoding spatial information derived from another MR sequence 

and improved the contrast recovered in single-inclusion tofu experiments. Frequency 

dependence of the pMRE image contrast was observed and suggests that the technique 

functions better with lower frequency data, likely because the driving fluid-solid phase 

interactions are enhanced (and hence the sensitivity to hydraulic conductivity variation is 

increased). Understanding the fluid flow characteristics of a porous tissue (e.g., brain tissue) 

could lead to new contrast mechanisms with improved diagnostic potential when evaluating 

neurological disorders such as hydrocephalus, Alzheimer’s and Parkinson’s diseases, and 

brain tumors. Each of these pathologies has distinct influences on the tissue macro- and 

micro-environment that may be amenable to pMRE characterization but otherwise occult to 

conventional MRI sequences. On a macroscopic scale, tissue mechanical and 

hydrodynamical properties change in conditions such as hydrocephalus. From a microscopic 

point-of-view, the interstitial environment is disrupted, for example, with the loss of myelin 

sheath in Alzheimer’s disease. Estimating both structural and hydrodynamical property 

distributions with pMRE could enable greater understanding of any number of neurological 

disease processes.
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Fig. 1. 
Shear modulus (left) and hydraulic conductivity (right) elastograms of a simulated phantom 

with two conical inclusions. Rows correspond to no displacement noise (Row 1), 1.5% noise 

(Row 2), and 3% noise (Row 3). True property values: background-μ = 3 kPa and κ = 1 × 

10−9(m3s/kg), left cone-μ = 3.2 kPa and 9 × 10−10(m3s/kg), right cone-μ = 2.8 kPa and κ = 2 

× 10−9(m3s/kg). Shear modulus is given in kPa and hydraulic conductivity in log10(m3s/kg).
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Fig. 2. 
Shear modulus (left) and hydraulic conductivity (right) elastograms of a simulated phantom 

with three spherical inclusions. Rows correspond to no displacement noise (Row 1), 1.5% 

noise (Row 2), and 3% noise (Row 3). True property values: background—μ = 3 kPa and κ 

= 1 × 10−9(m3s/kg), left inclusion-μ = 3.2 kPa, center inclusion - μ = 3.2 kPa and κ = 2 × 

10−9(m3s/kg), right inclusion - κ = 2 × 10−9(m3s/kg). Shear modulus is given in kPa and 

hydraulic conductivity in log10(m3s/kg).
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Fig. 3. 
Shear modulus elastograms for the homogeneous (a, top row—κ-value indicated above 

elastogram) and spatially-varying (a, bottom row) models of hydraulic conductivity. The 

average shear modulus estimated for the entire phantom is shown for each case in (b). Error 

bars represent the standard deviation over the whole phantom.
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Fig. 4. 
Sample elastograms of nodally-reconstructed shear modulus (left column) and hydraulic 

conductivity (right column) for tofu phantoms. Rows represent different combinations of 

soft and extra firm tofu (top = soft tofu background with extra firm tofu inclusion; bottom = 

extra firm tofu background with soft tofu inclusion). Shear modulus is given in kPa and 

hydraulic conductivity in log10(m3s/kg).
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Fig. 5. 
Elastograms showing the expected contrast in tofu-tofu phantoms when spatial priors were 

encoded in the hydraulic conductivity estimation. The left column indicates phantom 

geometry and composition (EF = extra firm tofu, F = firm tofu, S = soft tofu), the middle 

column contains the corresponding shear modulus images and the right column shows the 

recovered hydraulic conductivity images when spatial priors are included. Shear modulus is 

given in kPa and hydraulic conductivity is displayed as log10(m3s/kg).
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Fig. 6. 
Elastograms representing the shear modulus (top row) and hydraulic conductivity (bottom 

row) estimates for a phantom with a soft tofu background and extra firm inclusion vibrated 

at the four different frequencies indicated. Shear modulus is presented in kPa and hydraulic 

conductivity is displayed as the log10(m3s/kg)..
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TABLE I

Material Property Results Acquired From the Poroelasticity-Based DMA at 14 Hz [36]. Columns Represent 

the Three Tofu Types Denoted “Soft,” “Firm,” and “Extra Firm.” κ Is Hydraulic Conductivity

Type Shear Modulus (kPa)

Soft 3.0 ± 0.40 −5.5 ± 0.39

Firm 8.1 ± 1.2 −6.6 ± 0.15

Extra Firm 15 ± 2.4 −7.0 ± 0.17
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TABLE II

Recovered Mean and Standard Deviation of the Background and Inclusion Shear Modulus and Hydraulic 

Conductivity Estimates for the Simulated Three-Inclusion Phantom Shown in Fig. 2

Background No Noise 1.5% Noise 3.0% Noise

μ (kPa) 3.0 ± 0.011 3.0 ± 0.012 3.0 ± 0.017

Error (%) 0.13 0.15 0.22

−9.0 ± 0.014 −9.0 ± 0.031 −8.9 ± 0.062

Error (%) 0.10 0.47 1.3

Left Inclusion No Noise 1.5% Noise 3.0% Noise

μ (kPa) 3.2 ± 0.031 3.2 ± 0.033 3.2 ± 0.029

Error (%) 1.34 1.32 1.48

−9.0 ± 0.0058 −9.0 ± 0.023 −8.9 ± 0.040

Error (%) −0.095 0.48 1.2

Center Inclusion No Noise 1.5% Noise 3.0% Noise

μ (kPa) 3.2 ± 0.026 3.2 ± 0.034 3.2 ± 0.033

Error (%) 1.5 1.5 1.7

−8.8 ± 0.027 −8.8 ± 0.030 −8.7 ± 0.050

Error (%) 1.1 0.91 0.092

Right Inclusion No Noise 1.5% Noise 3.0% Noise

μ (kPa) 3.0 ± 8.1 × 10−4 3.0 ± 0.0055 3.0 ± 0.011

Error (%) 5.7 × 10−4 0.027 0.069

−8.8 ± 0.047 −8.8 ± 0.043 −8.7 ± 0.067

Error (%) 1.5 1.3 0.057
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TABLE III

Mean and Standard Deviation of the Shear Modulus and Hydraulic Conductivity Values for the Three Types 

of tofu Estimated in the Phantoms Shown in Fig. 5

Type Shear Modulus (kPa)

Soft 4.1 ± 1.9 −6.4 ± 0.56

Firm 11 ± 1.4 −6.9 ± 0.087

Extra Firm 15 ± 1.0 −9.5 ± 0.68
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