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Abstract

Predicting cognitive performance of subjects from their magnetic resonance imaging (MRI)

measures and identifying relevant imaging biomarkers are important research topics in the study

of Alzheimer’s disease (AD). Traditionally, this task is performed by formulating a linear

regression problem. Recently, it is found that using a linear sparse regression model can achieve

Copyright (c) 2010 IEEE.

Correspondence to: Li Shen, shenli@iu.edu.
†Equal contribution by Jing Wan (wanjing.research@gmail.com) and Zhilin Zhang (zhilinzhang@ieee.org).

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2014 July ; 33(7): 1475–1487. doi:10.1109/TMI.2014.2314712.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



better prediction accuracy. However, most existing studies only focus on the exploitation of

sparsity of regression coefficients, ignoring useful structure information in regression coefficients.

Also, these linear sparse models may not capture more complicated and possibly nonlinear

relationships between cognitive performance and MRI measures. Motivated by these observations,

in this work we build a sparse multivariate regression model for this task and propose an empirical

sparse Bayesian learning algorithm. Different from existing sparse algorithms, the proposed

algorithm models the response as a nonlinear function of the predictors by extending the predictor

matrix with block structures. Further, it exploits not only inter-vector correlation among regression

coefficient vectors, but also intra-block correlation in each regression coefficient vector.

Experiments on the Alzheimer’s Disease Neuroimaging Initiative database showed that the

proposed algorithm not only achieved better prediction performance than state-of-the-art

competitive methods, but also effectively identified biologically meaningful patterns.

Index Terms

Sparse Bayesian Learning (SBL); Neuroimaging; Alzheimer’s Disease (AD); Cognitive
Impairment

I. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive

impairment of memory and other cognitive functions, associated with behavioral

disturbances, and progressively leads to total dependency [1]. Identifying the

neuroanatomical basis of cognitive impairment in AD is an important research topic because

it can help us understand brain structural changes related to cognitive impairment and

potentially predict the progression of AD [2]–[5].

This work considers the task of predicting cognitive scores of subjects from their magnetic

resonance imaging (MRI) measures by identifying neuroimaging predictors for cognitive

decline in AD. Increasing attention has been received in this field, where sparse learning

methods are used to identify imaging biomarkers associated with cognitive, genetic or

diagnostic conditions (e.g., [6]–[19]). For example, Stonnington et al. [6] applied relevance

vector regression, a sparse kernel method formulated in a Bayesian framework, to the

prediction of four sets of cognitive scores using the MRI voxel-based morphometry (VBM)

measures. Nunea et al. [16] used Lasso and Elastic Net enhanced by bootstrap to select

biomarkers. Sabuncu et al. [13] presented a Bayesian model utilizing sparse and spatially

connected sets of voxels to predict age and AD diagnosis. These studies typically considered

only the sparsity of the regression coefficients, ignoring other structures in the data. Wang et

al. [9] and Zhang et al. [11] employed multi-task learning strategies for selecting biomarkers

that could predict multiple clinical scores, using ℓ2,1-norm coupled with ℓ1-norm [9] and

multi-task feature selection coupled with support vector machine [11], respectively. Both

methods used a simple concatenation to bundle multiple clinical scores together without

learning their correlation structure.

Two important issues are ignored in these studies. One issue is that all these sparsity-based

methods considered linear sparse models, in which the response (e.g. cognitive score) is a
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linear function of predictors (e.g. neuroimaging measures). Although linear models showed

promising results, modeling cognitive scores as nonlinear functions of neuroimaging

measures provides enhanced flexibility and the potential to better capture the complex

relationship between the two quantities.

The second issue is that most existing sparsity-based models only considered the sparsity of

regression coefficients without modeling the correlation among the coefficients. In our case,

for a cognitive test that produces multiple scores, a relevant imaging predictor typically has

more or less influence on all these scores, which results in correlation among regression

coefficients [10]. Zhang and Rao [20], [21] recently showed that exploiting such correlation

could significantly improve algorithms’ performance. For a univariate sparse linear model,

they showed that if the regression coefficient vector has block-sparse structure (namely, the

nonzero entries in the vector cluster into a number of nonzero blocks), exploiting the

correlation among entries in a common nonzero block (i.e., intra-block correlation) is

greatly beneficial in finding the correct solution [21]. For a multivariate sparse linear model

that involves multiple-outputs and estimates a coefficient matrix corresponding to multiple

measurement vectors, they also showed that exploiting the correlation among different

regression coefficient vectors (i.e., inter-vector correlation) can significantly reduce

regression errors [20]. The benefit was also revealed in our previous work [10], in which we

proposed a sparse Bayesian multi-task learning algorithm which explicitly models the

correlation structure within each row of the regression coefficient matrix, i.e., inter-vector

correlation, and achieved good prediction performance in predicting cognitive scores from

imaging measures. However, to the best of our knowledge, there is no sparsity-based

algorithm exploiting both the inter-vector and the intra-block correlation.

To bridge the gap, we propose a multivariate sparse regression model which possesses both

the intra-block correlation and the inter-vector correlation in the regression coefficient

matrix. We also present an approach to model the response as a nonlinear function of the

predictors. A sparse Bayesian learning algorithm is derived, which estimates the solution by

exploiting the sparsity of regression coefficients and automatically learning the intra-block

and inter-vector correlations. Our main contribution can be summarized as follows.

From the perspective of our application, we provide a flexible framework to exploit the

nonlinear relationship between cognitive scores and MRI measures. Although in this work

we adopt a specific nonlinear function (i.e., a polynomial function), other nonlinear

functions can also be used. We show that exploiting the two kinds of correlations can

significantly improve the prediction performance and help accurately identify biologically

meaningful imaging predictors. It is worth noting that exploiting nonlinearity and correlation

is rare in neuroimaging research using sparse learning methods.

From the perspective of sparse regression algorithms, the proposed algorithm is the first

sparse algorithm exploiting both the intra-block correlation and the inter-vector correlation,

and it enriches the family of sparse Bayesian learning algorithms [22]. An efficient approach

to learning the two correlation structures and a regularization approach for the associated

covariance matrices are proposed. Besides, the algorithm is self-tuning, which is an obvious

Wan et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



advantage to many sparse regression algorithms such as the Lasso-type algorithms which

require users to tune some parameters via cross-validation.

II. Notations

Bold symbols are reserved for vectors and matrices. For a matrix A, Ai· denotes the i-th row,

and A·j denotes the j-th column. A[i]j denotes the i-th block in the j-th column. Ai[j] denotes

the j-th block in the i-th row. A[i]· denotes the i-th block of all the columns, while A·[j]

denotes the j-th block of all the rows. A[k] denotes the k-th diagonal block in A. diag{A1, ···,

AM} denotes a block diagonal matrix with principal diagonal blocks being A1, ···, AM in

turn. vec(A) denotes the vectorization of the matrix A formed by stacking its columns into a

single column vector. ⊗ indicates the Kronecker product. AT is the transpose of A.

III. Mathematical Model

Consider the multivariate linear regression model:

(1)

where Y ∈ ℝM×L is the response matrix, X ∈ ℝN×L is the regression coefficient matrix, and

V is the noise matrix. Φ ∈ ℝM×N is the predictor matrix, and any M columns are linearly

independent. Further, the matrix X is assumed to have the following block structure:

(2)

where X[i]· ∈ ℝdi×L is the i-th block of X, and . Among the g blocks, only a few

are nonzero blocks. The key assumption in this model is that each block X[i]·(∀i) is assumed

to have both intra-block correlation and inter-vector correlation. In particular, entries in the

same column of X[i]· are correlated (intra-block correlation), and entries in the same row of

X[i]· are also correlated (inter-vector correlation).

To facilitate algorithm development, we make similar assumptions as in the standard

multivariate Bayesian variable selection model [23] (also called the conjugate multivariate

linear regression model [24]). The i-th block X[i]· is assumed to have the parameterized

Gaussian distribution . Here B ∈ ℝL×L is an

unknown positive definite matrix capturing the correlation structure in each row of X[i]·. The

matrix Ai ∈ ℝdi×di is an unknown positive definite matrix capturing the correlation structure

in each column of X[i]·. The parameter γi is an unknown nonnegative scalar determining

whether the i-th block is a zero block or not. Assuming the blocks  are mutually

independent, the distribution of the matrix X can be expressed as
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(3)

where Π is a block diagonal matrix defined by

(4)

Further, each row of the noise matrix V has the distribution p(Vi·; λ, B) = (0, λB), where λ

is an unknown scalar. Assuming the rows are mutually independent, the distribution of V
can be expressed as

(5)

Note that X and V share the common matrix B for modeling the correlation structure of each

row. This is a traditional setting in Bayesian variable selection models [23], [24], which

facilitates the use of a conjugate prior in multivariate linear regression models.

Alternatively, we can assume that X and V do not share the common covariance matrix B.

By using the same approximation trick in Eq. (20) in [20], we can also obtain the same

algorithm presented in this paper.

IV. Algorithm Development

We derive our algorithm using sparse Bayesian learning (SBL). SBL is a powerful Bayesian

variable selection method, especially when the number of useful variables is small. It was

proposed by Tipping [22], drawing much attention in machine learning. Later it was

introduced to the field of sparse signal recovery by Wipf and Rao [25] as a method of basis

selection for sparse linear regression models. They largely enriched the theoretical results on

SBL, and showed its advantages over Lasso or other ℓ1-minimization algorithms [26].

First, we transform the original model to the following block sparse model:

(6)

where y = vec(YT) ∈ ℝML×1, D = Φ⊗IL, x = vec(XT) ∈ ℝNL×1, and v = vec(VT). Based on

the probability models (3) and (5), we obtain the posterior

(7)

where Θ denotes all the parameters {γi, Ai}i, B, λ. The covariance matrix Σ is given by

(8)

and the mean μ is given by
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(9)

(10)

Therefore, once all the parameters Θ are estimated, the MAP estimate of X is given by the

posterior mean:

(11)

To estimate Θ, we use the Type II maximum likelihood method [22], [27], and have the

following cost function

(12)

where Σy = λI⊗B + D(Π⊗B)DT. By optimizing the cost function with respective to each

parameter in Θ, we can derive the following learning rules (see Appendix for derivations):

(13)

(14)

(15)

(16)

(17)

where Φ·[i] denotes the consecutive columns in Φ which correspond to the i-th block in X,

i.e, X[i]·, and
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Estimating covariance matrices of latent variables (such as estimating B and Ai) is not an

easy task given limited data, especially when the number of measurement vectors, L, is not

large. To solve this problem, we regularize the estimates of B and Ai as follows. We note

that when the noise is very small, or does not exist (i.e., λ → 0), the second term on the right

side of (14) can be removed for robustness. Alternatively, the estimate B+ can be regularized

as follows

(18)

where η is a positive constant (fixed to 2 in our experiments). This regularization removes

the contribution of noise covariance while enhances the algorithm’s stability. For the

estimated Ai(∀i), it is further regularized similarly as in [21]. In particular, we use a di × di

Toeplitz matrix of the form

(19)

to approximate Ai, where  with m0 (resp. m1) being the average of entries along the

main diagonal (resp. the main sub-diagonal) of Ai. ϒi is the regularized estimate of Ai. This

Toeplitz structure (19) is a widely used regularized covariance structure [28], [29]. Its

entries decay exponentially when moving away from the diagonal, and so it models short-

range correlation. Although more complex structures can be used, they require more

parameters and are more difficult to estimate. The introduced errors by these parameters can

often seriously deteriorate the algorithm’s performance.

Algorithm 1 summarizes the whole algorithm. Note that when calculating the updated value

of Ai in each iteration, the old value of B should be used, not the just updated value.

Similarly, when updating λ, the old values of B and Ai should be used. Two convergence

criteria are jointly used. One is that the iteration number is larger than 500. The second

criterion is that the maximum change in any entry of the estimated X in successive iterations

is smaller than 10−8. When any of the criteria is met, the algorithm stops.

V. Mathematical Formulation of the Application

The goal of our practical problem is to predict subjects’ cognitive scores in a number of

neuropsychological assessments using their MRI measures across the entire brain. Each

assessment typically yields multiple evaluation scores from a set of relevant cognitive tasks,
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and thus these scores are inherently correlated. It is hypothesized that only a subset of brain

regions are relevant to each assessment.

To achieve the goal, two steps are used. First, in a training dataset, a regression model is

built to connect cognitive scores of all subjects to their MRI measures, and estimate the

regression coefficient matrix. The significantly nonzero entries in the coefficient matrix

indicate relevant imaging biomarkers. In the second step, the regression coefficient matrix

estimated from the first step and a new subject’s MRI measures in a testing dataset are used

to predict his/her cognitive scores.

Algorithm 1

The Proposed Algorithm

Input: Y, Φ, and the block partition (2)

Output: X

Initialization: Ai = Idi (∀i), B = I, γi = 1(∀i), and λ is initialized by a small value (e.g. 10−3)

while not satisfy convergence criterion do

 Estimate X by (11);

 Estimate γi by (13);

 Estimate B by (18) and (15);

 Estimate Ai by (16), and regularize it as in (19);

 Estimate λ by (17)

end while

In [10] the following multivariate regression model was used to connect cognitive scores to

MRI measures:

(20)

where Y ≜ [Y·1, ···, Y·L] ∈ ℝM×L, X ≜ [X·1, ···, X·L] ∈ ℝN×L, and V ≜ [V·1, ···, V·L]. Here

Y·l ∈ ℝM×1 is the cognitive scores of all the M subjects when performing the l-th cognitive

task. Φj,k is the MRI measure of the k-th brain area of the j-th subject. X·l is the regression

coefficient vector under the l-th task. A significantly nonzero entry of X·l, say Xq,l, means

that the MRI measures of the q-th brain area have strong influence on the cognitive scores of

all subjects under the l-th task (See Fig. 1(a) for the illustration of the model).

In our prior work [10], we modeled two specific structures in X. One was the row-sparse

structure (i.e., X had only a few nonzero rows), since the brain circuitry relevant to a certain

cognition task typically involves a small number of imaging markers, and these markers

more or less affect all the cognitive scores under the task. The second was the correlation

among entries of the same nonzero block in X. Jointly exploiting the two structures, our
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previous algorithm [10] achieved better performance than state-of-the-art algorithms which

only exploited row-sparse structure.

However, one possible limitation in this model is that a subject’s cognitive score under a

task is modeled as a linear function of his/her MRI measures. For example, for the m-th

subject, the cognitive score under the l-th task is modeled as

A linear model might have limited flexibility in capturing the complex relationship between

Ym,l and Φm,n(∀n).

A more powerful model is to consider a nonlinear relationship between Ym,l and Φm,n(∀n).

To achieve this, we use polynomials to model the nonlinear relationship:

(21)

where . Note that if the MRI measure Φm,1 has influence on the subject’s

cognitive scores, the associated coefficients Z1,l, Z2,l, ···, Zd1l tend to be nonzero together

(but with different amplitudes), and thus Z1,l, Z2,l, ···, Zd1l are correlated. This correlation is

in fact the intra-block correlation stated before. The same holds for other MRI measures

Φm,j(j = 2, ···, N). Writing the relation (21) for all m, l, we obtain the following model in

matrix form:

(22)

(23)

Note that the matrix Z has the block structure as in (2), and has both the intra-block

correlation and the inter-vector correlation (which is inherited from the model (20)).

Therefore, the model (23) is exactly the model (1) under the assumption (2), and thus our

proposed algorithm can be directly used.
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Since our proposed algorithm exploits both the inter-vector and intra-block correlations and

can be used to model the nonlinear relationship between predictors and responses, we name

it CORNLIN (CORrelation- and NonLINearity-aware SBL). Note that, in this work, all

tasks (i.e., predicting multiple cognitive scores) are coupled via inter-vector correlations and

all polynomials are coupled via intra-block correlations. Below, we report our experimental

results using the third-order polynomial function in (23), i.e., d1 = d2 = ··· = dg = 3 (See Fig.

1(b) for the illustration of the model). These results are among the best through nested cross-

validation for tuning the polynomial order parameter. Besides, as in many studies [16], each

column of X and Y is normalized to have zero mean and unit standard deviation.

VI. Experimental Results

A. Datasets

The proposed algorithm, CORNLIN, was empirically evaluated using the MRI and cognitive

data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). One goal of ADNI has been to test whether serial MRI, positron

emission tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early AD. For up-to-date information, see www.adni-info.org.

In our experiments, 222 healthy control (HC) participants and 171 patients with AD were

included. Their characteristics are summarized in Table I. Baseline MRI scan of each subject

was acquired on 1.5T GE, Philips, and Siemens MRI scanners using a magnetization

prepared rapid acquisition gradient echo (MP-RAGE) sequence that was selected and tested

by the MRI Core of the ADNI consortium [30]. Further details regarding the scan protocol

can be found in [31] and at www.adni-info.org. The FreeSurfer V4 software was used to

process the baseline structural MRI scan of each subject, and to extract thickness measures

of 34 cortical regions of interests (ROIs) and volume measures of 15 cortical and subcortical

regions of interest (ROIs) from each hemisphere (totally 98 imaging measures) [32], [33].

Four sets of cognitive scores [34] were examined (Table II): Alzheimer’s Disease

Assessment Scale (ADAS), Mini-Mental State Exam (MMSE), Rey Auditory Verbal

Learning Test (RAVLT), and Trail Making Test (TRAILS). ADAS is a global measure

incorporating the core syptoms of AD [35]. MMSE examines orientation to time and place,

attention and calculation, immediate and delayed recall of words, language and visuo-

constructional functions [36]. RAVLT is a measure of verbal memory which consists of

eight recall trials and a recognition test [37]. TRAILS, a neuropsychological test of visual

attention and task switching, consists of two parts in which the subject is instructed to

connect a set of 25 dots as fast as possible while still maintaining accuracy [38], [39].

Details about these neuropsychological tests are available in the ADNI procedure manuals

(www.adni-info.org). All the baseline cognitive scores were pre-adjusted for removing the

effects of four covariates (the baseline age, gender, education, and handedness) and all the

MRI measures were pre-adjusted for the same four covariates plus total intracranial volume

(ICV).
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B. Comparison with Competing Methods

To show the superior performance of CORNLIN, five state-of-the-art or classical algorithms

were used for comparison. Each algorithm is a representative of a different group of

algorithms. They are the T-MSBL-FP algorithm [10], the mixed ℓ2/ℓ1 minimization

algorithm [40], the multi-task compressive sensing algorithm (MT-CS) [41], the Elastic Net

algorithm [42], and the ridge regression [43]. T-MSBL-FP is a fast variant of T-MSBL

algorithm [20], which is a sparse Bayesian learning algorithm exploiting inter-vector

correlation among the regression coefficients. Mixed ℓ2/ℓ1 is a representative of convex

algorithms based on multivariate regression model. Both T-MSBL-FP and Mixed ℓ2/ℓ1

exploit the row sparsity of the coefficient matrix. MT-CS is a Bayesian multi-task learning

algorithm. Elastic Net adopts a penalty function which is a convex combination of the ℓ1

lasso and ℓ2 ridge. Ridge is a special case of Elastic Net by dropping the ℓ1 constraint. In our

experiments, the parameters of these algorithms were automatically tuned by nested cross-

validation.

All the algorithms were applied to predict the cognitive scores using the MRI measures. For

MRI measures, we had thickness or volume measures of 49 ROIs from each hemisphere.

Then the bilateral measures were averaged to generate one single measure for each ROI. For

cognitive scores, we used all four sets of baseline cognitive scores (ADAS, MMSE, RAVLT

and TRAILS). As in [6], [10], [11], the Pearson’s correlation coefficient r between the

actual and predicted cognitive scores was computed to measure the prediction performance

for each set of cognitive scores (i.e., ADAS, MMSE, RAVLT, and TRAILS). For each set of

scores, five-fold cross-validation was used to obtain the mean of r and its standard error of

mean (SEM). We also tested the explained variance by the regression model as a

performance criterion and it yielded similar results.

In the first set of experiments, we compared CORNLIN (a nonlinear model) with five

competing methods (all linear models). Shown in Fig. 2 and Table. III (see only linear

columns for competing methods) is the cross validation prediction performance; and shown

in Fig. 3 are example scatter plots of actual and predicted scores. CORNLIN outperformed

all the competing algorithms for almost all sets of scores except that the Elastic Net achieved

better performance than CORNLIN in predicting TOTAL score. To examine whether these

improved prediction performances were significant, we randomly created 50 5-fold data

partitions and compared the corresponding cross-validation performances measured by the

mean correlation coefficient between predicted and actual scores using a pairwise t-test.

CORNLIN significantly outperformed other methods in almost all the cases (p ≤ 2.76×10−5)

except: (1) Elastic Net significantly outperforming CORNLIN for predicting TOTAL (p =

1.51×10−5) and (2) no significant difference between CORNLIN and Mixed ℓ2/ℓ1 for

predicting TOTAL (p = 0.721). In particular, comparing CORNLIN to T-MSBL-FP, we can

see the improved performance. Since the linear model used by T-MSBL-FP is a special case

of the nonlinear model used by CORNLIN when d1 = · · · = dg = 1, these results show that

the nonlinear model with the ability to exploit the intra-block correlation can better capture

the relation between the predictors (the MRI measures) and the responses (the cognitive

scores) than the linear model.
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Fig. 4 shows that the heat maps of the regression coefficients calculated by CORNLIN, T-

MSBL-FP, and Elastic Net for all the cognitive tasks in the four sets. Every five columns

form a column block (sketched by black vertical lines) to represent the regression

coefficients in the five-fold cross validation. In Fig. 4(b–c), each row corresponds to an MRI

measure which is an average of left and right measures, and each column block corresponds

to a cognitive task. In Fig. 4(a), since we adopted the nonlinear model using the third-order

polynomial, every three column blocks (e.g., ADAS1, ADAS2, ADAS3) correspond to a

cognitive task, representing the regression coefficients for the 1st, 2nd, and 3rd orders of the

polynomial, respectively. In addition, the blue color indicates negative correlation while the

red indicates positive correlation and the green indicates zero correlation. The larger the

absolute value of a coefficient is, the more important its corresponding MRI measure is in

predicting the corresponding cognitive score.

The pattern obtained by CORNLIN is sparser than those obtained by T-MSBL-FP, the

Elastic Net and other compared algorithms (not shown due to space constraints), making the

results easier to interpret. The imaging biomarkers identified by CORNLIN yielded

promising patterns (Fig. 4) that are expected from prior knowledge on neuroimaging and

cognition. The tasks in ADAS and MMSE aimed to reflect overall cognitive impairment,

while the result of CORNLIN showed important AD-relevant imaging biomarkers such as

hippocampal volume (HippVol), amygdala volume (AmygVol), and entorhinal cortex

thickness (EntCtx). The tasks in RAVLT (i.e., TOTAL, T30 and RECOG) aimed to test

verbal learning memory, while the result of CORNLIN highlighted regions relevant to

learning and memory, such as hippocampus (HippVol) and entorhinal cortex (EntCtx). The

tasks in TRAILS (i.e., TRAILSA, TRAILSB, TR(B-A)) aimed to test a combination of

visual, motor and executive functions, while the result of CORNLIN showed regions in

temporal lobe (EntCtx), parietal lobe (InfParietal), and ventricle (InfLatVent).

All the above results demonstrated that the proposed CORN-LIN algorithm not only yielded

higher prediction accuracy, but also had a desired ability to discover a small set of imaging

biomarkers that were easier to interpret and were consistent with prior findings (e.g., [44]–

[46]). The algorithm could provide important information for understanding brain structural

changes related to cognitive status, and could potentially help characterize the progression of

AD.

C. Comparison with Nonlinear Competing Methods

In previous experiments, the competing algorithms were carried out using their original

linear form (20). In the second set of experiments, we expanded the competing algorithms

using the nonlinear paradigm shown in (23) in order to see the benefits of the block structure

and exploiting the intra-block correlation in our model. We used the 3rd order polynomials

to construct the predictor matrix, Φ. Note that the five competing algorithms just used a

nonlinear predictor matrix without any block structure. The nonlinear columns in Table III

show the comparison of prediction performances. We can still see that CORNLIN

outperformed the nonlinear extensions of other algorithms in most cases. We also calculated

the p-value of mean correlation coefficients between CORNLIN and the competing

algorithms as what we did in Section VI-B. CORNLIN significantly outperformed the
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nonlinear versions of the competing methods in almost all the cases (p ≤ 1.89 × 10−3)

except: (1) Elastic Net significantly outperformed CORNLIN for predicting TOTAL (p =

7.31 × 10−12) and (2) no significant difference between CORNLIN and Elastic Net for

predicting ADAS (p=0.354). In particular, the only difference between CORNLIN and

nonlinear T-MSBL-FP was that CORNLIN exploited the intra-block correlation while

nonlinear T-MSBL-FP did not. This demonstrated that exploiting intra-block correlation

could further improve the prediction performance of a nonlinear model.

D. Comparison in Different Orders of Polynomials

In the above experiment, the third-order polynomial was used in the nonlinear model.

However, we may adopt any order of polynomials. To better understand the relationship

between different polynomial orders and prediction performance, we carried out

experiments on the four sets of cognitive scores using polynomials from the 1st order to the

6th order (Fig. 5). The 3rd order polynomial achieved the highest prediction accuracy in

predicting MMSE and RAVLT, while the 4th order polynomial had the best prediction

performance for TRAILS and ADAS. From Fig. 5, we can see that adopting the order of

polynomial up to 4th is a good choice for predicting all the four sets of cognitive scores,

considering the prediction performance and model complexity.

E. Comparison using Different Types of Imaging Measures

In this section, we report the performance comparison result on using three types of MRI

measures to predict cognitive scores with CORNLIN. As described in Section VI-A, for

each participant there are totally 98 MRI measures (thickness or volume measures) extracted

from 49 cortical/subcortical ROIs in each hemisphere. For simplicity, we can average

bilateral measures to generate one single measure for each ROI and thus obtain 49 averaged

MRI measures for each participant. We call such measures the LR-Average measures. So

far all the experiments reported above employed this kind of imaging measures as

predictors.

Since two hemispheres may contribute to different cognitive functions, sometimes it is better

to look at the ROIs in left and right hemisphere separately. Thus, we performed another

experiment by employing all 98 MRI measures from both hemispheres for each participant

and treating each MRI measure separately. For example, in linear model (20), Φ1,1 is the

MRI measure of the 1st ROI in the left hemisphere of Subject 1, and Φ1,2 is the MRI

measure of the 1st ROI in the right hemisphere of this subject. We call these measures the

LR-Separate measures, which is our second type of MRI measures. Fig. 6(a) shows how to

construct the Φ matrix in a nonlinear model using LR-Separate measures.

Given that most ROIs have a bilaterally symmetric pattern in terms of their volumetric or

thickness measures, it is reasonable to hypothesize that the regression coefficients of the left

and right sides of the same ROI are correlated and this relationship should be embraced.

Thus, another choice is to bundle each pair of left and right ROIs together so that bilateral

biomarkers can be identified together. Accordingly, in our third type of MRI measures,

which is denoted by LR-Block, the left and right measures from corresponding ROIs and

their associated terms of polynomials are concatenated to form a column block in Φ matrix
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(as shown in Fig. 6(b)). If LR-Block and third-order polynomial are adopted, the coefficient

matrix Z has block size of 6 (i.e, di = 6, ∀i).

For comparison, CORNLIN was applied to a nonlinear regression model with third-order

polynomials for predicting the four sets of cognitive scores (ADAS, MMSE, RAVLT, and

TRAILS) from the three kinds of MRI measures (LR-Average, LR-Separate, and LR-

Block), respectively. Five-fold cross-validation was adopted to evaluate the robustness of

each kind of MRI measures. Table IV shows the performance comparison measured by

mean and standard error of mean (SEM) of correlation coefficients between actual and

predicted scores. Average measures (LR-Average) performed better than individual

measures (LR-Separate and LR-Block) for MMSE and TRAILS, while the individual ones

did better than average ones for ADAS ad RAVLT. The performances of LR-Separate and

LR-Block were similar: LR-Separate performed slightly better for ADAS and RAVLT,

while LR-Block did slightly better for MMSE and TRAILS.

Fig. 7 shows the heat maps of regression coefficients in five-fold cross-validation trials for

predicting RAVLT cognitive scores using LR-Separate and LR-Block MRI measures. The

arrangement of the heap maps in Fig. 7 is almost as same as those in Fig. 4, except that in

Fig. 7 every two column blocks for each cognitive score variable correspond to the ROIs in

the left and right hemispheres while in Fig. 4 every column block for each cognitive score

variable corresponds to the averaged MRI measures (LR-Average) used. From Fig. 7, we

can see that the biomarkers identified by LR-Block are more consistent than those detected

by LR-Separate in the five-fold cross-validation trials. In addition, there are more bilateral

regions identified by LR-Block than those identified by LR-Separate (See HippoVol region

in both heat maps). Fig. 8 shows visualization of the regression coefficients for RAVLT-

TOTAL mapped onto the brain. LR-Block demonstrated a more symmetric pattern than LR-

Separate. For highly correlated features (e.g., left and right measures in our case), we do not

expect the block design to yield significantly enhanced prediction accuracy based on two

observations: (1) these features possess almost identical information, (2) it is sufficient to

select just one feature (e.g., by flat sparsity strategy like Lasso) to represent the entire

feature group and achieve similar prediction performance. However, as shown in Fig. 7 and

Fig. 8, the block design has the potential to select all the features in each relevant block and

yield more stable and biologically more meaningful results.

VII. Discussion

Our proposed CORNLIN algorithm exploits not only inter-vector correlation among

coefficient vectors, but also intra-block correlation in each coefficient vector, which

provides feasibility to model nonlinear relation between the responses and the predictors.

Compared to our prior method [10], T-MSBL-FP, which only uses inter-vector correlation,

CORN-LIN has improved prediction performance for all four sets of cognitive scores (See

Fig. 2). This demonstrates that using the nonlinear model coupled with the block design has

the potential to better capture the complex relationship between brain structure and cognitive

decline. In this study, we used polynomials to represent a nonlinear relationship. Note that

the polynomial model can also detect linear patterns, since the latter is a special case of the

former. Investigating powerful nonlinear functions (e.g., polynomial or exponential) to
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capture the complicated nonlinear relationships and their biological interpretation is an

interesting future direction.

CORNLIN can adaptively estimate and exploit the inter-vector correlation and intra-block

correlation in regression coefficients matrix. As described in Section III, inter-vector

correlation is modeled by an unknown positive definite matrix B and intra-block correlation

is captured by unknown positive definite matrices Ai. The parameter γi is an unknown

nonnegative scalar determining zero or non-zero property of a block and thus controlling the

sparsity of selected features. The parameter λ is an unknown regularizer. All the parameters

can be automatically tuned using our effective learning rules. This relaxes the efforts of

users to choose suitable values for the parameters in the training phase. What’s more, other

than performing feature selection in a separate preprocessing step [12], [47], [48],

CORNLIN automatically determines relevant imaging features and uses them to make

prediction in one consistent modeling framework. Although Ai and B can be automatically

tuned, CORNLIN also provides options for the users to input their own Ai or B for modeling

the correlations. Such prior/expert knowledge may provide more efficient solutions for

prediction. This setting makes CORNLIN more flexible to use. Interesting future directions

could be to study how to construct Ai and B and how to develop more efficient algorithms

with better performance.

In this study, imaging measures are important inputs (predictors) to our multivariate

regression model. From Section VI-E, we can see that different uses of imaging measures

may achieve different prediction accuracies or identify different biomarkers. Exploring the

inner structure or relationship among predictors is an interesting topic. This study provides

one way to manipulate the predictors by using block structure. We can not only extend

linear mapping to nonlinear mapping by placing the terms of a polynomial model into one

block, but also bundle related imaging measures into one block, as what we did for LR-

Block. Using block structures, users can easily incorporate biologically meaningful

structures or knowledge-guided brain circuitries into the regression model and then apply

CORNLIN to solve it. There are other correlations which can be exploited to improve

performance, such as correlation among brain regions or temporal correlation among

longitudinal measures. These are more challenging tasks and require more complicated

models and algorithms, which is an interesting future direction to explore.

Compared to existing sparse regression algorithms [8], [9], [13], [20], [21], [49], CORNLIN

is the first one to exploit and explicitly estimate both the intra-block and inter-vector

correlations in regression coefficient matrices. In [8], the most basic sparse Bayesian

learning algorithm was used, and no structures were exploited but sparsity of regression

coefficients. In [9] the coefficient matrix X (denoted by W in [9]) was penalized by using a

combination of ℓ2,1 norm and ℓ1 norm of X, where the ℓ2,1 norm enforced the row-sparsity

of X and the ℓ1 norm enforced the entry-wise sparsity of X. The intra-block correlation and

the inter-vector correlation in X were not estimated. Some prior studies exploited

smoothness among regression coefficients by using a Laplacian matrix [13] or a kind of

fused Lasso penalties [50]. However, smoothness is a special kind of correlation structures.

It is not helpful when adjacent regression coefficients are not smooth (but still correlated), as

shown in [20] in the comparison between the T-MSBL algorithm [20] and a smoothness

Wan et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



constrained sparse algorithm in [51]. More general correlation structures were studied in

[10], [20], [21], which did not constrain the smoothness in regression coefficients. However,

in [10], [20], the algorithms only exploited the inter-vector correlation in the coefficient

matrices. In [21], only the intra-block correlation in coefficient vectors was exploited. It is

the first time that the two kinds of correlation are jointly exploited in our algorithm.

In this work, we empirically evaluated the proposed algorithm in an application where we

had more samples than features. An interesting future topic is to conduct performance

comparison between the proposed method and the competing methods in a high dimensional

setting such as using detailed voxel-based image measures as features, where the number of

features is greater than the number of samples.

VIII. Conclusion

Based on a sparse multivariate regression model, this paper proposed a sparse Bayesian

learning algorithm, which not only exploited the inter-vector correlation in the regression

coefficient matrix, but also considered the intra-block correlation in each coefficient vector.

In addition, the algorithm offered a flexible scheme to examine the nonlinear relationship

between the responses and the predictors. We illustrated its superiority by applying it to the

prediction of cognitive scores of subjects from their MRI measures. The prediction

performance of different orders of polynomials was discussed, as well as the comparison of

three types of MRI measures. Compared to state-of-the-art algorithms, the proposed

algorithm not only showed the highest prediction accuracy, but also demonstrated the ability

to accurately identify imaging biomarkers that are consistent with prior knowledge.
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Appendix

A. Learning Rule for γi

To derive the learning rule for γi, we use a bound-optimization method [21], since the

learning rule based on this method has a good balance between estimation accuracy and

speed.

Note that the first term in the cost function (12) is convex with respect to γ, and the second

term in the cost function is concave with respect to γ. Since the goal is to minimize the cost

function, we consider an upper-bound for the second term, and then minimize the upper-

bound of the cost function.

An upper-bound for the second term is its supporting hyperplane. Let γ* be a given point in

the γ-space. We have

(24)

where , and D·[i] = Φ·[i] ⊗ IL, and Φ·[i] is the i-th block of Φ corresponding to

X[i]·. Besides, note that:

(25)

where (*) used the Matrix Inversion Lemma, (**) used (9) and (8), (***) used (9), and

(****) used (8).

Substituting (24) and (25) into the cost function (12), we obtain the upper bound:

(26)

Taking the derivative of ({γi}i) with respect to γi, we finally obtain the following learning

rule

(27)
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where μ[i] ∈ ℝdiL×1, and the quantity  in (26) is replaced with Σy, keeping in mind that

Σy is calculated using the estimated parameters in the previous iteration. Note that the rule

(27) can be rewritten as

(28)

where X is estimated by (11).

B. Learning Rule for B

Noting that

and the result in (25), we can re-express the cost function (12) as

(29)

Setting the derivative to zero, we obtain

(30)

(31)

where the goal of (31) is to avoid the ambiguity among Ai, γi and B. In (30) the first term is

data-related, while the second term is noise-related.

C. Learning Rule for Ai

From the original cost function (12) or the equivalent one (29), one can derive a learning

rule for Ai(∀i), but it costs large computational load due to the coupling between Ai(∀i) and

B. If assuming L ≥ max{d1, …, dg}, one can derive a learning rule with light computational

load, but this condition narrows applications. For example, in our applications this condition

does not necessarily hold. Fortunately, by decomposing our original model into two

coupling sub-models, we can derive an efficient learning rule for Ai(∀i) (and other

parameters).

Assume B has been estimated. Letting , and , the

original model (1) becomes
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(32)

where the columns of X̃ are independent, and so does Ṽ. Now the model is a block sparse

Bayesian learning model [21] with multiple measurement vectors.

Following the EM method in [20], [21], we can easily derive the learning rule for Ai(∀i):

(33)

where

D. Learning Rule for λ

From the equivalent model (32) and following the EM method in [21], the learning rule for λ

can be also derived as follows,

(34)

Similar as in [21], at low SNR cases the above learning rule should be modified to

(35)

where Φ·[i] denotes the consecutive columns in Φ which correspond to the i-th block in X. In

noise-free situations, one can simply fix λ to a very small value such as 10−10 instead of

performing this learning rule.
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Fig. 1.
Illustration of (a) multivariate regression model with linear mapping and (b) multivariate

regression model with nonlinear mapping.
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Fig. 2.
Comparison of prediction performances measured by mean of correlation coefficients and its

standard error of mean (SEM) among six algorithms.
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Fig. 3.
Example scatter plots of actual and predicted cognitive scores.
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Fig. 4.
Heat maps of regression coefficients of five-fold cross-validation trials for (a) CORNLIN,

(b) T-MSBL-FP, and (c) the Elastic Net. Results for volume measures are shown in top 15

rows, and those for thickness measures in bottom 34 rows. Detailed descriptions are given in

the text.
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Fig. 5.
Prediction performances using polynomials of different orders.
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Fig. 6.
Illustration of constructing Φ matrix in nonlinear model using (a) LR-Separate and (b) LR-

Block, respectively.
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Fig. 7.
Heat maps of 5-fold cross-validation regression coefficients in CORNLIN for predicting

RAVLT scores using (a) LR-Separate and (b) LR-Block.
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Fig. 8.
Brain maps of the average regression coefficients of five-fold cross-validation trials when

using (a) LR-Separate and (b) LR-Block measures to predict cognitive score RAVLT-

TOTAL with a third-order polynomial model.
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Wan et al. Page 30

TABLE I

Participant characteristics.

Category HC AD p-value

Gender (M/F) 114/108 86/85 0.835

Handedness (R/L) 205/17 161/10 0.482

Baseline Age (years) 75.93 ± 5.08 75.67 ± 7.36 0.680

Education (years) 15.97 ± 2.84 14.74 ± 3.08 < 0.001
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Wan et al. Page 31

TABLE II

Description of the cognitive scores.

Score Name Description

ADAS Alzheimer’s Disease Assessment Scale

MMSE Mini-Mental State Exam score

RAVLT TOTAL
T30
RECOG

Total score of the first 5 learning trials
30 minute delay total number of words recalled
30 minute delay recognition score

TRAILS TRAILSA
TRAILSB
TR(B-A)

Trail Making test A score
Trail Making test B score
TRAILSB-TRAILSA
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