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Abstract

Deformable image registration is used increasingly in image-guided interventions and other

applications. However, validation and characterization of registration performance remain areas

that require further study. We propose an analysis methodology for deriving tolerance limits on

the initial conditions for deformable registration that reliably lead to a successful registration. This

approach results in a concise summary of the probability of registration failure, while accounting

for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the

input parameter that leads to successful registration outcome in at least 100β% of cases with the

100γ% confidence. The utility of the methodology is illustrated by summarizing the performance

of a deformable registration algorithm evaluated in three different experimental setups of

increasing complexity. Our examples are based on clinical data collected during MRI-guided

prostate biopsy registered using publicly available deformable registration tool. The results

indicate that the proposed methodology can be used to generate concise graphical summaries of

the experiments, as well as a probabilistic estimate of the registration outcome for a future sample.

Its use may facilitate improved objective assessment, comparison and retrospective stress-testing

of deformable.
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I. Introduction

Validation is a critical step in the development of image analysis technology. It is concerned

with the assessment of intrinsic characteristics, performance and limitations of a specific

tool or algorithm. With the increasing use of image analysis both in research and clinic,

robust validation protocols become essential to managing risks and reducing costs of image-

guided procedures. Validation of nonrigid image registration aims to establish the ability of

an algorithm to recover spatial correspondence in presence of deformation. Extensive work

has been done to bound expected clinical accuracy of rigid registration based on phantom

and retrospective experiments [1]. Fewer advances have been made for validating nonrigid

registration [2]. Approaches to estimation of deformable registration uncertainty at arbitrary

locations have been proposed [3], [4]; however, characterization of accuracy and reliability

of nonrigid registration based on clinical data virtually always relies on comparison with a

reference solution, such as locations of implanted fiducial markers or expert annotations of

the images. The results of such reference-based evaluation are typically summarized using

statistical measures that describe average performance of an algorithm. In practice, average

performance is of limited utility. A much more practical measure is one that describes

(based on the experimental data) the probability of the method producing a meaningful

result the next time it is used, together with the associated uncertainty in this estimate. Here

we investigate the use of tolerance limits [5] to provide such estimates. Compared to the

commonly used summary statistics that aim to capture average or extreme results observed

in the experimental evaluation, tolerance limits establish confidence bounds on a proportion

of the experiments, thus characterizing the expected performance on new subjects.

A taxonomy for reference-based validation of image processing tools has been proposed by

Jannin et al. [6]. Briefly, validation typically involves comparison of the results produced by

a method under investigation with that of a reference. A reference can be obtained using a

computational method that has been validated earlier, or using knowledge of a domain

expert. Given the results produced by these two methods, a comparison function is used to

measure the discrepancy, or the “distance” to the reference. In image registration, Target

Registration Error (TRE) or Landmark Registration Error (LRE) are the distances commonly

used [7]. The errors are computed for the different datasets and parameter values used in the

validation, and are summarized by a quality index. The quality index captures statistical

properties of the distribution of the local discrepancies at the intrinsic level (input dataset

and fixed parameters) or global level (evaluation done using different parameters and

validation datasets). The most commonly reported quality index is concerned with

summarizing the average error observed in the evaluation. As an example, we examined the

manuscripts presented in the Registration I and II sections of the MICCAI 2013 conference

[8], and found that most of those articles concerned with the evaluation of a registration

methods report mean and standard deviation of the error measure as the summary statistics
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in the validation section. Although useful, the characterization of average behavior is not

sufficient to describe the performance of an algorithm on a typical pair of images.

Another commonly reported summary statistic is the proportion of successful experiments.

In our earlier work, we presented an evaluation of a deformable registration algorithm

developed for image-guided prostate biopsy [9]. Success rate (proportion of experiments

that were deemed successful based on the defined criteria) was reported individually for

each of the datasets used in the evaluation. A similar approach was used in [10] and [11],

where the capture range of the method was defined as the starting misalignment that led to a

fixed success rate. This approach to reporting results does not directly account for variability

observed across the datasets used in the evaluation, does not include uncertainty in the

estimate and does not allow inference of the expected performance of the algorithm under

similar experimental conditions.

In summary, none of the measures commonly used to summarize results of registration

validation studies allow inference of typical (expected) performance of the method. A

fundamental distinction between the typical-case and average-behavior scenarios is that

behavior in a typical case must be regarded as a random variable, not an unknown constant.

For example, the accuracy of a registration will vary from sample to sample, and when

applied to a particular pair of images subject to a given failure criterion, an algorithm will

either succeed or fail. Two types of intervals useful for inference on random variables are

prediction intervals and tolerance intervals. A prediction interval will contain a specified

proportion, e.g., 90%, of future values on average. A tolerance interval will contain a

specified proportion of future values at specified confidence level, e.g., 90% of future values

with 95% confidence.

We propose the use of tolerance intervals, or tolerance limits (one-sided intervals) to

summarize the results of experimental evaluation of registration performance. Using this

concept, we can derive tolerance limits on the initial conditions that reliably lead to

successful registration, while accounting for the variability in the performance of the

algorithm observed from the data used in the evaluation. Tolerance limits have been applied

in numerous application domains [12], such as clinical chemistry [13], assessment of

bioequivalence [14] and characterization of degradation processes in electronic components

for aerospace applications [15]. In general, a tolerance limit allows one to ensure a fixed

proportion of a population exceeds a bound with specified confidence [5].

When applied to the experimental assessment of registration method reliability, tolerance

limits may provide a concise, quantitative and objective summary metric for characterizing

the probability of future registration success, given the observed behavior of a registration

method on the data used in the evaluation. In this study, tolerance limits are derived for a

quantal response (i.e., succeed or fail) scenario. This has been done previously in a simpler

and conceptually different application (lead testing) in [16]. In contrast to this earlier work,

which employed Bayesian logistic regression and required simulation, the present

frequentist approach is closed form, and builds on results in [17], [18].
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The developed methodology is demonstrated in three examples of increasing complexity.

Our examples utilize a versatile and commonly used registration tool. The annotated image

data we use was collected in a clinical setup of image-guided prostate biopsy motivating the

need for reliable deformable registration. Both the registration tool we evaluate and the

annotated image data are publicly available.

II. Methodology

Tolerance intervals and limits are statistical concepts that so far have not been applied

widely in evaluating image registration and image analysis tools in general. As mentioned

above, tolerance intervals are used for inference on random variables. As a simple example

from common experience, consider the problem of summarizing the results of the laboratory

measurement of a component of a patient's blood. What the patient would like to know is

not how his measurement compares to population average (which could be summarized by a

mean and confidence interval), but rather whether his measurement is extreme when

compared to an appropriate measurement population. Based on preliminary data, one can

estimate an interval which contains at least 90% of the population of test results, with 95%

confidence. If the patient's result falls outside this interval, then it can be highlighted for

consideration. We now illustrate the applicability of one-sided tolerance intervals (tolerance

limits) to image registration algorithm validation.

A (β, γ)lower tolerance limit (LTL) is a statistic such that at least a proportion β of the

population of the random variable of interest exceeds this limit, with 100γ% confidence. In

other words, a (β, γ)lower tolerance limit is a 100γ% lower confidence limit on the 1 – β

quantile of the population. Upper tolerance limits are defined similarly. Applied to

registration method validation, a tolerance limit can specify, for example, that with 95%

confidence at least 90% of the population of error values obtainable from an experimental

setup will be less than 5 mm. Such a summary statistic allows one to characterize the

expected performance of an algorithm.

The performance characteristic that we aim to describe is the probability of the registration

tool producing a discrepancy (TRE or LRE) below an application-specific threshold with

respect to the reference solution. In the derivation below, we apply the general taxonomy

developed by Jannin et al. [6]. We define the validation criterion VC as the probability of

successful registration. Technical efficacy studies typically assume a setup where a certain

input parameters (PI) are varied in a controlled fashion in a series of experiments. As an

example, the input parameter could be the magnitude of the initial misalignment of the

images in studies investigating the sensitivity of the registration tool to the initial conditions.

Each experiment produces a normalized output of the method R̂
N M (such as geometric

points defined in the image) which is compared to the reference R̂
Nref to calculate TRE or

LRE values. We define FCas follows:
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where TAE is the application-specific threshold on the acceptable value of the registration

error. Note that FC is a random variable, with distribution parametrized by PI. Each

registration is either successful (FC = 1) or not (FC = 0), and one would like to know a range

of values of PI for which we can guarantee with high confidence that for all PI in this

interval FC will equal 1 with high probability (a tolerance limit).

For simplicity, we denote the parameter as PI as x. Denote the probability of failure for the

ith subject given a value x of the parameter being explored as

We use nonparametric logistic regression to model the logit of the registration failure rate as

a function of x

where the logit transformation of a probability is defined as

We will further assume that x is the magnitude of the initial mis-alignment, since this is an

input parameter frequently explored in registration validation studies.

To estimate fi(x) we utilize local polynomial regression methods. Such methods employ low-

order (usually linear or quadratic) polynomials with locally determined coefficients. This

class of procedures has proven to be very useful in applied statistics (e.g., “lowess” [19] and,

more generally, locally-weighted regression [20]). locfit is one such regression procedure

[21], which is notable for determining the coefficients using local likelihood

approximations. This fitting approach is applicable to general linear models, in particular to

logistic regression. Therefore, we have chosen to use locfit as a nonparametric logistic

regression method for our analysis.

The output of the function locfit applied to data on the ith sample includes a function fî(x)

which estimates logit (pi(x)). The corresponding standard error function  is also

provided. We assume that, for given x, f̂i(x) is approximately Gaussian with standard error

 (as shown in [21, p.167]).

We will construct a lower tolerance limit in order to ensure that for sufficiently small x, the

algorithm will have an acceptably small probability of failure, with high confidence. Let FC

be the result of a registration simulation experiment E for which the initial misalignment

vector norm is x, and for which the probability of failure is
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We will use the data from s simulated registrations on each of n samples to estimate a bound

U (x) for which

where γ is a confidence level.

The subscripts indicate the random variables corresponding to the probability statements. A

statistic U(x) which has the above properties is a (β, γ) lower tolerance limit. We chose β =

0.9 and γ = 0.95 for our examples.

In the limit of infinitely many simulated registrations (s → ∞), f̂i(x) → fi(x), where fi(x) is

the logit of the true probability of failure, and consequently . In the limit of

infinitely many samples (n → ∞), we assume that  converges to a smooth

function f(x).

For fixed x, we employ a Gaussian random-effects model for fi(x)

where  are independent Gaussian random variables with standard deviation σ(x). Of

course, the values Zi(x) are correlated in x, but we will only be concerned with inference for

fixed x.

Following Paule and Mandel [22], we estimate f(x) by the weighted mean

with weights

The within-sample variances  are obtained from the logistic regressions. After having

substituted the estimates  in the weights, the function

(1)

can be seen to be an implicit function of the between-sample variance σ(x), which we

estimate as the root of this equation. In the Appendix, we motivate (1), and demonstrate that

it is a monotone decreasing function of σ2. This approach is equivalent to modified restricted

maximum likelihood [18].
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As shown in [17], an approximate 100γ% confidence interval for f(x) is

where zy is the 100γ percentile of a standard Gaussian distribution.

We assume that f̂(x) and the confidence limits are monotone increasing, at least for x

sufficiently small. We select a value for a probability of failure which we want to ensure is

exceeded only rarely, i.e., p0 ≡ 1 – β = 0.1. We determine the critical misalignment norm x0

such that the upper confidence limit at x0 equals logit (p0)

(2)

Because of the monotonicity assumption and the fact that this is an upper confidence limit,

we see that with 100γ% confidence the probability of failure is less than or equal to logit

(p0), for all misalignment norms x ≤ x0.

However, x0 is of only limited use as a bound in applications, because we obviously need to

make a probability statement not just about the data that we have analyzed, but also about

the curve f*(x)corresponding to a future sample. In order to do this, we merely replace the

above confidence interval with a prediction interval, and then determine the value x1 which

satisfies the following equation, analogous to (2):

(3)

Since U(x) is an upper prediction interval, for x ≤ x1

and hence U(x) is a (β, γ) lower tolerance limit.

The described analysis approach was implemented using the R statistical analysis package

[23]1. A custom Fortran routine was used for solving (1) using the Newton–Raphson

algorithm.

Evaluation of the prediction performance was done using leave-one-out cross-validation. A

(0.9,0.95) lower tolerance interval was estimated using 9 out of 10 cases, and for the case

1http://www.r-project.org
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left out, the observed probability of failure for the input parameter values below the

estimated LTL value was compared with the expected 10% probability of failure.

III. Examples

In this section, we apply the developed methodology to estimate tolerance limits in three

illustrative examples. Each example corresponds to an experimental setup designed to

evaluate the performance of a registration tool under various conditions. The goal of these

experiments was neither to establish clinical relevance of the derived values of tolerance

limits, nor to perform an in-depth technical validation of a specific registration method for a

specific clinical application. Rather we aimed to demonstrate how tolerance limits can be

applied to summarize the result of an experimental evaluation.

1) Image Data

All of our examples utilize a dataset of 10 annotated prostate MR images presented earlier in

[9]. The MR images of the prostate were collected for the purposes of transperineal targeted

MRI-guided biopsy [24]. Registration was performed between the T2-weighted (T2W)

images obtained before the procedure for planning purposes (pre-procedural images) and the

T2W images collected in the beginning of the biopsy (intra-procedural images). Pre-

procedural MRI was performed in a 3T GE Signa HDx scanner. The patient was scanned in

supine position using a combination of endorectal and pelvic array coils, resulting in T2W

images with the 0.3 × 0.3 × 3 mm resolution. Intra-procedural scans were acquired in a 3T

Siemens Magnetom Verio scanner using pelvic array coil and no endorectal coil, leading to

different configu-ration of the prostate gland as compared to the pre-procedural images.

Resolution of the intra-procedural T2W images was 0.4 × 0.4 × 3 mm.

For the purposes of registration and its evaluation, images were annotated with the manual

segmentations of the prostate gland prepared using 3D Slicer2[25] software. The images

were also annotated with manually placed fiducial points at corresponding image-specific

reference locations to enable calculation of the LRE. Identification of reliable point

landmarks in prostate imaging is often challenging due to the lack of point-like anatomical

features and poor out-of-plane resolution (as compared to in-plane). When identification of

point landmarks was not possible, regions corresponding to the case-specific image features

were contoured, and the landmarks were defined as centers of gravity for those regions.

We selected the dataset described above for several reasons. First, modeling of inter-subject

variability cannot be done using a single pair of images and necessitates the use of a dataset

containing multiple subjects representative of a clinical context. Second, datasets used in the

evaluation must be annotated to provide reference for registration evaluation. Third, we

were interested primarily in evaluating deformable registration, as it is most relevant in the

clinical context of registering soft tissue image data. Few annotated datasets that meet these

criteria are publicly available.

2Available online: http://slicer.org
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2) Registration Methodology

Our experiments utilized BRAINSFit [9], [26], [27] as the registration method under

investigation. BRAINSFit is an open source registration tool available as a module within

3D Slicer. Originally developed for intensity-based registration of multi-modal brain MRI

data, BRAINSFit has been applied successfully in a variety of single-and multi-modality

(MRI, PET/CT) registration problems and a range of organs (liver, brain, bone, abdomen,

kidney) in both healthy and disease affected human and animal tissue3.

Registration using BRAINSFit can be parameterized with different choices of

transformation models, similarity metrics and initializations. The specific details of the

parameterization we used is described for each of the examples separately. Mutual

information was utilized as the similarity metric in all experiments. Optimization of the

transformation parameters was achieved using the gradient descent optimizer for up to affine

transformations, and using limited memory Broyden–Fletcher–Goldfarb–Shannon

optimization with simple bounds for the final B-spline transformation step. We used the

standard implementations of the registration framework components available in the Insight

Toolkit (ITK) [28]. Registration was performed using identical parameters in all cases.

Example 2 utilized the version of BRAINSFit tool that was based on version three of ITK,

while in the other two examples we used a newer version of the software based on ITK

version four.

3) Experimental Setup Considerations

A natural first approach to an experiment designed to validate a registration algorithm is to

apply this algorithm to a sample of image pairs and simply observe the proportion of

registration failures. However, any practically useful registration algorithm will have high

reliability, and hence the sample size for a naïve validation experiment can be very large.

One way to overcome this problem is to stress the registration algorithm by introducing

noise or perturbations to the algorithm configuration in such a way that failures occur

sufficiently often to enable validation and comparison of algorithms with a reasonable

sample size. This is analogous to accelerated life testing of materials [29], and is commonly

applied to software validation [30].

Weillustratetheproposedmethodologywiththreeexamplesof validation experiments. All three

examples make use of the same data: 10 pairs of prostate images, each from different

subjects. In the first example, we used only the intra-procedural images and transformed

these images so as to simulate the displacement due to a rectal coil. An important feature of

this example is that the exact solution is known. For a second example, we consider the 10

pairs of images, and we assume that the quality metric is parametrized by misalignment

norm alone. As discussed above, we added experimental noise in this example in order to

make the registration sufficiently difficult so that useful information on reliability can be

obtained. The ground truth registration is not

known,andthereforetheresultisevaluatedrelativetothefiducial annotations defined by the

3Examples demonstrating the utility of BRAINSFit in a variety of use cases are described in http://na-mic.org/Wiki/index.php/
Projects:RegistrationDocumentation:RegLibTable
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domain expert. For the third example, we also use the image pairs with experimental noise.

In contrast to the second example, for this case we investigate the effect of multiple

parameters on the quality metric.

Our overall strategy in devising the example experiments was to choose an input parameter

PI that is expected to cause registration failure when its value exceeds a certain (unknown)

threshold. We then identified the range of parameter values that allowed us to test the

algorithm in the range of settings where failures change from very rare to very frequent

events. We then applied the methodology developed above to establish the tolerance limit

for the parameter value that leads to a high probability of success (e.g., 90%) with a high

confidence in that estimate (e.g., 95%).

The examples we use are not intended to conduct a comprehensive validation of a specific

registration method for a specific clinical use case. Instead, our goal was to illustrate how

the methodology we developed for estimating LTL can be applied. Specifically, this requires

availability of the experimental data collected from different subjects, and an adjustable

parameter that influences the registration success rate. At the same time, we note that the

experiments we considered are commonly applied in registration evaluation studies.

Numerous examples can be found in the literature that evaluate registration performance

using a setup similar to Example 2 [9], [11].

The datasets and analysis scripts used to derive the presented results will be made publicly

available to facilitate reproducibility and encourage adoption of the methodology by the

community4.

A. Example 1: Synthetic Deformation

This experiment utilized the intra-procedural T2W images acquired without an endorectal

coil to generate synthetic images that emulate deformation of the prostate gland by the

endorectal coil. To define the deformation field, we first identified a centroid of the rectum

in the central slice of the T2W image. A virtual line was then defined to pass through this

point perpendicular to the axial image acquisition plane. Deformation vectors were defined

to lie in the image acquisition plane in the directions radial to the point of intersection

between the virtual line and the slice plane. The magnitude of the deformation vectors was

defined as the input parameter for this experiment and was varied from 0 to 14 mm in

increments of 0.2 mm. The resulting deformation fields were applied to each of the 10 intra-

procedural T2W datasets to generate synthetic images.

Registration was performed between the original intra-procedural (fixed) and the synthetic

deformed (moving) images. The BRAINSFit transformation hierarchy was configured to use

only B-spline transformation. The number of samples used for the similarity metric

calculation was set to the default value of 100 000. The number of iterations for the

optimizer was fixed to 3000. Each registration experiment was repeated 10 times while

varying the seed used for the random sampling of image voxels in the similarity metric

calculation. Registration error was measured at the image point R̂
N M approximately

4See https://github.com/fedorov/ImageRegistrationToleranceIntervals
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corresponding to the center of the prostate gland. Given the synthetic and registration-

recovered transformations Ts and Tr, respectively, we defined the error as ∥ R̂
N M –

Tr(Ts(R̂
N M)) ∥. Registration was considered a failure when this registration error exceeded

0.5 mm.

The probability of registration failure for each of the 10 cases as a function of the magnitude

of the simulated displacement is shown in Fig. 1 (left). We can see that registration failures

begin to occur when the magnitude of the simulated displacement is around 7 mm, and

variability across the datasets in the onset of failures is present. Fig. 1 (right) demonstrates

the application of the LTL estimation methodology to this experimental data. The

(0.90,0.95) LTL was estimated to be 8.7 mm; i.e., with the 95% confidence we can state that

90% of the future experiments will lead to a successful registration outcome when the

magnitude of the simulated displacement is less than or equal to 8.7 mm.

Results of leave-one-out cross-validation showed that for all leave-one-out experiments

except one, the observed probability of registration failure was less than 10% for magnitudes

of the simulated displacement below the estimated LTL. In one case, the LTL value was 9.2

mm, while observed failure probability exceeded 10% with the initial displacement of 9.0

mm, which was very close to the value of LTL.

B. Example 2: Perturbed Initialization by Randomized Translations

In this example we conducted a secondary analysis of the experimental results collected in

an earlier study presented in [9]. Registration experiments were performed between the

preand intra-procedural images of the prostate for each of the 10 cases of the prostate MRI

dataset discussed earlier. The images were aligned rigidly to bring the images into rough

alignment. The experiments involved perturbations of these rigidly aligned images by a

known transform, applying the BRAINSFit registration and evaluating the quality of

registration using Dice Similarity Coefficient (DSC) [31] between the gland segmentations

and LRE [7]. BRAINSFit was configured to perform automatic hierarchical registration

parameterized by rigid, affine and B-spline transformations. Manual contours of the prostate

gland in the planning and intra-procedural T2w MRI were used to restrict calculation of the

similarity measure to the prostate ROI, as this proved to significantly improve robustness of

the algorithm.

The total of 500 initial misalignment transformations were defined by sampling the direction

uniformly over the unit sphere, and selecting the misalignment magnitude D (i.e., input

parameter PI) uniformly in (0, 10) mm. The comparison function FC in this example was

defined based on an application-specific quality index OQI that included the following

criteria: 1) the registration optimization procedure converged; 2) the DSC between the

segmentations of the gland in the registered images was above the case-specific threshold; 3)

the landmark registration error (LRE) was less than image slice thickness (3 mm for our

data). A more detailed description of the registration method and the evaluation results is

available in [9]. Dichotomized (success/failure as a function of the initial misalignment)

results of the experimental evaluation were used as the input for the statistical summary

analysis. An example of the registration result for one of the cases is shown in Fig. 2.

Fedorov et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We applied the developed methodology to approximate the registration failure process for

each of the 10 samples using local polynomial regression. The resulting curves summarizing

failure behavior are shown in Fig. 3 (left). In order to assess the adequacy of the fit of the

nonparametric logistic regression model, we compared it to a simple linear logistic

regression, both graphically, as summarized in Fig. 4, and quantitatively. For the

quantitative comparison, we note that the mean area under the receiver operating

characteristic (ROC) curve is 0.9675 for the simple linear logistic model, and 0.9697 for the

nonparametric logistic model (P = 0.056, two-tailed paired t-test). We note that the

nonparametric model provided a better fit by this measure for nine of the ten samples.

Finally, case-specific model fits were used to derive the mean probability of failure, 95%

prediction interval and (0.90,0.95) lower tolerance limit on the initial misregistration, as

summarized in Fig. 3 (right). The (0.90,0.95) lower tolerance limit estimate was 2.8 mm,

i.e., with 95% confidence, the probability of failure for a future experiment is at most 10%

for the initial misregistration less than or equal to 2.8 mm.

Cross-validation confirmed that for all leave-one-out experiments the probability of failure

was below 10% for values of the initial displacement below the estimated LTL.

C. Example 3: Perturbed Initialization With Multiple Parameters

In this example, we demonstrate the use of LTL in an experimental setting investigating the

effect of multiple input parameters on the registration performance. Similarly to the setup

used in the previous illustration, the registration was applied to the rigidly aligned images

perturbed with a synthetic initial transformation. However, this synthetic transformation

utilized controlled sampling of multiple input parameters PI that included the translation

direction and rotation angle in addition to the translation magnitude. The translation was

sampled randomly from 14 directions (six directions aligned with the image grid, and eight

diagonal directions). The rotation angle was varied in the range from +6° to –6° in 3°

increments separately for roll, pitch and yaw. The translation magnitude was initialized

between 0 and 10 mm in increments of 2 mm. A registration experiment was considered

successful (i.e., FC = 1) when the maximum LRE was less than 3 mm.

Our approach does not allow estimation of multi-dimensional tolerance limits (i.e., we can

only establish bounds on the most important parameter). Therefore, we considered a single

parameter (translation magnitude) and modeled the probability of registration success. To

account for the other varying parameters (rotation and translation direction), for each fixed

value of the initial misalignment, we collected a random sample with replacement from all

the experiments that were parameterized by that misalignment magnitude.

The results of LTL modeling for the 10 cases are shown in Fig. 5 (left). In this example the

LTL is not defined, as for any value of the initial misalignment the proportion of the

registration experiments with the successful outcome is expected to be less than 0.9. Upon

further investigation of the experimental results, we determined that one of the 10 cases

demonstrated a particularly high rate of failures. Fig. 5 (right) shows the modeled

probability of failure after excluding this case from the analysis, leading to a valid value of

the LTL. As can be observed from the plots, the mean success rate of the registration
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remains largely unaffected between the modeling results based on 9 and 10 cases, while the

LTL changes dramatically. We note that ideally when such behavior is observed in a

registration evaluation, more data could potentially be collected, which might lead to a more

practical LTL. We provide this example only as an illustration of the effect of the extreme

behavior on the reported performance measure.

Leave-one-out cross-validation was not applied in this example. The estimated value of the

LTL was less than 2 mm, while the values of the input parameters were sampled at 2 mm

increments.

IV. Discussion and Conclusion

Our aim was to develop a methodology of tolerance limit estimation suitable for validation

studies in image registration. We considered a setting where the measure to be characterized

is the probability of registration success. The methodology we proposed can be used to

establish a tolerance limit on the value of an input parameter used in the experimental

evaluation. This leads to a measure that guarantees, with specified confidence, the success

rate of the registration method for future samples. We applied the developed methodology in

various experimental settings to summarize the results of an experimental evaluation for a

registration method we are currently using in our MRI-guided prostate biopsy research trial

[9]. As opposed to the commonly used statistics that aim to characterize the average

performance of a method, the proposed approach estimates the probability of registration

success for a future sample, including the effects of inter-sample variability, as a function of

the initial misregistration. The ability to account for inter-sample variability in

characterizing registration method probability of success, while providing a concise

summary of the failure behavior, is the main advantage of the proposed methodology over

the alternative approaches used in the literature.

To the best of our knowledge, the concepts of prediction intervals and tolerance limits have

found limited use in image processing applications. Hernandez–Sabatè and Gil [32] used

regression prediction intervals to compare output of an automated algorithm with ground

truth. The methodology they proposed does not account for the inter-sample variability. In

radiation oncology applications, tolerance and prediction intervals were used to summarize

dose uncertainties and organ motion for optimized treatment delivery [33] and for dose

planning [34]. We do not know of any previous application of tolerance limits to summarize

experimental evaluation of image registration.

Several related efforts in the assessment and validation of image registration should be

considered in the context of our work. Münzing et al. [35] developed a methodology that

estimates registration quality for a specific registration result based on the features of the

specific images being registered using a machine learning approach. Our methodology is

suitable to bound the probability of the registration success (not registration error at a

specific location) for a future experiment, based purely on the results of a prior experimental

assessment. Quantification of registration uncertainty has been investigated by Kybic [3]

and Risholm et al. [4]. The proposed approaches developed methodologies for estimating

registration uncertainty in a specific pair of images being registered. Our approach is
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conceptually different in bounding the probability of registration success for a future

experiment, based on the accumulated results of the retrospective assessment. The work of

Fitzpatrick et al. [1] is perhaps the closest to ours in estimating the distribution of TRE for a

future experiment. In addition to the differences in the methodology, our approach provides

estimate of registration success based on retrospective population studies, while the

methodology of Fitzpatrick et al. provide TRE bounds for the specific case based on

FiducialLocalizationError.Finally,theapproachofFitzpatrickis applicable to rigid registration

only, while our approach provides bounds on population quantiles, conceptually being

agnostic to the nature of the registration algorithm.

The underlying assumption of the tolerance limit procedure is that the logit-transformed

probabilities of failure fi(x) are reasonably well approximated by a Gaussian random-effects

model. If this assumption is satisfied, then the LTL will be a valid descriptor of the behavior

of a future sample. Smaller sample size will result in tolerance limit being more sensitive to

the assumptions being met exactly. Even if all of the assumptions are satisfied, tolerance

limit estimate becomes more conservative as the sample becomes smaller, and may not be

practically useful (e.g., may approach zero). The methodology we proposed does not allow

the construction of multi-dimensional tolerance limits, i.e., we derive tolerance limit for one

input parameter. As we demonstrate in Example 3, the experimental setup can include

multiple parameters varied independently. We assumed that the registration failure rate is

monotonically increasing with the larger values of the parameter under investigation. This

assumption may not hold in all experimental scenarios.

Our analysis led to rather wide prediction intervals and low (i.e., comparable with the voxel

resolution of the image data) values for the (0.90,0.95) LTL. These estimates might be

overly conservative due to the limited data. For each value of the input parameter used in

our experiments, we had only 10 measurements to estimate inter-sample variance.

Considering the variability observed, a larger number of samples may be needed to have a

more precise estimate. However, the purpose of the present work was to illustrate the

application of tolerance limit, and not perform a comprehensive technical validation of the

registration method. The small sample we used is suitable for the purposes of this

demonstration. We emphasize that the proposed methodology should be considered within

the larger context for conducting image technology validation studies [6], as a statistical

index that can be used to summarize results of the experimental evaluation.

There are several venues that can be explored to improve validation of image registration

tools using the proposed methodology. With a sufficiently large sample size and a clinically

relevant experimental setup, practical values of LTL can be used as the ultimate measure of

registration tool reliability for the clinical applications. The use of tolerance limits as a

summary measure can also facilitate practical aspects of registration validation. Given a

common annotated dataset (such as the one used in our evaluation [9], which is available

publicly) various registration approaches can be compared using a simple summary measure

that incorporates across-subject variability of the registration performance. The tolerance

limit value can also be used as a reference for regression testing of the registration software.

As an example, modern registration software tools are typically composed of multiple

components and libraries. Changes or upgrades to one of the components (e.g., upgrade of
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the Insight Toolkit [28] from ver. 3 to ver. 4) often lead to fluctuations in the registration

result. The prediction interval curve can serve as a concise visualization summary to help

determine whether software changes led to significant degradation of the registration tool

performance.

Validation and performance characterization of image registration systems remain major

obstacles that hinder translation of the registration tools into the clinic [36], [37]. To address

these obstacles, methodologies and procedures need to be established to enable

characterization of accuracy and reliability of the registration tools, as well as comparison of

different approaches. Towards that goal, we introduced the concept of tolerance limits as a

means to concisely summarize the results of the registration tool experimental evaluation. A

key advantage of the proposed methodology lies in its ability to infer the expected

performance of a registration method on a future sample. We believe there is a potential for

this approach to be utilized widely for summarizing experimental evaluation of image

analysis technology, leading to the development of improved strategies for validation of

image registration tools. We hope that public availability of the scripts implementing the

analysis summarized in this paper will facilitate adoption and further development of the

proposed methodology.
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Appendix

In the following, we motivate the use of the root of (1) as the estimator of σ2 and show that

this function is monotone decreasing. Let y = X β + ε, where X is a known n × p regression

matrix, β is an unknown vector of coefficients, and ε is a residual vector with mean 0 and

covariance matrix V. Assume also that V is of the form

where V0 is a known matrix.

We propose estimating σ2 by the root of the estimating equation

where ŷ is the vector of generalized least squares fitted values

Fedorov et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For the special case considered in this paper, yi = fi(x), X = Jn is a column vector of ones, β =

f(x) is a scalar, and

Hence

We first motivate the estimating equation by showing that E(Q) = 0 when 

In the above calculations, we have made use of the well-known expression for the

expectation of a general quadratic form, that is

where E(y) = θ = Xβ and Var(y) = Σ = V, and A = (I – H)T V–1(I – H) (e.g., see [38]). Also,

recall that since H is a projection matrix, H2 = H and HX = X.

We now show that Q(σ2) is monotone decreasing. Because of the special form of V

hence
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Denote the generalized least squares residual vector by r ≡ (I – H)y. The derivative of Q

with respect to σ2 is

since

and
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Fig. 1.
Estimation of tolerance limit for the synthetic deformation example in Example 1. Top:

Result of the model fitting for the registration failure rate as a function of the initial

misalignment. Each line corresponds to the modeled registration failure rate for an

individual pair of images. Bottom: Mean failure rate with the 95% prediction interval. The

(0.90,0.95) LTL corresponds to the intersection of the vertical blue line with the upper

prediction interval and is equal to 8.7 mm.
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Fig. 2.
Example of the registration results for one of the cases used in the Example 2. Top: Axial

slice of the intra-procedural T2w MRI with the contour of the capsule (green outline), and

two of the fiducial points used in the evaluation (white arrows). The first fiducial (on the

left) corresponds to the center of gravity for the segmentation of the dark round area. The

second fiducial is at the corner formed by the ejuculatory ducts and the urethra. Bottom:

Registered image, arrows point to the locations of the landmarks in the fixed image, which

are close to the anatomical locations corresponding to the landmarks in the registered image.
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Fig. 3.
Estimation of tolerance limit for the registration experiment from Example 3. Top: Result of

modeling for the estimated probability of failure as functions of misalignment norm. Each

curve corresponds to a sample (pair of images being registered). As a result of this

modeling, both intra- (estimated by the locfit procedure) and inter-sample variability can be

estimated, as needed for the calculation of tolerance limits. Bottom: Average probability of

failed registration with 95% prediction limit (dotted line) and (0.90,0.95) lower tolerance

limit 2.8 mm (blue cross hairs).
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Fig. 4.
Cumulative number of failures versus misalignment norm for two representative samples

from Example 2. The step function in black indicates the data, the simple linear logistic

model fit is in red, and the nonparametric logistic regression fit is in blue. Plots correspond

to sample 1 (left) and 8 (right). Improvement in the quality of fit relative to the linear

logistic model fit was concluded based on the visual analysis and ROC quantitative

assessment.
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Fig. 5.
Modeling of the tolerance limit for the registration experiment with multiple input

parameters being varied (Example 3). Mean rate of failure (solid line) with the 95%

prediction interval (dashed line) and LTL corresponding to the intersection of the blue

vertical line with the upper prediction interval line. Top: Results of modeling that take into

account all 10 cases, LTL is undefined. Bottom: Modeling results after excluding the one

case that exhibited very frequent failures. Inclusion of the case with frequent failures has

dramatic effect on LTL, while the average failure rate remains largely unchanged

(misalignment norm corresponding to the 10% average probability of success changes from

3 to 4 mm).

Fedorov et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


