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Abstract

Spectral CT provides information on material characterization and quantification because of its

ability to separate different basis materials. Dual-energy (DE) CT provides two sets of

measurements at two different source energies. In principle, two materials can be accurately

decomposed from DECT measurements. However, many clinical and industrial applications

require three or more material images. For triple-material decomposition, a third constraint, such

as volume conservation, mass conservation or both, is required to solve three sets of unknowns

from two sets of measurements. The recently proposed flexible image-domain (ID) multi-material

decomposition (MMD) method assumes each pixel contains at most three materials out of several

possible materials and decomposes a mixture pixel by pixel. We propose a penalized-likelihood

(PL) method with edge-preserving regularizers for each material to reconstruct multi-material

images using a similar constraint from sinogram data. We develop an optimization transfer

method with a series of pixel-wise separable quadratic surrogate (PWSQS) functions to

monotonically decrease the complicated PL cost function. The PWSQS algorithm separates pixels

to allow simultaneous update of all pixels, but keeps the basis materials coupled to allow faster

convergence rate than our previous proposed material-and pixel-wise SQS algorithms. Comparing

with the ID method using 2D fan-beam simulations, the PL method greatly reduced noise, streak

and cross-talk artifacts in the reconstructed basis component images, and achieved much smaller

root-mean-square (RMS) errors.
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I. INTRODUCTION

X-ray computed tomography (CT) images the spatial distribution of attenuation coefficients

of the object being scanned. Attenuation maps have many applications both in medical

diagnosis and treatment and in industry for nondestructive evaluation. A conventional CT

scanner measures a single sinogram at single X-ray source potential. Conventional image

reconstruction methods process such measurements to produce a scalar-valued image of the

scanned object.

In practice the scanned object always contains multiple materials. For example, the organs

and tissues of human body under CT scans contain typical basis materials of blood, fat,

muscle, water, cortical bone, air and contrast agent [1], [2]. Material attenuation coefficients

depend on the energy of the incident photons. An X-ray beam in clinical practice is usually

composed of individual photons with a wide range of energies, and each photon energy is

attenuated differently by the materials in the object. If uncorrected, this energy dependence

causes artifacts in images reconstructed by conventional methods, such as beam-hardening

artifacts [3]. This energy dependence also allows the possibility of basis-material

decomposition [1], [4]–[8]. Numerous applications of two-material decomposition have

been explored, including CT-based attenuation correction for positron emission tomography

(PET) [7], [9], beam-hardening artifacts correction [10], [11], and virtual un-enhancement

(VUE) CT [1], [8].

Dual-energy (DE) CT methods, pioneered by Alvarez and Macovski et al. [4], [12]–[15], are

the most predominant approaches for reconstructing two basis materials (e.g., soft-tissue and

bone). They decomposed the energy dependence of attenuation coefficients into two

components, one approximated the photoelectric interaction and another approximated

Compton scattering, and separated these two components from two sets of measurements at

two different source energies. Although DECT methods were originally proposed in the late

1970s and early 1980s, DECT scanners became clinically available only recently with

technological developments, such as fast kVp-switching, dual-source CT and dual-layer

detectors. These new techniques have brought renewed interest in DECT [6], [7], [9], [16]–

[18], [18]–[26].

Several methods have been developed for reconstructing two basis materials from one CT

scan with a single tube voltage setting. Ritchings and Pullan [27] described a technique for

acquiring spectrally different data by filtering alternate detector elements. Taschereau et al.

[28] retrofitted a preclinical microCT scanner with a filter wheel that alternates two beam

filters between successive projections. One filter provides a low energy beam while the

other filter provides a high energy beam. We [29] proposed a statistical penalized weighted

least-squares (PWLS) method for reconstructing two basis materials from a single-voltage

CT scan, exploiting the incident spectra difference of rays created by filtration, such as split

[30] and bow-tie filters. One major limitation of decomposition methods based on single-

voltage CT is the significant overlap in the two spectra that are generated by different filters.

Many clinical and industrial applications desire three or more component images [1], [22],

[31], [32]. Quantifying liver fat concentration requires images of four constitute materials,
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liver tissue, blood, fat and contrast agent [1], [32]. Multi-material decomposition (MMD)

can generate VUE images by removing the effect of contrast agents from contrast-enhanced

CT exams without needing an additional contrast-free scan, reducing patient dose [1]. For

radiotherapy, it is also useful to know the distributions of materials besides bone and soft

tissue, such as calcium, metal (e.g., gold) and iodine-based contrast agent.

Typically, spectral CT methods reconstruct images of L0 = M0 basis materials from M0 sets

of measurements with M0 different spectra [5]. Sukovic and Clinthorne [5] separated L0 = 3

basis materials from M0 = 3 sinograms acquired using M0 = 3 distinct source voltages, one

of which was near the K-edge of one basis material. Generally, spectral CT requires multiple

scans or specialized scanner designs, such as quasi-monochromatic sources [33] or energy-

resolved photon-counting detectors [34]. In this paper, we focus on MMD using DECT

which is currently the only commerically available version of spectral CT. However, the

general formulation is applicable to a variety of spectral CT approaches.

A third criteria, such as volume conservation [21], mass conservation [22] or both [1], can

enable reconstructing three basis materials from DECT measurements. Volume (mass)

conservation assumes the sum of the volumes (masses) of the three constituent materials is

equivalent to the volume (mass) of the mixture. To reconstruct L0 > 3 materials from DECT,

solving this ill-posed problem requires additional assumptions. Mendonca et al. [1] proposed

an image-domain (ID) method to reconstruct multiple materials pixel by pixel from a DECT

scan. In addition to both volume and mass conservation assumptions, that method assumes

that each pixel contains a mixture of at most three materials where the material types can

vary between pixels. It establishes a material library containing all the possible triplets of

basis materials for a specific application. It obtains a dual-material-density pair through

projection-based decomposition approach from DECT measurements, and then generates a

linear-attenuation-coefficient (LAC) pair for each pixel at two selected distinct energies

(e.g.. 70 and 140 keV). Given a LAC pair, a material triplet and the sum-to-one constraint

that was derived using both the volume and mass conservation assumption, triple material

decomposition is solved for each pixel. This method sequentially decomposes each pixel

into different triplets in the material library in a prioritized order, and collects solutions of

volume fractions that satisfy a box ([0, 1]) constraint and sum-to-one constraint. If there is a

solution, it moves on to the next pixel and skips material triplets with lower priorities. If

there is no feasible solution for all the material triplets, it relaxes the box constraints and

accepts the volume fractions corresponding to the triplet with minimal Hausdorff distance to

the LAC pair over all possible triplets.

Inspired by the ID method [1], [35] we proposed a penalized-likelihood (PL) method [36]

with an edge-preserving regularizer to reconstruct multi-material images. It is well known

that statistical image reconstruction methods based on physical models of the CT system and

scanned object and statistical models of the measurements can obtain lower noise images

with higher quality. The proposed PL method considers each material image as a whole,

instead of pixel by pixel, so prior knowledge, such as piecewise smoothness, can help solve

the reconstruction problem.
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The cost function of the PL method is minimized under the constraints that each pixel

contains at most three materials, the volume fractions of basis materials sum to one, and the

fractions are in the box [0, 1]. It is difficult to minimize the PL cost function directly. The

preliminary PL method [36] applied optimization transfer principles to develop a series of

pixel- and material-wise separable quadratic surrogates to monotonically decrease the cost

function. The separability both in the pixel and material made the curvatures of surrogate

functions large, causing slow convergence. In this paper, we propose an optimization

transfer method with pixel-wise separable quadratic surrogates (PWSQS) that keep the

materials coupled. The coupling in materials results in faster convergence. The maintained

separability in pixels makes the PWSQS algorithm simultaneous and constrained

optimization on each pixel easy.

We evaluated the proposed PL method on a modified NCAT chest phantom [37] containing

fat, blood, omnipaque300 (iodine-based contrast agent), cortical bone, and air. Comparing

with the ID method, the PL method was able to reconstruct component images with lower

noise, greatly reduced streak artifacts, and alleviated the cross-talk phenomenon where a

component of one material appearing in the image of another material. The RMS errors of

the PL method were about 60% lower for fat, blood, omnipaque300 and cortical bone,

compared to the filtered ID method.

The organization of this paper is as follows. Section II introduces the physical models,

including the measurement and object model. Section III describes the PL method. Section

IV derives the PWSQS algorithm. Section V shows the results. Section VI presents

conclusions.

II. Physical Models

A. Measurement Model

We use the following general model to describe the measurement physics for X-ray CT. The

detector measures X-ray photons emerging from the object at M0 ≥ 1 different incident

spectra. Based on current technologies, different incident spectra can be realized by either

scanning with different X-ray spectra, such as fast kVp-switching [16] or dual-source CT

[18], or by energy-resolved photon-counting detectors [34]. Let Yim denote the measurement

for the ray ℒim which is the ith ray for the mth energy scan, where m = 1, …, M0, i = 1, …,

Nd, and Nd is the number of rays. For notational simplicity we assume that the same number

of rays are measured for each incident spectrum, but the physics model and methods

presented in this paper can be easily generalized to cases where different incident spectra

have different number of recorded rays. For a ray ℒim of infinitesimal width, the mean of the

projection measurements can be expressed as:

(1)

where μ(x⃗, ℰ) denotes the 3D unknown spatially- and energy-dependent attenuation

distribution, ∫ℒim · dℓ denotes the “line integral” function along line ℒim, and the incident X-

ray intensity Iim(ℰ) incorporates the source spectrum and the detector gain. In reality, the
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measurements suffer from background signals such as Compton scatter, dark current and

noise. The ensemble mean of those effects (for the ray ℒim) is denoted as rim. We treat each

Iim(ℰ) and rim as known nonnegative quantities. In practice, Iim(ℰ) can be determined by

careful calibration [38], and rim are estimated by some preprocessing steps prior to iterative

reconstruction [39]–[41].

B. Object Model for Basis Material Decomposition

We describe the object model for basis material decomposition as

(2)

where μl(ℰ) denotes the energy-dependent LAC of the lth material type, bj(x⃗) denotes spatial

basis functions (e.g., pixels), and xlj denotes the volume fraction of the lth material in the jth

pixel. Conventionally, one reconstructs L0 = M0 sets of basis materials from M0 sets of

measurements with M0 different spectra [42].

Volume conservation [21], mass conservation [22] and combinations [1] have been used to

provide extra information for solving L0 = M0 + 1 sets of unknowns from M0 sets of

independent measurements. Volume (mass) conservation assumes the sum of the volumes

(masses) of the three constituent materials is equivalent to the volume (mass) of the mixture.

Mendonca et al. [1] pointed out that any reasonable method for material decomposition

already makes an implicit assumption of mass conservation. They used both volume and

mass conservation to produce a model for the LAC of a mixture of materials. In this paper

we adopt their model where the volume fractions xlj should satisfy the following sum to one

and box constraints:

(3)

We relax the lower limit of the box constraint to be slightly smaller than 0, and the upper

limit to be slightly greater than 1, i.e.,  where , and  where

. This relaxation is similar to the work in [43], where negative values are allowed

for the reconstructed densities of basis materials, such as water and iodine. This is because

the estimated volume fractions are just coefficients for combining the linear attenuation

coefficients of basis materials to produce the equivalent attenuation of a mixture. The sum to

one constraint in (3) provides an extra criteria for solving L0 = M0 + 1 sets of unknowns

from M0 sets of measurements.

Additional assumptions are needed to estimate L0 > M0 + 1 sets of unknowns from M0 sets

of measurements [1]. We assume that each pixel contains at most (M0 + 1) types of

materials and the material types can vary between pixels, i.e.
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(4)

Let Ω be a (M0 + 1)-tuple library containing all tuples formed from L0 pre-selected materials

of interest. Given a tuple ω in Ω, there are only (M0 + 1) unknowns for each pixel, which are

solvable from M0 sets of measurements with the help of the box and sum-to-one constraints

given in (3). Note that air must be included as one basis material type even if it is typically

not of primary interest. This is because there are always locations with LACs of zeros in the

field of view (FOV) of the scanner and only the LAC of air is zero.

C. Combining Measurement and Object Model

Let x denote the image vector x = (x1, …, xl, …, xL0) ∈ ℝNp×L0 for xl = (xl1, …, xlj, …, xlNp)

∈ ℝNp of the lth material. Combining the general measurement model (1) and the object

model (2), the mean of the projection measurement ȳim(x) can be represented as follows,

(5)

for m = 1, …, M0 and i = 1, …, Nd where

(6)

The linear attenuation vector μ(ℰ) and the sinogram vector sim(x) are defined as

(7)

(8)

(9)

where Am denotes the Nd × Np system matrix with entries

(10)

As usual, we ignore the exponential edge gradient effects caused by the nonlinearity of

Beer’s law [44], [45].

III. Penalized-Likelihood (PL) Reconstruction

For the case of normal clinical exposures, the X-ray CT measurements are often modeled as

independently Poisson random variables with means (1), i.e.
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The corresponding negative log-likelihood for independent measurements Yim has the form

(11)

where ≡ means “equal to within irrelevant constants independent of x”, and

(12)

(13)

We estimate component fraction images x from the noisy measurements Yim by minimizing

a Penalized-Likelihood (PL) cost function subject to constraints given in (3) and (4) on the

elements of x as follows:

(14)

(15)

The edge-preserving regularization term R(x) is

(16)

where the regularizer for the lth material is

(17)

where the potential function Ψl is a hyperbola

(18)

and where κlj and κlk are parameters encouraging uniform spatial resolution [46] and lj is

some neighborhood of voxel xlj. The regularization parameters βl and δl can be chosen

differently for different materials according to their properties.

Since the LAC of air is zero there is no contribution of air component to the data fitting term

L̄(x) in (11), but the regularizer term R(x) in (16) should include the air component because

its image is piecewise smooth like other components. One could generalize the regularizer to

consider joint sparsity of the component images [47], [48].
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IV. Optimization Algorithm

Because the cost function Ψ(x) in (15) is difficult to minimize directly, we apply

optimization transfer principles (OTP) [49]–[52] to develop an algorithm that monotonically

decreases Ψ(x) each iteration. We find a pixel-wise separable quadratic surrogate (PWSQS)

ϕ(n) (x) of the cost function, and then minimize ϕ(n) (x) under constraints given in (3) and (4)

on each pixel. We loop over all tuples in the pre-determined material library Ω, minimize the

surrogates under box and sum-to-one constraints in (3), and determine the optimal tuple for

each pixel as the one minimizing the surrogate of that pixel.

A. Optimization Transfer Principles

The optimization transfer method [49], [50] replaces the cost function Ψ(x) that is difficult

to minimize with a surrogate function ϕ(n) (x) that is easier to minimize at the nth iteration.

The next estimate x(n+1) is the minimizer of the surrogate function, i.e.,

(19)

Repeatedly choosing a surrogate function and minimizing it at each iteration, one obtains a

sequence of vectors {x(n)} that monotonically decrease the original cost function Ψ(x). The

monotonicity is guaranteed by the following surrogate conditions:

(20)

To derive surrogate functions for Ψ(x) in (15), we consider the data fidelity term (11) and

regularizer term (16) separately.

B. Surrogate of the Data Fidelity Term

1. First Surrogate: Non-Separable Convex Surrogate: The first step is to derive a

convex surrogate as a function of the sinogram vector sim. Since him(sim) is convex

(See Appendix A-A), it is bounded below by its tangent plane:

(21)

where . This inequality and the nonnegativity of Poisson random

variable Yim lead to our first surrogate for the data fidelity term L̄(x):

(22)

where

(23)
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If the source is monoenergetic and if rim = 0, then him is linear and the first

surrogate  exactly equals the original negative log-likelihood data fidelity

term L̄(x), so it should be a “reasonably tight” surrogate function.

2. Second Surrogate: Non-Separable Quadratic Surrogate: The second step is to find

a quadratic surrogate of the first convex surrogate given in (22) and (23). We

rewrite  as follows,

(24)

where , and

(25)

and C denotes the constants in (23) that are irrelevant to sim.

Let c̆(·; α) given in (55) denote the optimal curvature for f(x; α) given in [52, Eqn.

(28)]. We form the optimal quadratic surrogate of f(x; α) using c̆(·; α), and

substitute it into (24) to obtain a quadratic surrogate of  as follows (See

Appendix A-B),

(26)

where the L0 × L0 curvature matrices are given by

(27)

(28)

Long and Fessler Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Summing this quadratic surrogate leads to the following non-separable quadratic

surrogate for the first convex surrogate :

(29)

where  is given in (26).

3. Third Surrogate: Pixel-Wise Separable Quadratic Surrogate: Define pixel vector

as xj ≜ (x1j, …, xL0j). The surrogate function  is a non-separable quadratic

function of xj. Non-separable surrogates are inconvenient for simultaneous update

algorithms and for enforcing the constraint in (3) and (4) on each pixel. To derive a

simple simultaneous update algorithm that is fully parallelizable and suitable for

ordered-subsets implementation [53], [54], we find next a pixel-wise separable

quadratic surrogate  of the non-separable quadratic surrogate  by

applying De Pierro’s additive convexity trick [50], [53]. This novel pixel-wise

separable quadratic surrogate remains non-separable with respect to the basis

materials.

Appendix A-C derives  in detail. It is defined as

(30)

where

(31)

(32)

The πmij values are non-negative and are zero only when amij is zero, and satisfy

. For our empirical results, we use the following typical choice for

πmij [53],

(33)

4. Pixel-Wise Separable Quadratic Surrogate in Matrix-Vector Formation: We have

designed three surrogate functions sequentially having relationships
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(34)

Therefore,  is a surrogate function of L̄(x). It is much easier to minimize the

the surrogate  under the proposed constraints since it is quadratic and separable

with respect to pixels.

Combining the function value (60), gradient (61) and Hessian (62) derived in Appendix A-

C, the pixel-wise separable quadratic surrogate has the following matrix-vector form

(35)

where  is a block diagonal matrix over j = 1, …, Np, i.e.,

(36)

(37)

and  is defined in (27). The L0 × L0 matrix  is not diagonal due to the outer

products in (27).

C. Surrogate of the Penalty Term

To derive a SQS function for the penalty term, we apply De Pierro’s additive convexity trick

[50], [53], [55] in a similar fashion and use Huber’s optimal curvature [56, p. 185] for the

potential function Ψl. The SQS function has the following matix-vector form

(38)

where  is a diagonal matrix, i.e.,

(39)

(40)

where ωΨ(t) ≜ Ψ̇(t) /t.

D. Pixel-Wise Separable Quadratic Surrogate (PWSQS)

Combining the surrogates for the data fidelity term (35) and penalty term (38), the PWSQS

function for the cost function Ψ(x) is
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(41)

It is easier to minimize ϕ(n) (x) than the original cost function Ψ(x) because it is quadratic

and separable with respect to pixels by construction. For the sake of optimization under

constraints on each pixel, we rewrite ϕ(n) (x) in terms of j as

(42)

where

(43)

where ∇̵xj denotes the gradient with respect to xj, and the L0 × L0 Hessian matrix of  is

(44)

E. Optimization With Material Constraints

After designing the surrogate (42), the next step of the optimization transfer algorithm is to

minimize ϕ(n) (x) under constraints given in (3) and (4) on each pixel. Because ϕ(n) (x) is

pixel-wise separable, one can minimize  for all pixels simultaneously. We now

focus on the problem of minimizing  under the proposed constraints.

Let ω denote a tuple in the material library Ω, i.e., ω ∈ Ω. The optimization problem on the

jth pixel is

(45)

where

(46)

(47)

(48)

The goal of this optimization is to estimate xj and material types ω. We solve it as follows.
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1. For each ω ∈ Ω, find the optimal x̂j(ω) and the corresponding function values

. Without loss of generality, we consider the case where a given ω = (1,

…, L) for some L between 1 and L0, then the optimization problem is

(49)

where , and H(ω) and p(ω) are

formed from elements in H and p with indexes corresponding to ω = (1, …, L)

respectively.

2.
Determine the best tuple ω̂ by comparing all , i.e.,

3. Obtain x̂j ≡ x̂j(ω̂) with padded zeros for l ∉ ω.

Given material types, i.e., given ω, the optimization problem defined in (49) is a typical

convex quadratic programming problem. We used the Generalized Sequential Minimization

Algorithm (GSMO) [57] to solve (49), and parallelized GSMO to update all pixels

simultaneously. The pseudo-code of GSMO for solving the quadratic optimization problem

with constraints in (49) is summarized in the supplementary material. One can use other

quadratic programming methods to solve (49).

F. Ordered-Subset PWSQS Algorithm Outline

We use the ordered subsets approach to accelerate the “convergence” to a good local

minimum [52] by replacing the gradient in (43) with a subset gradient scaled by the total

number of subsets.

The overall ordered-subset pixel-wise separable quadratic surrogate (OS-PWSQS) algorithm

for minimizing the PL cost function with constraints given in (14) is outlined in Table I.

V. Results

To evaluate the proposed PL method for MMD and to compare it with the ID method [1],

we simulated a DECT scan and reconstructed volume fractions of a modified NCAT chest

phantom [37] containing fat, blood, omnipaque300 (iodine-based contrast agent), cortical

bone and air. We generated virtual un-enhancement (VUE) images from the reconstructed

volume fractions using these two methods.

Fig. 1 shows true volume fractions and monoenergetic image at 70 keV of the simulated

NCAT chest phantom. The simulated true images were 1024 × 1024 and the pixel size was

0.49 mm, while the reconstructed images were 512 × 512 and the pixel size was 0.98 mm.

We introduced this model mismatch deliberately to test the MMD methods. We down-

sampled the simulated true component images to the sizes of the reconstructed images by
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linearly averaging, and used these down-sampled images for comparisons with the

reconstructed images.

We simulated the geometry of a GE LightSpeed X-ray CT fan-beam system with an arc

detector of 888 detector channels by 984 views over 360°. The size of each detector cell was

1.0239 mm. The source to detector distance was Dsd = 949.075mm, and the source to

rotation center distance was Ds0 = 541mm. We included a quarter detector offset to reduce

aliasing. We used the distance-driven (DD) projector [58] to generate projections of the true

object. We simulated two incident spectra of X-ray tube voltages at 140 kVp and 80 kVp,

and normalized them by their corresponding total intensities by summing the intensities over

all energy bins. We generated noiseless measurements ȳim of the simulated NCAT phantom

using (1) and the normalized spectra. To add Poisson distributed noise to the noiseless

measurements ȳim, we first chose 2 × 105 incident photons per ray for the 140 kVp

measurements, and then determined the value of incident photons per ray for the 80 kVp

measurements according to the ratio of total intensities of the originally simulated spectra at

high and low energies. The incident photons per ray for the 80 kVp measurements was 2 ×

105 · Ii2/Ii1 = 6 × 104 where Ii1 and Ii2 denote the total intensity of the ith ray for the 140

kVp and 80 kVp spectrum respectively.

For this simulation we let the triplet material library Ω contain five triplets selected from five

materials: fat, blood, omnipaque300, cortical bone and air, excluding the combination of

omnipaque300 and cortical bone and the combination of omnipaque300 and fat. (This

material library is based on the fact that contrast agent does not spread into the cortical bone

area and fat area.) We implemented the ID method with several different priority lists of

material triplets as described in [1]. We found that the performance of the ID method

depends on the priorities of material triplets in the list. We selected the priority list that

produces the best ID image quality in terms of noise, artifacts and crosstalk of component

images. To initialize the PL iteration, we applied a 3 × 3 median filter to the ID images to

decrease noise, especially salt-and-pepper noise due to crosstalk among component images.

(See Fig. 1 in the supplementary material for the ID images.) A priority list is not used in the

PL method as it determines the optimal triplet as the one that minimizes the PWSQS

function in (46) for each pixel.

We used the conventional projection-domain dual-material decomposition method with

polynomial approximation [4] followed by FBP to reconstruct water-iodine density images

and chose 70 keV and 140 keV to yield LAC pairs for the ID method. We also tried a more

sophisticated dual-material decomposition method, the statistical sinogram restoration

method proposed in [9], but the final reconstructed component images were very similar to

those of using poly-nominal approximation. For the PL method we chose βl = 28, 211, 211,

28, 24 and δl = 0.01, 0.01, 0.005, 0.01, 0.1 for fat, blood, omnipaque300, cortical bone and

air, respectively. We ran 500 iterations of the optimization transfer algorithm in Table I with

41 subsets to accelerate the convergence. Because (14) is a nonconvex problem, the

algorithm finds a local minimum.

Fig. 2–Fig. 6 show estimated volume fractions of the five materials reconstructed by the PL

method and the filtered ID method. The grayscale values represent volume fractions of each
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material. The big white disks in Fig. 6 are due to the circular reconstruction support. The

streak-like artifacts in the reconstructed images by the filtered ID method are very similar to

those in Figure 4 in [35] and Fig. 6 in [1]. The PL method greatly reduces these streak-like

artifacts. Material cross talk is evident in the filtered ID results. Blood went into the fat

image in Fig. 2, especially in the heart region. Cortical bone presented in the blood image in

the upper left image in Fig. 3. Fat appeared in the cortical bone image, as evident in the

lower left image in Fig. 5. The PL method alleviated this cross-talk phenomenon very

effectively. In addition, the PL method reconstructed component images with lower noise.

Fig. 4 shows the profiles of the down-sampled true and reconstructed omnipaque300

component images by the PL and filtered ID method respectively in the lower image. The

locations of the profiles are indicated as a blue line and green line in the PL and filtered ID

images. The PL method corrected the bias introduced by the filtered ID method. Profiles of

reconstructed other component images are provided in the supplementary material.

We constructed the virtual un-enhancement (VUE) images by replacing the volume of

contrast agent (omnipaque300) in each pixel by the same amount of blood according to the

method introduced in [1], [35]. Fig. 7 shows true and constructed VUE images at 70 keV

using the component images reconstructed by the filtered ID and PL method. The images are

displayed in a window of [800, 1200] with the shifted Hounsfield unit (HU) scale where air

is 0 HU and water is 1000 HU. Having more accurate contrast agent and blood component

images, the PL method produced a VUE image that is closer to the truth, while the VUE

image using the filtered ID method has more obvious residuals of contrast agent. The PL

method decreased beam-hardening artifacts in the monochromatic VUE image.

We calculated the root-mean-square (RMS) errors of the component fractions

 within the reconstruct support for each material based on the down-

sampled true images. Table II shows RMS errors of the component images reconstructed by

the ID method, filtered ID method and the PL method. The errors of the component images

were scaled by 103 for easy comparison. Table II also shows the RMS errors of the VUE

images using the ID, filtered ID and PL method. The median filtering greatly decreased the

RMS errors of the ID images, especially for the fat and blood basis materials. Comparing

with the filtered ID method, the PL method lowered the RMS errors by about 60% for fat,

blood, omnipaque300 and cortical bone component images, 2% for air image, and 20% for

the monochromatic VUE image at 70 keV.

VI. Conclusions

We proposed a statistical image reconstruction method for multi-material decomposition

(MMD) using DECT measurements. We used a PL cost function containing a negative log-

likelihood term and an edge-preserving regularization term for each basis material. We

adopted the mass and volume conservation assumption and assumed each pixel contains at

most three basis materials to help solve this ill-posed problem of estimating multiple sets of

unknowns from two sets of sinograms. Comparing with the ID method [1], [35] that uses the

same assumptions, the proposed PL method reconstructed component and monochromatic
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VUE images with reduced noise, streak artifacts and cross-talk. The PL method was able to

lower the RMS error by about 60% for fat, blood, omnipaque300 and cortical bone basis

material images, and 20% for the monochromatic VUE image at 70 keV, compared to the

filtered ID method.

Due to the complexity and non-convexity of the PL cost function it is difficult to minimize

the cost function directly. We previously introduced an optimization transfer method [36]

with a series of material- and pixel-wise separable quadratic surrogate functions to

monotonically decrease the PL cost function. The separability in both pixel and material

caused the curvature of each surrogate function to be small. The smaller the curvature, the

slower the convergence rate. The constraints on each pixel couple the estimates of material

fractions, so even if we used a surrogate function that is separable across materials, the

minimization step would not be separable due to the constraints. In this paper, we proposed

a PWSQS optimization transfer method with separable quadratic surrogate functions that

decouples pixels only. The PL cost function decreases faster with the PWSQS method

(results not shown). However, iterative methods for MMD are computationally expensive.

In each iteration, a MMD method requires one forward projection and one back-projection

for each basis-material image, solving a constrained quadratic programming problem for

each physically meaningful material tuple, and comparing results of all material tuples to

determine the optimal tuple for each pixel. The simulations in this paper used 2D fan-beam

data; to apply the PWSQS method to 3D data, more future work on accelerating the

optimization process is needed. One potential accelerating method is combining OS-PWSQS

with spatially non-uniform optimization transfer [59].

The PL cost function has two parameters, one regularizer coefficient βl and one edge-

preserving parameter δl for each material. We found that the choice of parameters for one

material component influenced the reconstructed image of another component. An

appropriate combination of parameters needs to be carefully determined for each

application. Huh and Fessler [60] used a material-cross penalty for DECT reconstruction.

This penalty used the prior knowledge that different component images have common

edges; this idea could be used for MMD as well. Choosing regularizers for the PL method

and optimizing the parameters needs further investigation.

Since the PL cost function is non-convex, good initialization is important. We used the

results of the ID method followed by median filtering as the initialization of the PL method.

The median filtering decreased noise and RMS errors of the ID images, but did not preserve

the sum-to-one constraint that the ID images satisfied. Even with this initialization the PL

method was able to converge to a good local minimum that is close to the truth. As future

work we will investigate image-domain “statistical” reconstruction methods that are

computationally more practical than the PL method. Such methods could also serve to

initialize the PL method.

We used the contrast agent, omnipaque300, as a basis material in this paper. Alternatively

one can use diluted contrast agent or iodine as basis materials. Future work would

investigate the effects of using various basis materials. Future work also includes applying
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the PL method to real spectral CT data, e.g., from fast-kVp switching DE scans, dual-source

scans, or dual-layer detectors, to decompose materials as needed by the application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Surroagte Function Derivations

This section describes derivation details of the surrogate design in Section IV.

A. Convexity Proof

This section proves the convexity of him(sim). The gradient of ȳim(sim) with respect to sim is

(50)

and the Hessian is

(51)

Since the Hessian matrix is positive-semidefinite, i.e. , the function

ȳim(sim) is convex.

The gradient of him(sim) with respect to sim is

(52)

The Hessian of him(sim) is,
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(53)

where we define the following “probability density function”

(54)

and used the fact that zim(sim) ≤ ȳim(sim) for the first inequality. Since the Hessian matrix of

him(sim) is positive-semidefinite, him(sim) is a convex function of sim.

B. Derivation of Non-Separable Quadratic Surrogate

The section derives the non-separable quadratic surrogate in Section IV-B2 in details.

The optimal curvature c̆(·; α) for f(x; α) derived in [52] is

(55)

Thus the optimal quadratic surrogate for f(x; α) is

(56)

where q(x; x0, α) ≥ f(x; α).

Substituting (56) into (24) leads to a non-separable quadratic surrogate  of

, i.e.,
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(57)

where  is defined in (28). Because  is a quadratic function of sim, one can

rewrite it as (26).

C. Derivation of Pixel-Wise Separable Quadratic Surrogate

This section derives the pixel-wise separable quadratic surrogate in Section IV-B3.

We rewrite the sinogram vector as

(58)

provided  and πmij is zero only if amij is zero. If the πmij’s are nonnegative,

then we can apply the convexity inequality to the quadratic function  defined

in (26) to write

(59)

where bmij is defined in (32).

The value of  evaluated at x(n) is

(60)

The column gradient of  has elements xlj
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(61)

The “matched function value” and “matched derivative” properties are inherent to

optimization transfer methods [51]. The Hessian  has elements

(62)

where  is defined in (28).
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Fig. 1.
True volume fractions and the monoenergetic image at 70 keV of the NCAT chest phantom.

The volume fractions are in the range of [0, 1] and the monoenergetic image is displayed

over [800, 1200] with the shifted Hounsfield unit (HU) scale where air is 0 HU and water is

1000 HU.

Long and Fessler Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Fat component fraction images reconstructed by the filtered ID method (left) and the PL

method (right).
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Fig. 3.
Blood component fraction images reconstructed by the filtered ID method (left) and the PL

method (right).
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Fig. 4.
Zoomed-in omnipaque300 component fraction images reconstructed by the filtered ID

method (upper left) and the PL method (upper right). The lower image shows the horizontal

profiles.
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Fig. 5.
Cortical bone component fraction images reconstructed by the filtered ID method (left) and

the PL method (right).
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Fig. 6.
Air component fraction images reconstructed by the filtered ID method (left) and the PL

method (right).
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Fig. 7.
True and estimated virtual un-enhancement (VUE) images at 70 KeV. The display window

is [800, 1200] HU where the HU scale is shifted by 1000 HU, i.e., air is 0 HU and water is

1000 HU.
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TABLE I

Ordered-subset pixel-wise separable quadratic surrogate (OS-PWSQS) algorithm outline.

1) Choose πmij factors using (33).

2) Initialize x(0) using the results of the image-domain method [1].

3) For each iteration d = 1, …, Diter

  a) For each subset (subiteration) q = 1, …, Qiter

    i) n = d + q/Qiter

    ii) Compute gradient of the data fidelity term L̇
qj.

L̇qj = ∑
i∈�

q

∑
m=1

M0
amij∇̵sim

tim(sim
(n)), ∇̵sim

tim(sim
(n)) = ∇̵sim

ȳim(sim
(n)) − Yim∇̵sim

h im(sim
(n)),

      where ∇̵simȳim and ∇̵sim him are given in (50) and (52) respectively, and

sim
(n) = (sim1(x (n)), … , simL 0

(x (n))), siml(x (n)) = ∑
j=1

Np
amijxl

(n), l = 1, … , L 0.

    iii) Compute gradient of penalty term Ṙqj.

Ṙqj =
1
Q (β1

∂
∂ x1 j

R1(x1)|
x1=x1

(n)
, … , βL 0

∂
∂ xL 0 j

RL (xL 0
)|

xL 0
=xL 0

(n) )

∂
∂ xlj

Rl(xl)|
xl=xl

(n)
= ∑

k∈�
lj

κljκlkψ̇l(xlj
(n) − xlk

(n)), l = 1, … , L 0

    iv) Compute L0 × L0 curvature matrices Dqj
(n)

.

Dqj
(n) = DL̇,qj

(n) +
1
Q

DR, j
(n), DL,̇qj

(n) = ∑
i∈�

q

∑
m=1

M0 amij
2

πmij
C�im

(n),

      where C�im
(n)

 and DR, j
(n)

 are defined in (27) and (40) respectively.

    v) Compute H and p using (47) and (48), i.e.,

H = Dqj
(n), p = L̇qj + Ṙqj − (xj

(n)) ′ Dqj
(n).

    vi) For each tuple ω ∈ Ω
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      A) Form xj
(n)(ω), H(ω), p(ω) by extracting elements in xj

(n)
, H and p with indexes corresponding to ω respectively.

      B) Obtain minimizer x̂j(ω) of the QP problem in (49) using GSMO.

      C) Compute and store minimal surrogate function value ϕj
(n)(x�j(ω)) using (49).

      End

    vii) Determine optimal ω̂ by comparing all ϕj
(n)(x�j(ω)), i.e.,

ω̂ = arg min
ω∈Ω

ϕj
(n)(x�j(ω)).

    viii) Obtain x̂j ≡ xĵ(ω̂) with padded zeros for l ∉ ω.

    ix) Update all pixels x(n+1/Qiter) = x̂ = (x̂1, …, x̂j, …, x̂Np).

    End

  x(n+1) = x(n+Qiter/Qiter).

  End

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Long and Fessler Page 33

T
A

B
L

E
 II

R
M

S 
er

ro
r 

co
m

pa
ri

so
n 

of
 th

e 
re

co
ns

tr
uc

te
d 

co
m

po
ne

nt
 f

ra
ct

io
n 

im
ag

es
 b

y 
th

e 
ID

 m
et

ho
d,

 f
ilt

er
ed

 I
D

 m
et

ho
d 

an
d 

th
e 

PL
 m

et
ho

d.
 T

he
 e

rr
or

s 
of

co
m

po
ne

nt
 f

ra
ct

io
n 

im
ag

es
 a

re
 u

ni
tle

ss
 a

nd
 e

nl
ar

ge
d 

by
 1

03 .
 T

he
 e

rr
or

s 
of

 th
e 

V
U

E
 im

ag
es

 a
re

 in
 H

U
 u

ni
t.

M
et

ho
d

F
at

B
lo

od
O

m
ni

pa
qu

e
B

on
e

A
ir

V
U

E

ID
15

6.
3

13
4.

7
4.

0
38

.1
49

.5
54

.6

Fi
lte

re
d 

ID
10

1.
6

62
.5

3.
3

34
.9

42
.0

54
.3

PL
51

.3
19

.4
1.

4
16

.6
41

.2
43

.6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.


