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Abstract

This paper presents an algorithm for three dimensional reconstruction of tumor ablations using 

ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound 

data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a 

common axis of intersection. Shear wave velocity is estimated separately on each imaging plane 

using a piecewise linear function fitting technique with a fast optimization routine. An 

interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are 

perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then 

be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes 

Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also 

using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using 

contrast and contrast-to-noise ratio measurements and changes in quality from using increasing 

number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the 

stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape 

of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained 

with as few as 6 imaging planes suggesting that the method is suited for parsimonious data 

acquisitions with very few sparsely chosen imaging planes.

Index Terms

ablation; shear stiffness; sheaf; 3D reconstruction; ultrasound; shear wave elastography; electrode 
vibration

I. Introduction

LIVER cancer is one of the most common forms of cancer in the world with a very high 

mortality index (mortality to incidence ratio of 93% (2008)) making it one of the leading 

cause of cancer related deaths [1]. Tumor ablation therapy is a minimally invasive procedure 

that can be used to treat smaller localized tumors. Radiofrequency (RF) and microwave 

ablation procedures involve insertion of an ablation needle into the affected area and 
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inducing localized heating to thermally coagulate the cancerous cells. Accurate real-time 

visualization of the ablated region has clinical value because it can provide immediate 

feedback to the clinician about the extent of ablation. Accurate control of the ablation 

volume is crucial for preventing recurrence of tumors, arising from the presence of untreated 

cancerous cells.

The problem of boundary delineation for tumor visualization has been an important signal 

processing issue in various medical imaging modalities. Since liver tumors may not have 

sufficient echogenic contrast visá-vis healthy liver tissue [2], [3], [4], visualizing them on a 

conventional B-mode image is challenging. Ultrasound elastography attempts to derive local 

mechanical properties of tissue from estimated displacements [5]. It has potential to augment 

traditional B-scans and assist the clinician in delineating ablation boundaries more 

accurately. Unlike X-ray computed tomography (CT) or magnetic resonance imaging 

(MRI), traditional ultrasound elastography has been limited to single imaging planes, over 

which strain is estimated, and the Young's modulus (stiffness) is reconstructed by solving 

the inverse problem [6], [7], [8], [9]. Shear wave velocity (SWV) and shear modulus can 

also be estimated for these imaging planes [10]. The accuracy of such methods is limited by 

the underlying assumptions about tissue elasticity and other geometric and boundary effects.

Two dimensional (2D) ultrasound has been widely applied to tissue stiffness measurements 

in ablation monitoring procedures in the liver [11], [12], [13], [14]. The ablation needle 

appears hyperechoic in a traditional B-mode scan, and hence provides a way to guide the 

needle placement in the tumor and for aligning the image plane when monitoring ablations. 

Multiple frames of ultrasound echo data acquired after ablation can be used for both 

quasistatic and dynamic ultrasound elastography to reveal stiffness variations in the imaged 

plane. Quasistatic imaging [6], [15] can be performed by manually perturbing the medium 

using the ablation needle and displaying the rate of change of displacements with depth 

(strain). Prior information about the shape of the ablated area can be harnessed to improve 

boundary visibility in the strain image [16]. Alternatively, dynamic elastography methods 

can also be used to visualize tissue mechanical properties. Acoustic radiation force imaging 

(ARFI) [17], [18] involves application of high frequency focussed ultrasound pulses to 

create localized displacement in liver tissue. These displacements can be tracked using 

radiofrequency ultrasound echoes and generate an ARFI image. By rapidly moving the focal 

point of the ARFI pulses, supersonic shear imaging (SSI) modality produces a “Mach cone” 

shear wavefront [19] which is tracked as a function of time to infer stiffness moduli [20]. 

Another approach aims at mapping viscoelastic properties of ablated versus healthy liver by 

imaging shear waves over a range of frequencies [21], the hypothesis being that ablation 

causes changes in (frequency dependent) dispersive properties of liver tissue. In the present 

paper, the frequency dependent variation of SWV is ignored by estimating only the group 

velocity by tracking a shear wave pulse (which is essentially broadband in the frequency 

domain).

In this paper, 2D electrode vibration shear wave imaging method is extended to three 

dimensions (3D) by utilizing radiofrequency echo signals acquired over a “sheaf” of 

imaging planes. A sheaf is defined as a collection of planes that intersect along a common 

axis. The 3D reconstruction algorithm is termed “Sheaf Of Ultrasound Planes 
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Reconstruction” or SOUPR. This cylindrically symmetric method of acquisition is naturally 

suited to electrode vibration elastography (EVE) where shear wavefronts travel outward 

from a vibrating needle which acts as a line source of shear waves [7]. Moreover, the overall 

shape of the ablation is approximately cylindrically symmetric with the ablation needle as 

the axis of symmetry.

There has been growing interest in 3D ultrasound imaging and elastography; one evidence 

being the evolution of literature on this topic in the last two decades. Elliott [22] notes the 

increasing use of 3D data acquisition among ultrasound sonographers to circumvent the 

limitations of traditional 2D ultrasound. Various authors have analyzed reconstruction 

algorithms for 3D B-mode imaging [23], [24] of different anatomical structures using a 

variety of transducer types and scanning arrangements. Quasistatic freehand elastography 

has received much research attention [25], [26]. These 2D elastography techniques can be 

naturally extended to 3D in various ways. Freehand elastography can be performed by 

manually translating the transducer probe through parallel imaging planes. Alternatively, a 

“wobbler” that mechanically rotates or translates an array transducer using a stepper motor 

may be used. Other authors have proposed using more elaborate robotic techniques [27] for 

accurate control of the location of the transducer in 3D space. Each image plane is processed 

using standard elastography algorithms and a 3D rendering is generated [28]. Freehand 

elastography can be augmented with accurate optical [29] or magnetic position sensors that 

precisely record the coordinates of the transducer. Fortunately, for tumor ablation 

monitoring using EVE, the ablation needle provides a good reference for manually aligning 

the imaging plane. Elaborate tracking and registration systems have the potential to improve 

reconstruction accuracy. The present work uses only a crude alignment strategy relying on 

the assumptions that the underlying 3D structure is fairly symmetric about the needle axis, 

independent sheaves (with relatively small misregistration errors) are acquired, and the final 

3D reconstructions are averaged.

Results on 3D quasistatic strain [28], [30] and transient SWV reconstruction [31] for 

prostate imaging have been reported in literature. Lee et al. [32] have reported significant 

improvement in detection of cancerous breast lesions when B-mode imaging is augmented 

with freehand 3D shear wave imaging. Literature on full 3D reconstruction of SWVs and 

shear stiffness is still in its nascency. In recent work by Wang et al. [33], 3D reconstruction 

of muscle fiber orientation was achieved by mapping group and phase velocities of the shear 

wave wave set up using acoustic radiation force. Although the use of matrix transducer 

arrays for volume ultrasound imaging is gathering pace, linear and curvilinear array 

transducers are still the most widely used transducer types. Therefore, the ability to generate 

volume rendering akin to CT or MRI using 2D ultrasound data has clinical value [22].

II. Materials and Methods

A. Electrode Vibration Setup

A schematic view of an EVE setup is shown in Fig. 1. The needle mimics an RF electrode or 

a microwave antenna that is used in an ablation procedure. This needle is firmly bound to a 

stiff ellipsoidal inclusion which mimics ablated tissue. This ellipsoid is embedded in a softer 

background material that mimics healthy (cancer-free) tissue. Additionally, an irregularly 
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shaped intermediate stiffness region is present on one side of the ellipsoid that simulates 

partially ablated tissue. A pulse deformation is applied to the needle using an external 

actuator (Physik Instrumente, Germany) which is attached to the needle. This sets up a shear 

wave pulse where the wave source is a line coinciding with the needle and the shear 

wavefronts travel cylindrically outward and away from this line.

Since the frame rates with traditional B-mode ultrasound imaging are not sufficient to track 

a shear wave pulse (which travels with a velocity of a few meters per second), a sequential 

tracking technique developed by DeWall and Varghese [8] was used. This is similar to the 

phase locking technique used in MRI elastography [34]. In this method, the needle is 

vibrated multiple times and with each vibration a different location at a specified lateral 

distance away from the needle is scanned using the ultrasound system (Ultrasonix 

SonixTouch, Richmond, BC, Canada). Vertical strips of radiofrequency ultrasound echo 

data are then registered and assembled to obtain “pseudo-high-frame-rate” data over the 

entire image plane as a function of time. The phase-locked acquisition scheme assumes that 

the needle is vibrated identically in each cycle and the image plane is not changed during the 

acquisition. Alternatively, high frame rate plane wave ultrasound imaging [35] can be used 

to scan the entire image plane in a single transmit. In case of periodic tissue motion with 

only a few constituent frequencies, the method of radiofrequency phasor alignment 

described in the paper by Baghani et al. [36] may be applied.

In order to reconstruct a 3D SWV map, data is acquired over a subset of a sheaf of planes. 

This subset can be chosen in such a way that the planes are equi-spaced in angle. For 

example, a sheaf of four imaging planes is shown in Fig. 2. Although equispaced planes 

were used in the present study, the SOUPR algorithm presented here can also handle 

scattered data points from irregularly spaced imaging planes. The transducer was manually 

adjusted to image specific angular locations in the sheaf. Guide markers on the phantom 

container walls were used to align the angle of the imaging plane. The number of planes was 

varied from 4 to 16 to study the effect on reconstruction quality with increasing number of 

planes. Each volume reconstruction was repeated using five independent datasets to ensure 

that slight discrepancies in the locations of individual image planes are averaged out. This 

method relies on misregistration errors being small enough to be considered as part of the 

additive measurement noise. In general, the method may fail if there is significant relative 

translation or rotation between two volumes. If greater accuracy in transducer placement is 

desired, feedback control systems like one described by Abolmaesumi et al. [37] may be 

employed. Such systems are beyond the scope of the present work.

B. Tissue Mimicking Phantom

The tissue-mimicking (TM) phantom based study involved data acquisition from a TM 

phantom constructed using an oil-in-gelatin dispersion. This dispersion is composed of 

microscopic oil droplets dispersed in a gelatinous matrix. The proportion of oil in the matrix 

controls the local stiffness. The density of this TM material is very close to that of water 

(1000 kg/m3). Further discussion on the manufacturing process and properties of the TM 

phantom material can be found in the paper by Madsen et al. [38]. The phantom used in this 

study consists of a stiff ellipsoid embedded in a softer background. This arrangement is 
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designed to mimic the presence of a partially ablated tumor in cirrhotic liver tissue. 

Additionally, a small irregularly spaced area of slightly lower stiffness than the ellipsoid is 

present on one side of the inclusion. This mimics the presence of partially ablated cancerous 

tissue.

A stainless steel rod was glued to the center of the ellipsoid in order to mimic the role of the 

ablation needle in an actual ablation procedure. This rod was used for generating shear 

waves in the phantom with the help of an actuator. A 3D schematic of the phantom is shown 

in Fig. 2. The TM phantom gelatin block is 14 cm × 14 cm × 9 cm. This block is placed in 

an open top 1 cm thick acrylic container. A 2 cm deep layer of safflower oil poured on the 

top surface of the TM phantom prevents desiccation.

C. Algorithm

The 3D reconstruction algorithm SOUPR consists of four distinct data processing steps, 

starting with the acquisition of beamformed radiofrequency ultrasound echo data, finally 

leading to the 3D stack of C-planes of SWV estimates:

1. Displacement estimation from beamformed echo data over each imaging plane.

2. Wavefront localization to obtain time to peak (TTP) [39] displacement at different 

locations in the imaging plane.

3. SWV estimation from TTP plots to obtain SWV maps over each imaging plane.

4. Smooth function approximation on a grid over each C-plane.

As seen in Fig. 2, each C-plane is perpendicular to all the imaging planes. The SOUPR 

algorithm presented here effectively breaks down a 3D reconstruction problem into a 

sequence of decoupled 2D function approximation problems. Each C-plane is processed 

separately and the final 3D reconstruction is generated by stacking them together.

The four steps are discussed in the following subsections.

1) Displacement Estimation—Ultrasound echo data is acquired over each imaging 

plane as described previously in Section II-A. The sequential tracking acquisition enables 

axial strips to be assembled into individual frames to obtain high frame rates for tracking 

shear waves. These frames provide snapshots of the underlying medium at different time 

instants. Frame-to-frame displacements are estimated using a standard 1D cross-correlation 

algorithm [40]. An axial displacement estimation routine is used with a window length of 

2mm and 75% overlap. This procedure is repeated over the entire imaging plane to obtain a 

displacement vs. time profile at each pixel [41].

2) Wavefront Localization—The high frame rate displacement data is used to localize 

the shear wave pulse. It is assumed that the wave travels purely laterally away from the 

needle. The time of arrival of the wave at different locations away from the needle is 

recorded by finding the time of peak displacement [39], [42]. A frequency domain filter 

discards any frequency components that are smaller than 10% of the largest component of 

the frequency spectrum of the displacement vs. time profiles. This filters out any “high 
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frequency” noise components in the displacement-time profiles making it easier to locate the 

peak. A quadratic fit with a 5-point window is used around the peak to get sub-frame-

number resolution for the location of the peak.

3) Imaging Plane Reconstruction—The TTP data obtained over each image plane can 

be used to estimate SWV by calculating the reciprocal of the slope of the TTP curves at 

different depths. However, some form of smoothing must be applied prior to calculating the 

slope because differentiating noisy data will amplify noise. An important consideration for 

this noise filtering algorithm is to preserve edge details between the stiff inclusion and the 

soft background. An optimization algorithm that fits a continuous piecewise linear function 

to the noisy TTP curves [43] is designed with a function model parametrized by the 

locations of breakpoints and slopes of individual segments. Let the number of segments in 

the fit be denoted by B, the unknown breakpoint locations by  and unknown segment 

slopes by . A piecewise linear function is modeled as:

(1)

where the “indicator function” χA(t) = 1 when t ∈ A and zero otherwise. A specific case of 

this function model with B = 3 is shown in Fig. 3. It is assumed that the noisy TTP data, 

, originates from this true underlying function. Therefore a constrained least-squares 

problem can be formulated to estimate the free parameters in this model:

The least-squares optimization problem is solved using a standard sequential quadratic 

programming [44] numerical optimization routine. Other methods such as interior point 

optimization, log-barrier algorithms, or stochastic optimization methods such as simulated 

annealing [45] can also be used.

In reality, the number of segments B is not known a priori. Therefore the algorithm must 

choose a reasonable B automatically. This problem of “model order selection” is handled 

using the Akaike information criterion (AIC) [46] which trades off mean-squared error and 

model complexity by minimizing the following function by choice of B:

where MSE is the residual mean squared error between the data and the fit. The intuition 

behind using this criterion is that it not only penalizes a bad fit (large MSE) but also 

penalizes the number of segments (model complexity), thereby providing a safeguard from 
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overfitting. The optimization problem is solved with 1 ≤ B ≤ 10 and the best B is chosen to 

minimize AIC. Finally the SWV map for every image plane is filtered using a 4mm × 2mm 

median filter to remove any outliers.

The image plane containing the partially ablated region is also imaged using a commercial 

Supersonic Imagine (Aix-en-Provence, France) scanner using the ShearWave™ 

Elastography mode. SWV estimates are obtained using ROIs placed in the three different 

regions of the phantom.

4) C-plane Function Approximation—SWV estimates on each C-plane are obtained 

from a second function approximation routine. Fig. 2 also illustrates a set of C- planes over 

which the SWV values are interpolated. The goal is to provide smooth reconstructions of 

SWV values using a fine grid on every C-plane.

Depending on the number of planes imaged in the sheaf, SWV estimates are available along 

many concurrent radial lines passing through the needle axis on each C-plane. (However, it 

is worth noting that this step of the SOUPR algorithm is quite general and can be applied 

even if data is not acquired in a sheaf pattern.) For convenience, let x denote a vector of the 

unknown values of SWVs on the user defined C-plane grid and let b denote the vectorized 

version of the known SWV values (data) along radial lines on the same C-plane. In general, 

the known data points do not coincide with grid points. Since this is now a 2D smoothing 

problem on a particular C-plane, a local bilinear interpolation scheme is used. Each known 

function value is expressed as a linear combination of the four neighboring grid points. The 

weighting coefficients for the grid neighbors of each data point are represented using rows 

of a matrix A. The number of rows in A is equal to the length of b and the number of 

columns is equal to the length of x. In theory, the unknown function values on the grid can 

be computed by solving the system of linear equations Ax = b.

Note that the number of unknowns (grid locations) in the problem can be much larger than 

the number of points at which the stiffness estimates are actually known. So A may not be 

full rank (it has fewer rows than columns) which makes the system of linear equations ill-

posed. This ill-posedness is circumvented by adding an extra term which penalizes a large 

value of the derivative at any point in the reconstruction. Since differentiation in the case of 

discrete data is simply a finite difference operation, it can be compactly represented using 

another (square) matrix B. Second order central differences (Laplacian) are used here to 

penalize the second derivative of the underlying function. The derivative at each grid node 

can be expressed as a linear combination of its four neighboring grid nodes. The following 

least-squares optimization problem can be used to solve for the unknown values on the grid:

(2)

where η > 0 is a regularization parameter that controls the amount of smoothing. 

Fortunately, this problem has a closed form solution given by:
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(3)

The aforementioned problem setup is closely related to the idea of “Tikhonov 

regularization” for ill-posed problems [47, Ch. 8]. Explicit computation of the matrix inverse 

in (3) should be avoided in practice. For the present setup, each row of A and B contain at 

most four and five non-zero entries respectively, and the matrix in the parentheses in (3) is 

sparse, symmetric and block diagonal which can be efficiently inverted using sparse 

factorization algorithms [44]. This also bypasses any computational issues with large matrix 

dimensions thereby allowing use of fine reconstruction grids.

If the smoothing parameter η is chosen arbitrarily, larger values will force the final fit to be 

closer to the null space of the penalty function which induces smoothness, whereas small 

values will result in a more undulating fit. However an objective method for selecting this 

parameter is necessary for studying reconstruction quality using summary statistics like the 

mean and standard deviation calculated from regions of interest in the reconstructed image. 

For this study, an automatic method called leave-one-out ordinary cross-validation (OCV) is 

used to circumvent any user induced variability from different values of η. In this method, 

the fitting routine is repeatedly run by excluding one data point at a time and calculating the 

OCV score function given by:

where M denotes the number of data points, bk denotes the known data value at a skipped 

data point location k, and b̂
k denotes the value predicted by the optimization procedure when 

all but the kth data point are used to solve (2). A grid search is then used to arrive at the 

choice of η that minimizes this score function. The smoothing parameter chosen in this 

manner also has a desirable statistical property of minimizing the cross-validation score 

which is an unbiased estimator of the mean squared error risk [48, Sec 5.3]. Example C-

plane reconstructions with three different values of η are shown in Fig. 4. These plots were 

generated using a test function of two dimensions: f(x,y) = 1 when x2 + y2 ≤ 1 (unit circle 

centered at the origin), and zero otherwise, with the domain − 2 ≤ x,y ≤ 2. Gaussian noise 

was added to this function to simulate measurement errors in the shear wave velocity and 

registration errors due to misalignment of the image plane angle. The function values were 

then imputed on a grid using (3). The “correct” value of η for this case was found by 

minimizing OCV(η) shown in Fig. 5. In the interest of processing time, η was estimated 

only once per dataset using the C-plane at half the maximum depth. It can be re-estimated 

for every C-plane if desired.

In order to better understand the effect of noise and varying number of image planes on the 

reconstruction quality of this algorithm, a Monte Carlo simulation experiment was 

performed using a single C-plane. Using the same test function as above, synthetic data is 

generated with 4, 6, 12 and 16 concurrent radial lines with 80 equidistant samples along 
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each line. Gaussian noise for different signal to noise ratios (SNR) was added to simulate 

measurement errors. Since the maximum test function value is 1, SNR is defined as 20 

log10(1/s) where s is the standard deviation of simulated Gaussian noise. This noisy data was 

processed with the SOUPR algorithm to reconstruct C-plane function values f̂(x,y) on a 100 

× 100 grid in the domain −2 ≤ x,y ≤ 2. Reconstruction mean squared error was calculated 

using , where the scaling 

and shifts ensure that the functions f and f̂ are evaluated in the domain −2 ≤ x,y ≤ 2. This 

simulation was repeated 10,000 times. Results are shown in Section III-A.

D. Data Analysis

The quality of 3D reconstructions was gauged by calculating the contrast (C) and contrast-

to-noise ratio (CNR) for pairs of regions in the TM phantom. In conventional 2D 

elastography, these statistics are calculated over carefully chosen regions of interest (ROI). 

For the 3D case, the same idea is extended here by choosing parallelepiped shaped ROIs, 

with lateral and elevation dimensions of 5mm each and 10mm axially. These statistics are 

presented in decibel units using the following formulas [40], [49]:

and

where μ and σ respectively denote the mean and the standard deviation values of the SWVs 

calculated over each ROI and the subscripts indicate two distinct media. The mean and 

standard deviations over 5 independent datasets were obtained after converting to dB.

III. Results

A. Simulations

Results of Monte Carlo simulations are shown in Fig. 6. Note that the reconstruction error 

decreases with increasing SNR, irrespective of the number of image planes used. In all cases 

the reconstruction error was largest when 4 image planes are used. On average, the 16 plane 

case gives the best reconstruction accuracy, but the error bars overlap considerably when the 

number of planes is 6, 12 or 16. This suggests that for the ideal case of a perfectly radially 

symmetric inclusion, increasing the number of image planes beyond 6 does not lead to any 

significant improvement in reconstruction quality.
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B. Phantom Data

The reconstructed SWV maps for two of the imaging planes over which radiofrequency 

ultrasound data loops were acquired are shown in Fig. 7. SWV reconstructions were 

performed by applying piecewise linear fitting to the raw TTP data as illustrated in Fig. 3. 

The first image plane passes through the partially ablated region which can be visualized in 

both the B-mode and the SWV reconstruction while the second plane is aligned such that the 

partially ablated region is not seen. Note that these regions of varying stiffness are not as 

easily visible in real tissue using a B-mode scan. But they can be easily seen here because 

the TM phantom material was designed to have different acoustic echogenicities for 

different regions. C-plane slices using different numbers of angular planes between 4 and 16 

are shown in Fig. 8. The partially ablated region can be seen on the right side of the 

inclusion in all the four C-planes.

The estimated SWVs shown in Table I do not change significantly as the number of planes 

in the sheaf was changed. This is because the structure of the phantom is quite symmetrical, 

so on average the measured SWVs do not vary when new planes of data are added. The 

regularized function estimation framework described here is also related to classical 

statistical learning theory: the choice of η is related to the so called bias-variance tradeoff 

[50, Ch. 2, Sec. 2.2.2]. A small value of η will produce an undulating fit, i.e., an estimator 

with low bias but high variance. On the other hand, larger value of η will reduce the 

variance and increase the bias. AIC in the piecewise linear fitting algorithm and 

regularization in the optimization problem are both ways to trade off some variance at the 

cost of introducing a bias in the estimated function. As a result of the smoothing, the SWV 

estimates shown in Table I are lower than the true values for the phantom calculated using 

the known material stiffness (Young's modulus). But they agree quite well with the SWV 

estimates obtained using SSI shown in the last row of the table. Moreover, delineation of 

ablated and partially ablated regions, which is of paramount importance, can be easily seen 

in the C-plane images.

There are several tradeoffs associated with increasing the number of imaging planes for 3D 

reconstruction. Additional planes would require significantly more data acquisition and 

processing to obtain SWV reconstructions. A quantitative evaluation of improvements 

obtained by increasing the number of imaging planes is therefore necessary to determine a 

reasonable number of planes needed for fast imaging. Image quality metrics calculated over 

5 independent datasets are shown in Fig. 9. The largest contrast of about 5 dB in Fig. 9(a) is 

obtained when comparing the soft background with the hard inclusion, also imaged with 6 

imaging planes. A highest CNR of 1.5 dB is obtained using 6 imaging planes in the sheaf as 

illustrated in Fig. 9(b). As one would expect, the highest contrast values were seen between 

the inclusion-background regions. In general, there is a decreasing trend in all image quality 

statistics as the number of planes was increased.

The full 3D reconstruction using 6 imaging planes is shown in Fig. 10. This is created by 

stacking together the individual C-planes. This 3D render should be interpreted with caution 

because only an apparent estimate of the shear wave velocities is obtained. It should not be 

misconstrued as a solution of a full 3D shear wave propagation inverse problem. Fig. 10(a) 
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is obtained by thresholding and is for visualization only. Numerical information is shown in 

the three-slice view in Fig. 10(b).

IV. Discussion

This paper presented a novel technique for acquiring, processing and displaying a 3D 

rendering of the SWV distributions for ultrasound shear wave elastography using a stack of 

C-plane reconstructions. The C-plane visualizations of the ablation slices can also be utilized 

to clearly delineate ablation boundaries. The sheaf of ultrasound planes reconstruction 

(SOUPR) algorithm is presented and validated using TM phantom experiments for EVE.

A piecewise linear fit was used in this paper to accentuate change points with the goal of 

improving boundary delineation in the reconstructed SWV maps on individual scan planes. 

Other noise filtering methods such as least squares linear or polynomial fitting [51] or 

Kalman filtering [52] can also be used. The idea of Tikhonov regularization for smooth 

function approximation was previously applied to displacement estimation by Rivaz et al. 

[53]. In contrast, this paper uses regularized optimization to reconstruct smooth shear wave 

velocity maps from undersampled grids. It is worth noting that the second order finite 

differencing regularization term used in this work can be replaced with first or higher order 

derivatives or any other types of penalty functions that promote smoothness. The key 

requirement is the ability to express the penalty as a linear operation so that the formulation 

in (2) can still be used.

The contrast stays almost constant as the number of planes in the sheaf was increased. The 

CNR quality metric shows a decreasing trend as the number of planes is increased. This may 

be a side effect of the smooth C-plane fitting algorithm. The fitting algorithm approximates 

a smooth surface in regions where there are no data points. With fewer number of planes 

there are larger regions with no data points, resulting in a visually smoother fit which 

corresponds to better CNR in the image. On the other hand, when the number of image 

planes is increased, the voids are much smaller. Therefore the first term in the optimization 

problem (2) exerts greater influence forcing the surface fit to appear more undulating. To 

enable fairer comparison between reconstructions performed with different number of image 

planes, these quality metrics may have to be modified by accounting for these effects.

Various artifacts can also be seen in the SWV maps and the C-plane reconstructions. These 

are summarized in Fig. 11. High velocity artifacts appear above and below the inclusion 

because the assumption of purely lateral shear wave propagation may not hold those regions. 

Removal of such artifacts has been studied previously [54] and can be incorporated into the 

3D reconstruction algorithm. High velocity artifacts are also seen close to the edge of the 

image plane due to limited imaging aperture in those areas. Methods for removal of artifacts 

due to wavefront distortion and reflection have been discussed previously [10], [55] and 

have the potential to improve reconstruction quality for the 3D case too. Low velocity 

artifacts seen in areas adjacent to the needle have been observed in previous EVE studies [8] 

and require further investigation. The authors conjecture that the shear wave pulse takes 

some time to accelerate to its maximum speed after the needle is vibrated resulting in 

perceived low velocity close to the needle source. This artifact may not be a serious hurdle 
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in application because regions immediately adjacent to the needle are certainly ablated; 

confirming the location of the outer boundary of the ablation is more crucial. Results in a 

recent paper by Deffieux et al. [56] suggest that the uncertainty in measuring higher shear 

wave velocities is inherently higher. This indicates there is a lower limit to how accurately 

SWV maps can be reconstructed inside the stiff inclusion.

A visible side effect of the sheaf imaging strategy is the “wheel spoke” artifact seen in Fig. 

8, especially when using fewer planes in the sheaf. These appear as radial streaks emanating 

from the center of the C-plane and coinciding with the radial locations of the image planes 

over which ultrasound echo data was acquired. The smoothing parameter can be manually 

tuned to get rid of such artifacts—a larger value of η will smooth out such variations. In a 

commercial system, there may be regulatory hurdles to allowing the user to control the value 

of η, but it may be possible to include an additional preset akin to smoothing and edge 

enhancement which is available on almost all ultrasound scanners.

The phantom experiment setup in this paper was designed to mimic a liver ablation 

procedure. In other real world situations, it may be more challenging to align the needle 

along the axial beam direction of the transducer. In situations where the needle is at an angle 

to the axial ultrasound beam direction, 2D displacement tracking algorithm can be used. The 

component of these displacements parallel to the needle can be extracted and TTP values 

along lines perpendicular to the needle can be calculated in steps 2 and 3 of Section II-C, 

respectively. In case of physical constraints on placing the transducer around the needle, it 

may be impossible to obtain the complete sheaf, resulting in voids in the dataset. But a 

partial volume reconstruction can still be obtained using the same algorithm presented in this 

paper, using only that part of the fine grid where data points are present. The four step 

decomposition offers good flexibility for tuning the details of each signal processing block 

for specific applications. For example, some commercial ultrasound scanners already offer 

imaging modes to map shear wave velocities (either as point estimates or over large regions) 

irrespective of the alignment of the image plane with respect to the needle. In such systems, 

it will be convenient to incorporate one additional block for step 4 at the end of the existing 

signal processing chain to generate 3D volume maps.

It is also useful to compare the SWV image plane reconstruction with a “bronze standard” 

image acquired from a commercial Supersonic Imagine ultrasound scanner with shear wave 

imaging capability. Fig. 12 shows one image plane of the phantom with a SWV overlay on 

B-mode. The image plane is identical to the one shown in Figs. 7(a) and (b). Note that high 

velocity artifacts can be seen at depths greater than 2.5 cm.

Results in this paper indicate that 6 planes in a sheaf are sufficient for fast reconstruction in 

the particular TM phantom used, both qualitatively and quantitatively. This is because the 

shape of the inclusion was mostly symmetric about the needle, (except for a small 

irregularly shaped partially ablated region). This was also confirmed by the simulation 

experiment that was specifically used to mimic the situation in the phantom experiment. 

Greater number of image planes may be needed if the inclusion is more irregularly shaped. 

More complex geometries can be simulated ahead of time using the method described in 

Ingle and Varghese Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Section II-C4 to decide on a suitable number of image planes in the sheaf as part of pre-

ablation clinical planning.

The location and number of angular planes can also be optimized with the aim of 

minimizing the number of planes required for effective 3D reconstruction while maximizing 

the processing speed. This will also allow implementation of 3D reconstruction algorithms 

on low end commercial ultrasound systems which may not be equipped with sufficient 

processing power or modern graphical processing units (GPUs). Minimization of the 

number of planes will enable faster data acquisition and processing for eventual real-time 

implementation of 3D SWV volume reconstructions. Adaptive or non-uniform sampling of 

complex regions, for example those including the simulated, partially ablated regions as 

shown in Figs. 7–8 and regions near large vessels during in vivo implementations, will have 

to be evaluated to determine if this can further improve delineation. Data can be acquired in 

multiple passes where the interpolated visualization from an earlier pass provides feedback 

for sampling critical locations in the volume, enabling an adaptive sampling approach for 

improved delineation.

Although the sheaf pattern of acquisition is naturally suited to the geometry of the EVE 

setup, an inherent limitation of this method is that every image plane must contain the 

needle to enable time of arrival estimation. In a sheaf, data samples progressively get sparser 

away from the needle. This shortcoming can be addressed by sampling extra planes in the 

sheaf so that a certain fine sample spacing is achieved at a predetermined distance away 

from the needle. Alternatively, if a specific ROI has already been located, imaging planes 

that are not uniformly spaced in angle can be employed; finer spacing in specific regions 

may provide better reconstruction quality at those locations. Knowledge from earlier 

iterations of the reconstruction algorithm may also be incorporated in the interpolation 

procedure, by reconstructing only parts of the full volume that are known to contain any 

interesting features, either automatically or with the intervention of a clinician.

V. Conclusion

Monitoring tumor ablations to determine the spatial extent of treatment is fundamentally a 

3D problem. 3D imaging is essential to determine if the entire tumor and surrounding 

margins have been successfully ablated to ensure favorable outcomes from this minimally 

invasive procedure. Current 3D ultrasound imaging using wobbler transducers are inefficient 

in depicting ablation volumes as imaging planes are collected in a raster fashion. By 

exploiting the axis of symmetry about the ablation needle, the SOUPR algorithm developed 

in this paper provides good 3D visualization using significantly fewer planes and faster 3D 

reconstructions. Various image quality statistics evaluated using independent datasets 

indicate that the SOUPR algorithm provides good contrast between the tumor and 

surrounding softer regions. Moreover, the algorithms presented in this paper can be easily 

extended to process other types of data (such as strain) to produce similar C-plane 

reconstructions for visualization of ablated regions.
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Fig. 1. 
This schematic shows the data acquisition system used in electrode vibration elastography 

experiments. The needle is vibrated using an actuator. Data acquisitions are phase-locked by 

synchoronizing the ultrasound scanner pulse sequencing with the actuator motion. The 

image plane is adjusted in such a way that it contains the needle.
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Fig. 2. 
The tissue-mimicking phantom used in this study consisted of a hard inclusion embedded in 

soft background and an irregularly shaped partially ablated region on one side. A subset of a 

sheaf of imaging planes containing four equiangular planes passing through a line that 

coincides with the ablation needle is shown. A stack of C-planes over which the shear wave 

velocities are interpolated is also shown. The needle was vibrated vertically to set up a shear 

wave pulse.
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Fig. 3. 
A piecewise linear model with unknown breakpoints (λ1, λ2) is used for estimating local 

slope values (m1,m2,m3). The reciprocals of these slope values are used as estimates of local 

shear wave velocities at different lateral locations away from the electrode.

Ingle and Varghese Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4. 
This figure shows the effect of using different values of the smoothing parameter η in the 

fitting procedure applied to simulated noisy data. When η is too small, the resulting fit 

follows the noise as seen in (a), whereas if η is too big it causes over-smoothing as seen in 

(b). The correct smoothing parameter value strikes an “optimal” balance as seen in (c). This 

value is chosen to minimize the OCV score plotted in Fig. 5.
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Fig. 5. 
OCV plot vs log(η). The minimizer in this case is approximately η = e−3.
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Fig. 6. 
Mean squared reconstruction error (MSE) from simulated data at different noise levels and 

varying number of image planes. The reconstruction error is largest when only 4 image 

planes are used. No significant improvement is obtained by increasing the number of planes 

from 6 to 16, as seen from the overlapping errorbars around the MSE values.
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Fig. 7. 
Ultrasound B-mode image and respective shear wave velocity (SWV) images are shown. 

Note the clear visualization of the partially ablated region seen on B-mode in (a) and in the 

shear wave image obtained using the piecewise linear fitting algorithm in (b). B-mode (c) 

and SWV reconstruction (d) for an image plane not including the partially ablated region are 

also shown for comparison. Backscattered intensity was varied in the phantom to visualize 

normal, ablated and partially ablated areas in the B-mode reference images.
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Fig. 8. 
Example C-plane reconstructions of shear wave velocity at an axial depth of 2.8 cm with 

different number of imaging planes. Observe that as more planes of data are introduced, the 

variability and finer detail in the boundary increases, and the “wheel spoke” artifact 

becomes less pronounced.
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Fig. 9. 
Plots of (a) Contrast and (b) CNR as a function of the number of imaging planes. Contrast 

and CNR plots are for three different pairs of regions. (BKG=background, PAR=partially 

ablated, INC=inclusion)
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Fig. 10. 
(a) 3D reconstructed volume of the inclusion using 6 imaging planes obtained by 

thresholding. (b) Three slice view of the 3D volume with SWV shown in m/s.
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Fig. 11. 
This figure shows various structures and artifacts present in the SWV image plane. The red 

arrow points to the stiff ablated region and the black arrow points to the partially ablated 

region. There is a low velocity artifact near the needle shown by the blue arrow at the center. 

There are high velocity artifacts close to the edge of the image shown with green arrows in 

the top right and bottom left corners. The violet arrow near the top of the image plane points 

to a high velocity artifact due to the needle.
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Fig. 12. 
A “bronze standard” SWV image of the phantom inclusion corresponding to the same 

imaging plane of Fig. 7(a). This image was acquired using a Supersonic Imagine ultrasound 

scanner with the shear wave imaging mode. (Original image has been cropped and 

rearranged to fit.)
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Table I
Shear wave velocity estimates

# imaging planes background partially ablated inclusion

4 0.7642 ± 0.0722 1.0106 ± 0.0218 1.3264 ± 0.1039

6 0.7454 ± 0.0432 1.0205 ± 0.0195 1.3357 ± 0.1395

12 0.7623 ± 0.0612 0.9947 ± 0.0251 1.3412 ± 0.1007

16 0.7608 ± 0.0673 0.9814 ± 0.0256 1.3324 ± 0.1019

SSI 0.9 ± 0.07 1.1 ± 0.05 1.2 ± 0.03

Values of SWV (in m/s) for the three regions of interest are shown. The number of imaging planes used for 3D reconstruction is varied from 4 to 
16. The mean and standard deviations were calculated over 3D parallelepiped shaped ROIs. For comparison, measurements from the commercial 
Supersonic Imagine (SSI) ShearWave™ Elastography imaging mode are also shown. Note that the SSI measurements were obtained using 
conventional 2D ROIs from only a single imaging plane with the partially ablated region in view (cf. Fig. 12).
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