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Abstract

In magnetic resonance imaging (MRI), spatial resolution is limited by several factors such as 

acquisition time, short physiological phenomena, and organ motion. The acquired image usually 

has higher resolution in two dimensions (the acquisition plane) in comparison with the third 

dimension, resulting in highly anisotropic voxel size. Interpolation of these low resolution (LR) 

images using standard techniques, such as linear or spline interpolation, results in distorted edges 

in the planes perpendicular to the acquisition plane. This poses limitation on conducting 

quantitative analyses of LR images, particularly on their voxel-wise analysis and registration. We 

have proposed a new non-local means feature-based technique that uses structural information of a 

high resolution (HR) image with a different contrast and interpolates the LR image. In this 

approach, the similarity between voxels is estimated using a feature vector that characterizes the 

laminar pattern of the brain structures, resulting in a more accurate similarity measure in 

comparison with conventional patch-based approach. This technique can be applied to LR images 

with both anisotropic and isotropic voxel sizes. Experimental results conducted on brain MRI 

scans of patients with brain tumors, multiple sclerosis, epilepsy, as well as schizophrenic patients 

and normal controls show that the proposed method is more accurate, requires fewer 

computations, and thus is significantly faster than a previous state-of-the-art patch-based 

technique. We also show how the proposed method may be used to upsample regions of interest 

drawn on LR images.

Index Terms
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I. Introduction

Image spatial resolution is a limiting factor in quantitative analyses of medical images. In 

magnetic resonance imaging (MRI), the acquisition time, short physiological phenomena, 

and organ motion may limit the image resolution. For example, in dynamic contrast 

enhanced (DCE) and dynamic susceptibility contrast (DSC) MRI of brain, a tracer is 

injected into the vein during continuous rapid brain imaging. As the arrival of the bolus, its 

passage through the brain, and its wash-out occur in a short period of time, rapid imaging is 

required to achieve sufficient temporal resolution to capture the dynamics of the contrast. 

This poses limitations on the spatial resolution. In other cases, spatial resolution is limited 

by image acquisition time. For example, fluid attenuated inversion recovery (FLAIR) MRI 
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requires longer acquisition time compared to T1-weighted (T1W) MRI. Thus, spatial 

resolution may be compromised to achieve reasonable scan time and minimize the 

likelihood of motion artifact. This is usually done by the acquisition of relatively small 

number of 2D slices resulting in large slice thickness and spacing between slices. As a 

result, the images have lower resolution in the slice dimension compared to the other two 

dimensions (acquisition plane), resulting in highly anisotropic voxels (e.g., 

1mm×1mm×6mm).

Quantitative analyses of these low resolution (LR) images are further distorted when these 

images are transformed into a different space. For instance, voxel-wise analysis usually 

requires all image volumes of one subject to be aligned and analyzed in one space. Thus, if 

slices of different image volumes are not already acquired exactly from the same location, 

they need to be coregistered, which involves interpolation. However, standard interpolation 

techniques are not accurate and result in distorted edges in the planes perpendicular to the 

acquisition plane. Fig. 1 shows the result of nearest neighbor (NN), linear, and spline 

interpolation techniques applied to an image with voxel size 1mm×1mm×6mm. The reason 

for an inaccurate interpolation is that the neighboring voxels, from which the intensity of an 

unknown voxel is estimated, may not have the same tissue type as the unknown voxel. This 

results in an incorrect estimation of the voxel intensity using standard interpolation 

techniques.

Several methods have been proposed to improve the interpolation of LR images. In one 

category of these methods, a single LR image from the subject is available for upsampling. 

Adjacent slices of the LR image may be registered using a non-rigid method to reconstruct 

the slices between them [1–6]. These registration-based methods best work when each slice 

is acquired from a thin slab of the organ as blurred edges between thick slices lead to poor 

coregistration. In [7], a family of adaptive 3D interpolation filters are designed and 

conditioned on different spatial contexts in order to reconstruct a slice based on four 

neighboring slices. This method, however, requires a training set. A diffusion-based 

technique has been used in [8] to reconstruct a slice using neighboring slices. In [9], a sparse 

super-resolution approach was proposed using overcomplete dictionaries. This method also 

requires a training set. Finally, in [10], a structure-preserving constraint is enforced by a 

patch-based reconstruction approach using a variant of non-local means (NLM) filter [11]. 

This approach is based on the self-similarity concept and this patch-based approach has been 

also applied successfully in [12] to enhance the resolution of 4D-CT images.

Our proposed method is related to another category of methods, in which a high resolution 

(HR) image with a different contrast is used to upsample the LR image [13–15]. 

Conventionally, a HR image, usually a T1W image with isotropic voxel size, is acquired to 

reveal the brain structure. A LR image may be interpolated with the help of this HR image. 

This is referred to as brain hallucination by Rousseau in [13] and later the method was 

elaborated in [14]. Rousseau uses patch-based image interpolation to upsample the LR 

image, which is based on NLM denoising [11, 16–18]. In NLM denoising, the intensity of a 

voxel is approximated by the linear combination of all intensities within the image [11]. 

Rousseau performs this approximation within a neighborhood of each voxel. In other words:
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(1)

where x is the image intensity function and Ω(v) is a neighborhood of voxel v. The weights 

w(v, k) are calculated based on the similarity of 3D patches centered in voxels v and k in the 

HR image registered to the LR image. The same weights are used for interpolation of the LR 

image based on the assumption that the local patterns in HR and LR images are similar. This 

assumption may not be valid – for example when a lesion is clearly visible in the LR image 

but not in the HR image due to the difference between their contrasts. To resolve this issue, a 

combination of weights calculated from both HR and reconstructed images is used in an 

iterative algorithm in [14]. In each iteration, a correlation map showing the inconsistencies 

between HR and reconstructed images is generated to adjust the enforcement of the weights 

of the two images. The enforcement of the HR image pattern is lowered when the correlation 

is poor. In this paper, we refer to this method as the SRIP (super-resolution using 

intermodality priors) method.

In [15], a similar strategy is used with the difference that the similarity between two voxels 

of the HR image is based on the similarity of their intensities, as opposed to the similarity of 

patches centered in those voxels. However, to resolve HR and LR pattern inconsistencies 

mentioned above as well as any slight misalignment between HR and LR images, a self-

similarity strategy is applied by taking into account the similarity between patches centered 

in two voxels in the reconstructed LR image. The weights of these two similarities 

(calculated from HR and LR images, respectively) are controlled by adjusting some 

parameters. In this paper, we refer to this method as the SSIP (self-similarity and image 

priors) method. SSIP has been shown to outperform SRIP in upsampling synthetic MRI 

from the BrainWeb database [15, 19].

To perform an accurate interpolation, it is critical to estimate the correct tissue type 

similarity for the LR image. A patch-based approach to measure the similarity between 

voxels may be suitable for images with directional textural patterns, which is not an accurate 

assumption for MR images. The brain gyri and sulci form laminar structures where voxels 

with similar tissue types form layers (as shown in Fig. 2). A patch-based approach is not 

rotation invariant and thus two close voxels of one tissue type placed at curved structures 

may be interpreted dissimilar. This is better shown in Figs. 3 (a)–(b) where the performance 

of a patch-based approach is illustrated by presenting the similarity map between one pixel 

(shown by a cross sign) and all other pixels in the image. The pixel is located at the 

boundary of white matter (WM) and gray matter (GM). As shown, the laminar shape of the 

brain structure is ignored by a patch-based approach, whereas our approach specifically 

incorporates this anatomy as a prior in the upsampling procedure. Not only is the assumption 

of laminar structures valid for normal brain structures, as will be shown by experiments, it 

also results in more accurate interpolation within lesions compared to a patch-based 

approach.
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In this paper, we use the structural information of a HR image to guide the interpolation of a 

LR image. We propose a novel similarity measure that takes the brain laminar structure into 

account by assuming that voxels that have equal distances to a strong edge are more likely to 

belong to the same tissue type. This approach results in higher interpolation accuracy 

compared to SSIP, a state-of-the-art approach [15], while also requiring fewer computations 

and being significantly faster. Experiments are conducted on MRI scans of patients with 

brain tumors, multiple sclerosis, and epilepsy, MRI dataset of schizophrenic patients and 

normal controls, as well as BrainWeb MRI with multiple sclerosis model [19]. We also test 

the performance of the algorithm in the presence of noise, intensity non-uniformity, and 

motion artifact in the HR image, as well as noise and susceptibility artifacts in the LR image. 

We will also show how the proposed algorithm may be used to upsample regions of interest 

(ROIs) manually drawn on LR images.

II. Method

A. Overview

In a standard interpolation technique, the continuous function (image intensity in our 

problem)–from which a limited number of samples is available–is locally modeled, and the 

value of the function in one point (voxel in our problem) is estimated by fitting the model to 

its neighboring points and calculating the value of the model at that point. For example, in 

linear interpolation, the intensities are assumed to change as a linear combination of the 

values at some neighboring points, similar to the approximation in equation (1). The weights 

w(v, k) should be proportional to the similarity between x(v) and x(k). Conventionally, w(v, 

k) correlates with the distance between points v and k. This is based on the assumption that 

points closer to each other are more likely to have similar values. This is not always true, 

particularly in images with highly anisotropic voxels. In the NLM approach, this distance is 

not the spatial distance between the two points. The similarity between two points may be 

calculated by a patch-based approach as:

(2)

where P3D(x(v)) and P3D(x(k)) are 3D patches of x centered in voxels v and k, respectively 

[16]. Zv is a constant of normalization, Ni is the number of voxels of a 3D patch, σ2̂ is the 

standard deviation of the noise, and β is a constant. In this method, two points are more 

similar if they have similar neighborhoods. In this paper, we assume wx(v, k) to be:

(3)

where P(v, k) is the probability that voxels v and k have similar tissue types in terms of 

tissue properties specified by intensity function x, and N is a normalization factor such that 

Σk wx(v, k) = 1. This means that a voxel should be interpolated using neighboring voxels 

that are similar in tissue property to that voxel. The function P(v, k) may be estimated from 
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a HR image of the same subject. If the contrast of the two images is different, they may have 

different values of wx(v, k). Nonetheless, if the two images have some structural similarity, 

it is likely that the above estimation results in more accurate interpolation compared to a 

standard interpolation technique. To perform a more accurate interpolation, one needs to 

accurately estimate the values of wx(v, k) for the LR image.

Furthermore, a LR image may not be simply considered as a down-sampled version of a 

higher resolution image. Partial volume effect and geometric transformation are usually 

present in the LR images. We consider the following degradation model to take these into 

account:

(4)

where y is the LR image, x is the original HR image of the same contrast, H is a matrix 

incorporating geometric transformation, partial volume effect, and sub-sampling, and n is 

the observation noise. An approach to estimate the LR image x is to minimize a least-square 

cost function such as:

(5)

As this problem does not have a unique solution, some prior information is needed to 

constrain the solutions. This prior information may be applied in the form of equation (1), 

for example by introducing a regularization term R(x) and solving:

(6)

where R(x) incorporates the constraint in (1). Since the assumption is that H is known, we 

would need to select an appropriate R(x) and a minimization algorithm. We consider the 

following regularization term:

(7)

This ensures the condition in equation (1) is met [20]. An overview of the proposed 

algorithm is presented in Fig. 4. An initial estimation of the upsampled image is generated 

by NN interpolation of the LR image. The HR image is then coregistered to our initial 

estimate, and the weights wx(v, k) are estimated by a method explained later. The optimal 

upsampled image is then generated by the minimization in equation (6) through use of 

parallel computing (multi-threading) to speed up the computations. Details of the laminar-

based method will be presented next.
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B. Similarity features for laminar structures

In this paper, to obtain the values of wx(v, k) we have made the following general 

assumption:

(8)

where F is a feature vector representing tissue property of a voxel. Assuming that z 
represents the intensity of the HR image with a different contrast coregistered to the LR 

image, F could be set to z or a vector of z values in a neighborhood of the input voxel, e.g., a 

patch [11, 13–15]. However, such feature vector does not take the brain laminar structure 

into account and is not rotation-invariant. To capture the laminar structure, voxels having 

equal distances to the main edges should have similar F values. Equivalently, F contour 

maps should have isolines parallel to the main edges. The key point is to propagate the edge 

information perpendicular to the edge direction. The gradient operator can be used to extract 

edges. Fig. 5 (b) shows the contour map of a gradient operator applied to the sample image 

in Fig. 5 (a) (before applying the gradient operator, the image is slightly smoothed). The 

edge information, however, stays local in a gradient operator. This causes the information of 

sharp curves to be retained but the edge information is lost as one deviates from the edges.

To further propagate the edge information, we propose using a multi-resolution Gaussian 

filtering approach. In this approach, the image is filtered by a set of Gaussian kernels with 

different standard deviations. Figs. 5 (c)–(d) show the contour maps of the filtered image in 

Fig. 5 (a) using Gaussian kernels with two different standard deviations. As shown, by 

increasing the standard deviation, the edge information is further propagated but detailed 

information of smaller structures is lost. A combination of the above operators in the 

similarity vector F may be used in order to retain both high and low resolution information. 

We propose to use the following feature vector:

(9)

where ∇ is gradient operator, * is convolution operator, gi, i=1,2,…,k are Gaussian kernels, 

and k is the number of kernels. The required standard deviations of the Gaussian kernels 

depend on the desired voxel size for the upsampled image. Fig. 3 compares the similarity 

map of the proposed method for k=2 with that of a patch-based method. As shown, the 

proposed method has superior performance in finding voxels with similar tissue types in a 

laminar structure. Calculation of this similarity measure is faster than a patch-based 

similarity measure if the size of vector F is small as it requires fewer mathematical 

operations.

C. Algorithm

An iterative method is used for the minimization in (6). In this method, in iteration t+1, the 

image  is reconstructed by (1) from x̂t and the condition in (4) is enforced by:

Jafari-Khouzani Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(10)

where NN is the nearest neighbor interpolation operator. This constraint has been referred to 

as subsampling consistency [21]. To take into account the inconsistencies between the LR 

and HR weights, we apply a self-similarity approach based on the concepts from image 

denoising [16–18]. The values of wx(v, k) are generated using both HR and LR images as 

follows:

(11)

where αx and αz equalize the contribution of the features of LR and HR images when the 

range of intensity values of Fz and Fx are different. Consider a situation in which a lesion is 

visible in the LR image but not in the HR image, e.g., Fz values are similar in a local 

neighborhood whereas Fx values are not. In this case, the LR image has dominant effect in 

equation (11) and the result of upsampling becomes similar to a self-similarity based 

denoising approach.

The most time-consuming part of the algorithm is the generation of wx(v, k) values. This 

makes the algorithm very slow if we recalculate the weights in each iteration. On the other 

hand, iteratively taking the LR image into account in the calculation of weights may result in 

suboptimal solutions because the structural information of the reconstructed LR image 

(which may not be accurate in the first place) may gradually dominate and reduce the 

accuracy by increasing iterations. To simultaneously expedite the process and avoid 

suboptimal solutions, we first calculate the weights wx(v, k) using only the HR image (i.e., 

by setting αx = 0). The LR image is then upsampled using these fixed weights in an iterative 

approach. Note that once wx(v, k) values are known, the minimization in (6) is done by the 

iterative approach, which is relatively fast. The upsampled LR image then becomes more 

similar to the correct result and thus can better contribute to the upsampling. In the next step, 

a non-zero αx is used and the image is upsampled iteratively with new fixed weights wx(v, 

k). Thus, the weights wx(v, k) are calculated twice in total. In addition, to save memory and 

time, we only keep the Nv highest wx(v, k) values by assuming that there are Nv voxels with 

similar properties to the voxel of interest, and that the rest of voxels are irrelevant. Nv can be 

adjusted based on the neighborhood size and voxel size.

An overview of the algorithm is presented below. First a NN operator interpolates the image 

to generate an initial estimation of the upsampled image. This is equivalent to repeating each 

slice n-1 times when we would like to divide the slice thickness by n. We may want to insert 

enough number of slices to make the voxels of the resulting image near-isotropic. The HR 

image is then coregistered to the resulting image and the values of wx(v, k) are estimated for 

each voxel.

1. Use NN operator to generate initial estimation x̂0
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2. Coregister the HR image to x̂0 and call it z

3. Set αx = 0

4. Estimate the weighs wx(v, k) using z and x̂t

5. Repeat until ||xt̂+1 − x̂t||2 < ε

a. Reconstruct x̂t+1 from x̂t using equation (1)

b. Correct x̂t+1 for downsampling and partial volume effects by applying 

constraint (10)

6. Repeat steps 4–5 with a non-zero αx

III. Results

Experiments were conducted on artificially downsampled images and clinically acquired LR 

datasets. Assuming that partial volume effect can be modeled by averaging, downsampling 

by a factor of n in one direction was performed by averaging every n slices of the HR image 

x. This is equivalent to the application of operator H in (4). The downsampled image was 

then reconstructed by the HR image z and evaluated by two quality measures, namely Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR is defined by:

(12)

where x̂ is the reconstructed image, , Ω is the region 

covering the organ, i.e., the whole image excluding background, and d is the actual dynamic 

range of the image, i.e., d = max(x) − min(x). SSIM [22] is a measure more consistent with 

the human visual system. For images x and x̂, SSIM is defined as:

(13)

where μx and μx̂ are the mean value of images x and x̂, σx and σx̂ are the standard deviation 

of images x and x̂, σxx̂ is the covariance of x and x̂, c1 = (K1d)2 and c2 = (K2d)2 (K1 = 0.01 

and K2 = 0.03). For image quality assessment, it is useful to apply SSIM index locally, rather 

than globally. To this end, a spatially varying quality map of the image is generated for 

images x and x̂, and the average SSIM is calculated. SSIM ranges from −1 to 1 and the value 

1 is only reachable in the case of two identical images. For clinical applications (where the 

original HR image x was not available), the images were assessed visually.

Experimentally, Nv was set to 10 to maximize PSNR and minimize computation time and 

memory usage for one sample MR image (shown later in the experiments). The effect of 

parameter α has been previously evaluated [16]. We set α to 1/2μ2 where μ is the mean 
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value of the absolute values of the image (which makes the algorithm work for images with 

negative values as well). This choice of α normalizes the intensity values and results in 

accurate outcomes independent of the range of intensities. We also used a 6-parameter affine 

coregistration based on normalized mutual information and with trilinear interpolation in 

Statistical Parameter Mapping software package (SPM8; http://www.fil.ion.ucl.ac.uk/spm/) 

for the image coregistration in step 2. Furthermore, with smaller values of k (the number of 

filters), the method becomes faster in each iteration although the total computation time 

depends on the number of iterations as well. In this paper, we set k=2 with Gaussian kernels 

with standard deviations of 2h/pi and 5h/pi (in voxel space) along dimension i, where 

 and pi is the voxel size along dimension i. These parameters were 

determined empirically to provide accurate results. In order to expedite the calculations, we 

used multi-threading implementation in both the calculation of the weights as well as 

reconstruction. All experiments were done on a quad-core Xeon 5472 3.0GHz CPU.

In the following experiments, we evaluated performance of the proposed method in 

comparison with SSIP (also with multi-threading implementation), a state-of-the-art method. 

In order to compare the methods in different imaging conditions and in the presence of 

lesions with different sizes, we selected images with different contrasts and resolutions from 

three datasets of patients with brain tumors, multiple sclerosis, and epilepsy. The 

Institutional Review Board approved this study. We also tested the algorithm on publicly 

available MRI dataset of schizophrenic patients and normal controls provided by National 

Alliance for Medical Image Computing (NAMIC) as well as BrainWeb MRI. A fixed set of 

upsampling parameters was used for the proposed method in all experiments. These 

parameters have been optimized for a single image in the brain tumor dataset. We also 

evaluated the effect of upsampling parameters, slice thickness, noise, intensity non-

uniformity, as well as presence of motion and susceptibility artifacts, and showed the 

application of the proposed method in upsampling of ROIs. We limited the number of 

iterations in SSIP method to 30 in all experiments to avoid convergence to a suboptimal 

solution. This number was selected empirically by a compromise between accuracy and 

computation time.

A. Comparison with previous work

i) Brain tumor—We selected 5 patients with brain tumors from our dataset of glioblastoma 

patients [23, 24]. Each patient had sagittal T2-weighted (T2W) and Gadolinium-enhanced 

MPRAGE images, both with 1mm isotropic voxel size (matrix size 256×256×176). For each 

subject, the T2W image was downsampled axially to generate a LR image with the slice 

thickness of 6 mm, which is a common slice thickness for clinically acquired LR images. 

The downsampled image was then upsampled using the Gadolinium-enhanced MPRAGE 

image. We also upsampled the T2W image using NN, linear, cubic, and spline interpolation 

techniques, as well as SSIP.

Fig. 6 shows the results of upsampling using four different methods, namely NN 

interpolation, spline interpolation, SSIP, and our proposed method. For a better comparison, 

a smaller field of view of each image is displayed. As shown, the standard interpolation 

techniques result in distorted edges. However, SSIP and the proposed method better 
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reconstruct the edges. Fig. 7 shows a magnified section of two images presented in Fig. 6 to 

better illustrate the difference between the performances of SSIP and the proposed method. 

As shown, the proposed method has visually superior performance, particularly near the 

edges. This is mainly because of the better performance of the proposed feature-based 

similarity measure compared to the patch-based method, which was illustrated in Fig. 3.

Table I compares the PSNR and SSIM values of different upsampling methods applied to the 

above images. The table also presents the computation times. The proposed method was 

significantly faster and more accurate than SSIP. Average computation time for the proposed 

method was 6 minutes whereas the average computation time for SSIP was 84 minutes. 

Nevertheless, both SSIP and the proposed methods outperformed standard interpolation 

techniques.

Fig. 8 (a) presents the PSNR curve for the image presented in the first column of Fig. 6 

(subject 1 in Table I). To better show the trend of changes in PSNR values of the SSIP 

method, we have presented the PSNR values for 60 iterations. The proposed method 

calculates the weights only twice, which correspond to the two exponential-like parts of the 

curve of the proposed method in Fig. 8. The proposed method outperformed SSIP even if the 

weights were extracted only from the HR image. As shown, SSIP has decreasing 

performance after seven iterations while the termination condition is not met. This may be 

due to the problem with iteratively taking the LR image into account explained in the 

Methods section. SSIP had similar decreasing performance in the rest of images in Fig. 6. 

Note that each iteration of the SSIP method takes significantly longer than each iteration of 

the proposed method as SSIP requires the weights to be calculated iteratively. In the case 

presented in Fig. 8 (a), maximum PSNR for SSIP method was achieved in seven iterations 

and took about 19 minutes, which is still longer than the 6 minutes using the proposed 

method.

To test whether the assumption of laminar structures of the MR images is also more accurate 

than the patch-based similarity assumption within a lesion, we calculated the values of 

PSNR and SSIM within the tumors. Table II reports the values. As shown, the proposed 

method has higher values of PSNR and SSIM in all subjects.

ii) Multiple sclerosis—We selected 5 patients with multiple sclerosis. Each patient had a 

sagittal FLAIR image with 0.5mm×0.5mm×1mm voxel size (matrix size 384×384×160) and 

a sagittal MPRAGE image with 0.9 mm isotropic voxel size (matrix size 256×256×192). 

The FLAIR image was downsampled sagittally to generate a LR image with the slice 

thickness of 6 mm (i.e., 0.5mm×0.5mm×6mm voxel size). Similar to the previous 

experiment, the downsampled FLAIR image was upsampled by MPRAGE image using the 

proposed method as well as SSIP and four standard interpolation techniques. Table III 

compares the PSNR and SSIM values and computation times of different upsampling 

methods. Both SSIP and the proposed methods outperformed standard interpolation 

techniques. As shown, the proposed method is significantly faster and is more accurate than 

SSIP. Fig. 9 compares a sample slice of the FLAIR image of subject 1 in Table 3 upsampled 

using SSIP and the proposed method. As shown, small lesions that are not visible in the 

images upsampled by NN and spline techniques are visible in the upsampled image using 
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the proposed method as well as SSIP method, even though the lesions in the MPRAGE and 

FLAIR images do not always have similar patterns of contrasts. Fig. 8 (b) presents the PSNR 

curve for subject 1 in Table 3 for SSIP and the proposed method.

iii) Epilepsy—We selected 5 patients with epilepsy. Each patient had a sagittal FLAIR 

image (matrix size 192×192×176), a sagittal T2W image (matrix size 192×192×160), and a 

sagittal MPRAGE image (matrix size 256×256×176) – all with 1 mm isotropic voxel size. In 

one experiment, the FLAIR image was downsampled coronally to generate a LR image with 

slice thickness of 6 mm and then was upsampled using the T2W image. In another 

experiment, the downsampled FLAIR image was upsampled using the MPRAGE image. 

Table IV compares the PSNR and SSIM values and computation times of different 

upsampling methods applied to the above images. Similar to the previous experiments, both 

SSIP and the proposed method outperformed standard interpolation techniques. However, 

the proposed method was significantly faster and more accurate than SSIP. In this dataset, 

we did not find a significant difference in using MPRAGE and T2W images for upsampling 

the FLAIR image based on PSNR. However, the images upsampled using T2W images had 

generally higher values of SSIM. Fig. 10 presents the upsampling results using NN 

interpolation, spline interpolation, SSIP, and the proposed method for subject 1 in Table IV. 

Although the MPRAGE image had better overall performance compared to T2W image in 

this subject, T2W image had better reconstruction in the substantia nigra and red nucleus 

region since it had better contrast in this region. Fig. 8 (c) presents the PSNR curves for this 

subject using SSIP and the proposed method upsampled by T2W and MPRAGE images.

iv) NAMIC Brain Multimodality dataset—NAMIC Brain Multimodality (http://

hdl.handle.net/1926/1687) is a publicly available MRI dataset of 10 schizophrenic patients 

and 10 normal controls. Each subject has T1W and T2W images with 1 mm isotropic 

resolution (matrix size 256×256×176). In this experiment, we were interested in evaluating 

the effects of noise and intensity non-uniformity on upsampling. The T2W image was first 

downsampled axially to generate a LR image with the slice thickness of 9 mm. We added 

Rician noise with levels of 0% and 5% (relative to the brain mean intensity) to both LR and 

HR images. We also applied intensity non-uniformity to the HR image, modeled by a 3D 

Gaussian function. The downsampled T2W image was then upsampled by the T1W image 

using the proposed method as well as SSIP and four standard interpolation techniques. We 

tested the upsampling algorithm with and without noise and intensity non-uniformity, 

comprising 80 upsampling operations. In each experiment, similar levels of noise were 

applied to both LR and HR images. For a fair comparison, we denoised the LR images in all 

methods in the same way the LR images were denoised in SSIP method. Table V presents 

the mean and standard deviation values of PSNR and SSIM over all 20 subjects. The 

upsampled images were compared with noise-free images. As shown, the proposed method 

outperformed all other methods. It also outperformed SSIP in computation time. 

Furthermore, as expected, noise and intensity non-uniformity generally decreased both 

PSNR and SSIM values. However, the proposed method was less affected by noise and 

intensity non-uniformity compared to SSIP. Fig. 11 presents a sample upsampling result 

with %5 noise level in the LR and HR images and intensity non-uniformity applied to the 

HR image. Fig. 8 (d) presents the PSNR curves for this image.
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v) BrainWeb—BrainWeb [19] (http://brainweb.bic.mni.mcgill.ca/brainweb/) is a simulated 

brain MRI database providing two anatomical models: normal and multiple sclerosis (MS). 

MRI scans have been simulated using T1W, T2W, and proton-density-weighted (PDW) 

sequences. We were interested in evaluating the performance of the algorithm in upsampling 

along all three dimensions. We downsampled the T2W and PDW images of multiple 

sclerosis model to 3 mm, 6 mm, and 9 mm isotropic resolutions and then upsampled by 

T1W image to 1 mm isotropic resolution. Table VI presents the values of PSNR and SSIM 

for standard interpolation methods as well as the proposed method. The proposed method 

outperformed all standard methods. Fig. 12 displays the results of upsampling the T2W and 

PD images with 9 mm isotropic resolution.

In all the above experiments, the LR and HR images had different contrasts (e.g., LR T2W 

and HR T1W images). However, the method works on images with similar contrasts as well, 

and indeed due to their contrast similarity, it should result in higher PSNR. In practice, it is 

uncommon to have LR and HR images from the same contrast. Nevertheless, this may find 

application in upsampling dynamic images given a static HR image with similar contrast. In 

one experiment, we upsampled the BrainWeb T2W and PD images with 6 mm isotropic 

resolution using the T2W and PD images with 1 mm isotropic resolution and obtained 

PSNR (SSIM) values of 21.78 (0.893) and 21.99 (0.927), respectively, compared to the 

values of 19.59 (0.807) and 20.01 (0.853) in Table VI.

B. Effects of parameters and slice thickness

For the image presented in the first column of Fig. 6 (subject 1 in Table I), we evaluated the 

effects of the number of voxels Nv, neighborhood size, number of Gaussian kernels and their 

standard deviations, parameter ε, and slice thickness. The results are presented in Fig. 13. 

Choosing a small Nv makes the method faster and requires less memory to store the weight 

array. As shown in Fig. 13 (a), the best performance is achieved with Nv=10, although PSNR 

is at most reduced only by 0.2 using other values of Nv. The optimal value of Nv may, 

however, change with the desired resolution for the upsampled image. The use of only 10 

voxels for reconstruction makes the method less memory demanding. Both SRIP and SSIP 

use a patch of 7×7×7 containing 343 voxels, which requires a large amount of memory to 

store the weight array for the entire image. In SSIP, however, the weights do not need to be 

stored in memory as they are used only once. Still, the number of calculations is very high 

for both SRIP and SSIP methods.

The effect of neighborhood size on PSNR is shown in Fig. 13 (b) for Nv=10. As shown, 

when increasing the neighborhood size, the PSNR ratio saturates, although the computation 

time increases as well. We chose to use a neighborhood size of 7 mm (i.e., a cube of size 

7×7×7 around the voxel of interest in the image with 1mm×1mm×1mm resolution). Similar 

to Nv, the optimal neighborhood size may change with the desired resolution for the 

upsampled image.

To evaluate the effect of the number of Gaussian kernels and their standard deviations, we 

evaluated six filters with standard deviations of σn = (2n + 1)h and filter size (2n + 1)×(2n 

+ 1)×(2n + 1), where n = 1,2,…,6 and . In one experiment, single Gaussian 

Jafari-Khouzani Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://brainweb.bic.mni.mcgill.ca/brainweb/


kernels (k=1) with standard deviations of σn, n = 1,2,…,6 were used to evaluate the effect of 

standard deviation on the upsampling accuracy. The results are presented in Fig. 13 (c). As 

shown, PSNR changed with changing the standard deviation. However, the change in PSNR 

was below 0.2 for the specified standard deviations. In another experiment, sets of Gaussian 

kernels with standard deviations of {σ1}, {σ1, σ2}, {σ1, σ2, σ3}, {σ1, σ2, σ3, σ4}, {σ1, σ2, 

σ3, σ4, σ5}, and {σ1, σ2, σ3, σ4, σ5, σ6} were used to evaluate the effect of the number of 

kernels (i.e., k). The results are presented in Fig. 13 (d). As shown, the combination of 

different Gaussian kernels changed the PSNR but, similar to the previous experiment, the 

change was below 0.2. In this experiment, the use of k=6 kernels doubled the computation 

time in comparison with k=2 kernels. However, in general, the total computation time will 

depend on both the number of iterations and the duration of each iteration. Thus, a more 

complex and time consuming calculation of the weights does not necessarily result in a 

slower algorithm as fewer iterations may be required to reach a solution.

In another experiment on subject 1 from the brain tumor dataset, we changed the threshold ε 
to alter the start point of the first weight update and also repeated step 6 of the algorithm 

twice, resulting in three weight updates. The PSNR curves with two weight updates are 

presented in Fig. 13 (e) (PSNR after the third weight update was not shown for better 

visualization). The final PSNR slightly decreased with increasing ε, and the computation 

time increased due to an additional weight update. However, the third weight update did not 

notably change the PSNR (less than 0.08 change) and actually slightly decreased PSNR for 

ε= 0.05 and ε= 0.03. Thus two weight updates were sufficient to achieve reasonable PSNR.

Fig. 13 (f) shows how performance of the proposed method changes with different slice 

thicknesses in comparison with SSIP and spline interpolation techniques. As expected, 

PSNR decreases with increased slice thickness. The difference between the proposed 

method and spline technique increases at larger slice thicknesses. The same is true for the 

SSIP method, though it has lower PSNR compared to the proposed method.

C. Effects of motion and susceptibility artifacts

We were interested in the performance of our method in the presence of two common 

artifacts, motion artifact in the HR image and susceptibility artifact causing signal drop and 

geometric distortion in the LR image. In one experiment (Fig. 14), we selected a HR 

MPRAGE image with 1mm×1mm×1mm resolution with motion artifact and used it to 

upsample a LR (downsampled) T2W image with a 1mm×1mm×6mm voxel size. As shown, 

the result is still visually acceptable, though the structural information in the HR image was 

limited. It also provided higher values of PSNR and SSIM (PSNR=27.93, SSIM=0.773) 

compared to NN interpolation (PSNR=26.88, SSIM=0.735), linear (PSNR=27.41, 

SSIM=0.738), cubic (PSNR=27.72, SSIM=0.755), spline (PSNR=27.77, SSIM=0.757), and 

SSIP (PSNR=26.25, SSIM=0.710) techniques.

In another experiment, we upsampled spin echo (SE) and gradient echo (GE) baseline DSC 

images (median of 4D images over time) using a HR T2W image (1mm isotropic). The DSC 

images, and in particular GE DSC, had susceptibility artifact appearing as signal drop and 

geometric distortion. The resolution of baseline DSC images was 1.2mm×1.2mm×6.5mm, 

which was upsampled to 1.2mm×1.2mm×1.08mm. The results obtained by NN 
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interpolation, SSIP method, and the proposed method are presented in Fig. 15. The 

upsampled SE DSC images using SSIP and the proposed method have visually more details 

than the ones upsampled using NN method. While the upsampled GE DSC images have 

more details compared to the upsampled ones using NN method, they have some artifacts 

near the cortex edges due to higher geometric distortion in this image (resulting in 

inaccurate coregistration), particularly near the temporal lobe. On the other hand, there is 

inter-slice intensity variation appearing as dark and bright slices in the LR image, which is 

also present in the upsampled images using both SSIP and the proposed method.

D. Clinical application

We modeled the partial volume effect with simple averaging. In practice, this assumption 

may not be valid. Fig. 15 presented the results for upsampling of real clinical images (i.e., 

not artificially downsampled). In another experiment, we used the proposed algorithm to 

upsample a FLAIR image with 0.43mm×0.43mm×6mm resolution using a MPRAGE image 

as well as a T2W image, both with 1mm×1mm×1mm resolution. The upsampled images 

have 0.43mm×0.43mm×1mm resolution and are displayed in Fig. 16. As shown, the 

proposed method has a visually superior performance compared to the standard interpolation 

methods. In particular, some details in the GM and WM boundaries within the cortex are 

now visible in the upsampled image. Note that the FLAIR image had higher in-plane 

resolution (0.43mm×0.43mm) compared with the MPRAGE and T2W images (1mm×1mm). 

Nevertheless, the upsampling algorithm had an acceptable performance. As shown, the 

choice of HR images had little impact on the final outcome. However, a comparison of the 

two images’ details reveals that each upsampled image has its own advantages and 

disadvantages.

E. ROI upsampling

The proposed method can be used to upsample ROIs manually drawn on LR images. Note 

that due to the large number of slices, manual drawing of ROIs in a HR image is a tedious 

task. On the other hand, a reliable automated tool to outline the regions of interest may not 

exist. Thus, in practice, the outlines may have to be manually drawn on the LR images. The 

proposed method could be used to upsample ROIs using a HR image with a similar contrast. 

The algorithm to upsample ROIs is similar to the one introduced above with two differences: 

(i) partial volume condition (i.e., (10)) is not enforced as the ROI values are all constant, (ii) 

the weights are calculated only once using the HR image (i.e., step 6 of the algorithm is 

eliminated). The resulting image has a range of values which needs to be thresholded at 0.5 

(if ROI values are 1) in order to get the final upsampled ROI.

Fig. 17 shows the result of ROI upsampling on two subjects with brain tumors. In one 

subject, the tumor ROI was drawn on post-contrast T1W image with 

0.43mm×0.43mm×6mm resolution and then upsampled using a HR post-contrast MPRAGE 

image (1mm×1mm×1mm resolution). In another subject, the edema ROI was drawn on 

FLAIR image with 0.43mm×0.43mm×6mm resolution and then upsampled using a HR 

T2W image (1mm×1mm×1mm resolution). The results are overlaid on the HR images.
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Note that segmentation algorithms that work based on the intensity of region may not 

provide good results here as the region may have varying intensity. However, the proposed 

upsampling works even if the outlined regions present varying intensity.

IV. Discussion

A new method was proposed to upsample LR images. The proposed method outperformed 

SSIP, a state-of-the-art upsampling method, in PSNR, SSIM, and computation time. The 

entire upsampling takes about 6 minutes for a 256×256×176 image on a quad-core Xeon 

5472 3.0GHz CPU. The upsampling parameters were optimized based on the observations in 

a sample image and were fixed in all other experiments. This showed the method had a 

robust performance when image resolution or contrast changed. The method successfully 

worked on the LR images, both with anisotropic and isotropic voxel sizes. In addition, we 

showed how the method could be applied to upsample ROIs.

We used features based on image intensity, gradient, and multi-resolution Gaussian filtering. 

Other feature vectors may be proposed that can better estimate the similarity of the voxels on 

a LR image with laminar structures. However, the proposed features are simple and produce 

reasonably accurate results in a reasonable time. Although the assumption of having laminar 

structures is valid in healthy brain tissues, the results showed the method had superior 

performance in the abnormal tissues as well. The proposed method had decreased but still 

acceptable performance in the presence of noise, intensity non-uniformity and motion 

artifact in the HR image, and susceptibility artifact in the LR image. It was also observed 

that intensity artifacts in the LR image will remain in the upsampled image.

For the majority of subjects, the SSIP method had decreased PSNR with increasing 

iterations and thus we limited the number of iterations to 30, resulting in an average of 84 

minutes of computation time for patients with brain tumors. Our algorithm is faster than the 

SSIP algorithm because it only requires two updates to the weights instead of each iteration, 

and this calculation is the most time consuming part. One may want to keep SSIP weights 

constant to speed up the algorithm, but since the weight data, which is a large amount of 

data, would need to be saved in the memory, its access may be very slow, resulting in an 

undesirable decrease in speed.

It is required for the HR image to have some structural similarity to the LR image. In the 

presence of multiple HR images, we may choose the one that is closest in contrast to the LR 

image. However, the proposed method may also be extended in future work to combine 

several HR images to generate more accurate weights. The weights may be generated by 

multiplying the P(v, k) values of the two HR images.

In the presence of large geometric distortion in the LR image due to susceptibility artifact, 

the performance of the proposed method decreases. This is because the calculated weights 

using the HR image do not correspond to the correct voxels in the LR image. To reduce this 

effect, we may use a non-rigid registration technique to register the HR image to the LR 

image [25]. The registration needs to be smooth enough for the HR image to avoid following 

the blocky edges of the LR image interpolated by the NN algorithm (step 2 of the proposed 
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algorithm). After upsampling, the inverse registration may be applied to correct for 

geometric distortion of the upsampled image. This, however, does not correct the signal drop 

due to susceptibility artifact. We also showed the performance of the proposed method on 

the baseline image of LR dynamic MRI scans. The method may also be applied to each time 

point of the dynamic image but must be fast to reduce the total reconstruction time.

Another application of the proposed method is in the coregistration of LR images. The LR 

images may be upsampled by a HR image separately and then coregistered to each other. 

This may have application for the accurate correction of motion artifacts in dynamic MRI 

scans.
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Fig. 1. 
A HR T2W image with 1mm×1mm×1mm resolution was downsampled to 1mm×1mm×6 

mm by averaging 6 consecutive slices to simulate partial volume effect and then interpolated 

using (a) NN, (b) linear, and (c) cubic techniques and compared with (d) the original HR 

T2W image.
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Fig. 2. 
Laminar structure of cortex, courtesy of David H. Hubel (http://hubel.med.harvard.edu/). As 

shown, the cortex is made of layers of cells that form a laminar structure.
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Fig. 3. 
Comparison of the performances of similarity measurements by similarity maps. Higher 

values show more similarity. (a) original image with a point of interest shown by a cross 

sign, (b) similarity map showing similarity of image pixels with the point of interest using a 

3×3 patch as proposed in [13], (c) similarity map using our proposed method.
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Fig. 4. 
Block diagram of the proposed upsampling method. The weights w(v, k) are estimated from 

both HR and LR images during minimization of ||y − Hx||2 + λR(x).
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Fig. 5. 
Performance of the proposed features on a sample image with laminar structure (a), showing 

contour lines for gradient operator (b), and the same image after Gaussian filtering (c–d) 

with two different standard deviations with (d) having larger standard deviation compared to 

(c).
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Fig. 6. 
Upsampling of T2W images of five subjects from the brain tumor dataset using NN 

interpolation (row 1), spline interpolation (row 2), SSIP (row 3), and the proposed method 

(row 4), along with the original T2W image (ground truth, row 5) and HR MPRAGE image 

(row 6).
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Fig. 7. 
Magnified sections of two upsampled images in Fig 6 using SSIP method (first column), and 

the proposed method (second column), in comparison with the ground truth (third column).

Jafari-Khouzani Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Comparison of the PSNR values of SSIP and the proposed method. PSNR curves of 

upsampling the (a) T2W image of subject 1 of brain tumor patients, (b) FLAIR image of 

subject 1 of multiple sclerosis patients, (c) FLAIR image of subject 1 of epilepsy patients, 

and (d) T2W image of one subject of NAMIC Brain Multimodality dataset. Note that 

iterations of the two methods do not have similar computation times. To better show the 

trend of changes in PSNR values of SSIP method, we have presented the PSNR values for 

60 iterations. However, the values presented in the tables were calculated based on 30 

iterations. The SSIP upsampling in (d) stopped after 27 iterations.
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Fig. 9. 
Upsampling of FLAIR image of subject 1 from the multiple sclerosis dataset using HR 

MPRAGE image. First row (left to right): upsampled FLAIR image using NN, spline, and 

SSIP techniques. Second row (left to right): upsampled image using the proposed method, 

original HR FLAIR image (ground truth), and MPRAGE image that was use to upsample the 

LR FLAIR image.
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Fig. 10. 
Upsampling of FLAIR image of subject 1 from the epilepsy dataset using different methods. 

Row 1: NN interpolation, SSIP using T2W image and SSIP using MPRAGE image. Row 2: 

spline interpolation, the proposed method using T2W image, and the proposed method using 

MPRAGE image. Row 3: original FLAIR image (ground truth), HR T2W image, and HR 

MPRAGE image. The HR T2W and HR MPRAGE images have different performances in 

substantia nigra and red nucleus region since the contrast is higher in that region in T2W 

image and thus has better performance.
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Fig. 11. 
Upsampling of a sample T2W image from NAMIC Brain Multimodality dataset. The LR 

T2W image had 5% noise. The HR T1W image had intensity non-uniformity and 5% noise. 

First row (from left to right): upsampling using NN, spline, and SSIP methods. Second row 

(from left to right): upsampling using the proposed method, original HR T2W image 

(ground truth), and HR T1W image used for upsampling.

Jafari-Khouzani Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Upsampling of BrainWeb T2W and PD images with 9 mm isotropic resolution to 1 mm 

isotropic resolution using HR T1W image. First row (from left to right): upsampled T2W 

images using NN, spline, and the proposed method, the original HR T2W image (ground 

truth), and HR T1W image. Second row (from left to right): upsampled PD images using 

NN, spline, and the proposed method, the original HR PD image (ground truth), and HR 

T1W image.
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Fig. 13. 
Effect of (a) the number of selected voxels Nv, (b) neighborhood size, (c) standard deviation 

of Gaussian kernels, (d) number of Gaussian kernels, (e) threshold ε, and (f) slice thickness 

on upsampling the LR T2W image of subject 1 from the brain tumor dataset.
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Fig. 14. 
Effect of motion artifact of the HR image on upsampling. First row (left to right): T2W 

image upsampled using NN (PSNR=26.88, SSIM=0.735), spline (PSNR=27.77, 

SSIM=0.757), and SSIP (PSNR=26.25, SSIM=0.710) techniques. Second row (left to right): 

T2W image upsampled using the proposed method (PSNR=27.93, SSIM=0.773), original 

T2W image (ground truth), and the HR MPRAGE image with motion artifact.
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Fig. 15. 
Effect of miscoregistration due to field inhomogeneity effect in the DSC image. First row: 

baseline SE DSC images after upsampling using NN method. Second row: baseline SE DSC 

images after upsampling using SSIP, Third row: baseline SE DSC images after upsampling 

using the proposed method. Fourth row: baseline GE DSC images after upsampling using 

NN method. Fifth row: baseline GE DSC images after upsampling using SSIP. Sixth row: 

baseline GE DSC images after upsampling using the proposed method. Both SE and GE 

images were upsampled using HR T2W image.
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Fig. 16. 
Upsampling FLAIR image with highly anisotropic voxel size (0.43mm×0.43mm×6mm) 

using (a) NN interpolation, (b) spline interpolation, (c) the proposed method using HR 

MPRAGE image, and (d) the proposed method using HR T2W image. Both HR images had 

1mm×1mm×1mm voxel size. The upsampled image has 0.43mm×0.43mm×1mm voxel size.
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Fig. 17. 
Upsampling ROIs using the proposed method. (a) Sagittal view of a HR MPRAGE 

postcontrast image showing enhancing tumor coregistered to a LR T1W postcotrast image. 

The ROIs drawn on the LR image are overlaid on the MPRAGE image. (b) The result of 3D 

upsampling of the LR T1W ROI. (c) Sagittal view of a HR T2W image showing edema 

coregistered to a LR FLAIR image. The ROIs drawn on the LR image are overlaid on the 

T2W image. (d) The result of 3D upsampling of the LR FLAIR ROI. The LR T1W and 

FLAIR images are not shown.
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