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Abstract

Parallel excitation requires fast and accurate B1 map estimation. Bloch-Siegert (BS) B1 mapping is

very fast and accurate over a large dynamic range. When applied to multi-coil systems, however,

this phase-based method may produce low SNR estimates in low magnitude regions due to

localized excitation patterns of parallel excitation systems. Also, the imaging time increases with

the number of coils. In this work, we first propose to modify the standard BS B1 mapping

sequence so that it avoids the scans required by previous B1 phase estimation methods. A

regularized method is then proposed to jointly estimate the magnitude and phase of multi-coil B1

maps from BS B1 mapping data, improving estimation quality by using the prior knowledge of the

smoothness of B1 magnitude and phase. Lastly, we use Cramer-Rao Lower Bound analysis to

optimize the coil combinations, to improve the quality of the raw data for B1 estimation. The

proposed methods are demonstrated by simulations and phantom experiments.
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I. Introduction

For MRI with parallel excitation (PEX), it is critical to rapidly and accurately estimate the

magnitude and relative phase of the multi-channel B1 field, also known as  mapping.

Numerous methods have been proposed to map B1 magnitude, such as double-angle method

[1], actual flip angle imaging (AFI) [2] and Bloch-Siegert (BS) B1 mapping [3]. PEX pulse

design also needs the relative phase maps, i.e., the phase of one coil relative to that of all the

other coils, which is typically mapped by successively exciting the same object with each

coil and receiving the signal by one common coil or one common set of coils.

The approach described in this paper uses the BS B1 mapping method which applies an off-

resonance RF pulse between the excitation pulse and the readout gradients [3]. This off-

resonance Bloch-Siegert (BS) pulse induces phase shifts that are proportional to |B1|2. The

BS method is popular because it is fast and relatively accurate over a wide dynamic range

and it is insensitive to T1, chemical shift, B0 field inhomogeneity and magnetization transfer

effects [3]. Its speed and wide dynamic range are especially beneficial for PEX systems

where B1 mapping is generally more time-consuming and has wider dynamic ranges than

single channel systems. However, a disadvantage of this phase-based method is that the B1

field estimation in low magnitude regions may suffer from low signal-to-noise ratio (SNR),

due to insufficient excitation or low spin density. In particular, the problem of insufficient

excitation is severe in PEX B1 mapping because of the localized B1 sensitivities of each coil.

Furthermore, conventional estimation of B1 phase needs another set of scans, which might

be information redundant.

BS B1 mapping for PEX has been improved in [4] by using combinations of multiple coils

for imaging excitation. However, regions of low spin density and/or insufficient excitation

may still be problematic, and estimation of B1 phase still needs additional scans. Simply

smoothing the noisy images with low-pass filters may propagate errors from the corrupted

regions into neighboring regions. Therefore, we propose a modified BS B1 mapping

procedure that estimates both the magnitude and phase maps, avoiding the additional phase

mapping scans required by conventional methods; then a regularized estimation method is

proposed to jointly estimate the magnitude and relative phase of multi-coil B1 maps from

this BS B1 mapping data. By utilizing the prior knowledge that B1 maps are smooth,

regularization can improve B1 map estimation in low magnitude regions.

Many B1 mapping methods, e.g., [4] [5] [6], use linear combinations of PEX channels to

narrow the dynamic range of the effective B1 field for better SNR, where typically all-but-

one strategies are applied. However, these strategies are likely to be suboptimal in practice:

the power levels of different channels in the object could be uneven due to non-isocenter

positioning, which may cause nonuniform B1 magnitude in the composite fields; the relative

phase between channels could be far from what is assumed in those strategies, which may

produce dark holes in the composite fields. Malik et al. proposed a method to optimize coil

combinations for PEX B1 mapping [7], but it optimized only over a single complex

parameter of the combination matrix over a limited range empirically. That work evaluated

the results according to two criteria: the dynamic range of the composite B1 maps and the

condition number of the combination matrix, which sometimes are hard to balance and also
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may not indicate the estimation quality. In this paper, we propose to optimize linear coil

combinations in [8] based on Cramer-Rao Lower Bound (CRLB) analysis [9]. The proposed

method is general enough to optimize the combinations over all the elements of the coil

combination matrix, providing the most flexibility for optimization. We evaluated the

combinations directly based on the variance of the complex B1 field estimates instead of

indirect factors like dynamic ranges and condition numbers. The proposed approach

minimizes the estimation variance of the pixel that has the maximal estimation variance,

reducing the occurrence of focal noise amplification. Simulated Annealing (SA) [10] is used

for this highly nonlinear optimization problem.

This paper is organized by starting with the signal model of images acquired by the

proposed BS B1 mapping sequence and then introducing the regularized estimation. We next

demonstrate the proposed regularized method with simulation studies and phantom

experiments at 3T. Section III considers optimization of the coil combinations using CRLB

analysis, and then demonstrates the proposed methods by comparisons with the conventional

all-but-one method and the method in [7] using simulation studies. Note that the regularized

B1 estimation algorithm in Section II and the coil combination optimization approach in

Section III are relatively independent; these two methods may be combined, but neither of

them requires the knowledge or results of the other.

II. Regularized BS B1 Estimation

A. Linear Combinations of Coils in B1 Mapping

Instead of mapping one coil at a time, we estimate the multi-channel B1 field by acquiring

standard BS B1 mapping data with multiple coils turned on at each time [4]. Each composite

complex B1 field, C̃n(r), is a linear combination of the complex B1 maps, Cm(r), of the

individual coils:

(1)

where n = 1, 2, …, N, N is the number of channels available, r denotes the spatial locations,

and αn,m is the user-defined complex scalar weighting for the mth individual coil in the nth

scan. A convenient choice for αn,m is the so-called all-but-one or leave-one-coil-out strategy,

where α(n, n) = 0 or −1 and αn,m = 1 when m ≠ n [5] [11]. Both the composite complex B1

maps and the individual complex B1 maps can be expressed in terms of their magnitudes and

phases:

(2)

B. The Signal Model

Standard BS B1 mapping applies the BS pulse after the regular excitation pulse [3]. This

method typically needs 2 scans for each coil to measure B1 magnitude, thus 2N scans are

needed for an N-channel PEX system. To estimate both B1 magnitude and relative phase by

the standard BS B1 mapping without additional scans for phase, we propose to use the same

Zhao et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



coil combinations for the BS pulse and the corresponding excitation pulse. The signal

models for the noiseless BS data (reconstructed images) of the N pairs of scans, i.e., 

and , are described as follows:

(3)

where n = 1, 2, …, N, and as described in (2), B̃n(r) and ϕ̃n(r) denote the magnitude and

phase of the composite B1 fields respectively; the superscripts ± denote the scan that has the

BS pulse with ±ωRF off-resonance frequency, μ is the ratio between the actual flip angle and

B̃n(r),  is the magnetization related to spin density, T1, T2, TR, TE, flip angle, receive

sensitivity, magnetization transfer (MT) effect, etc., ϕb(r) is the corresponding unknown

background phase, and  is the BS pulse constant that incorporates the B0 field map

[3]:

(4)

where Bnormalized(t) is the normalized shape of the BS pulse. Due to the asymmetric MT

effect [12],  is slightly different from . Moreover, we model additive

independent and identically distributed (i.i.d.) complex Gaussian noise, i.e., , to the

signal, and simplify (3) by changing variables:

(5)

where  are the noisy images from the nth pair of scans, ,

and . The simplest way to estimate B1 magnitude and phase from this

set of data is to first obtain B̃n(r) using the standard BS B1 mapping estimator [3], and then,

given B̃n(r), the relative B1 phase, , can be derived by maximum likelihood estimator

of (5) or simply taking:

(6)

where  is not needed. We propose to set the coil combination of each excitation pulse

the same as its corresponding BS pulse, so that B̃n(r) and  correspond to the same

composite B1 map, hence the individual B1 magnitude and phase, i.e., Bn(r) and , can

be derived by (9) below. This is how the modified BS sequence can avoid the additional

scans for B1 phase. For regularized estimation,  is a set of nuisance parameters that

we must jointly estimate, but they are fortunately linear terms that can be easily estimated.
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C. Regularized Estimation of B1 Magnitude and Phase

Regularization enforces prior knowledge to improve estimation. It is reasonable to assume

that the complex B1 fields of the individual coils, i.e., Bm(r)eiϕm(r), are spatially smooth. As

shown in the signal models (5), the B1 magnitude and phase are separate, and the fields of

the individual coils are superimposed with each other due to the coil combinations. Thus, it

is easier to estimate magnitude and phase of the composite B1 fields separately [13], even

though the regularization is for the complex fields of the individual coils. Grouping all

discretized spatially varying maps into column vectors (shown in bold fonts), we proposed

regularized maximum-likelihood estimation by minimizing the following cost function:

(7)

where β is the scalar regularization parameter, M is the concatenation of the image

magnitude vectors  of all channels, B̃ and ϕ̃ denote the concatenation of all the

composite B1 magnitudes B̃n and all the composite B1 phases , respectively, “⊙” denotes

element-by-element multiplication between vectors,  denotes the vector that contains the

squares of the corresponding elements of B̃n, Bn and  denote the individual B1 magnitudes

and phases respectively, and C is a multi-dimensional finite differencing matrix used to

penalize roughness. For simplicity of the expression in (7), we do not show the inherent

relation between  and  in the regularization term, which is shown in (9). Note

that the units of the data fit term may be abitrarily different for different scans, and the

regularization term can also have different units. To make it easier to choose a value of β

that works for different scans, we normalize the data  in (7) so that  has unit norm, and

we always use units μT for Bn. This ensures that β always has consistent units (1/μT2).

We iteratively minimize the cost function (7) by cyclically updating B̃, ϕ̃ and M:

(8)

where  and M̂ denote the estimates of B̃, ϕ̃, M respectively, and Np is the number of

pixels of each channel. We update M, which is a real unknown, by simply taking the real

least-squares solution of (7) in each iteration. The cost function is non-quadratic in B̃ and ϕ̃,

so we use conjugate gradients with backtracking line search algorithms (BCG-LS) [13] [14]

to update B̃ and ϕ̃ respectively. The standard approach [3] produces a good initial guess for

B̃, and then we compute the initial guess of ϕ̃ using (6). The stopping criterion for this

optimization algorithm is to check whether the change of the cost function Φ between two

consecutive iterations is smaller than a certain value. Once B̃ and ϕ̃ are estimated, magnitude

and relative phase maps of the original coils, B and ϕ, are derived easily using the following

relation:
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(9)

where , which does not change the relative phase maps, and A is the

coil combination matrix:

(10)

D. Simulation Study

We performed a simulation study to demonstrate the proposed BS B1 mapping sequence and

the corresponding regularized B1 estimation method. First, a finite-difference time-domain

(FDTD) simulation generated 2D magnetic fields of an eight-channel parallel excitation

array for brain imaging at 3T, which were used as the true B1 maps in the simulations

(shown in Fig. 1). We used a set of brain tissue parameter maps, e.g., T1 map, T2 map and

spin densities, from BrainWeb database [15]–[19] as the true values for generating images

produced by the BS sequence. The image magnitude was generated based on the signal

equation of spoiled gradient echo (SPGR) sequence that is shown below in (17) with flip

angle = 200, TR = 200 ms, TE = 10 ms. We then used Bloch equation simulations to generate

the image phase based on ±4 kHz off-resonance Fermi BS pulses (KBS = 76.9rad/G2) and a

realistic B0 field map acquired from a head scan on a 3T GE scanner (ranging from −86 Hz

to 25 Hz). We combined the B1 fields with the all-but-one strategy with α1,1 = −1, α1,2 = …

= α1,N = 1. Adding i.i.d. complex Gaussian noise to the noiseless images, we simulated the

raw data in image domain acquired by SPGR-based BS B1 mapping sequence with the

proposed modifications, and the SNR of the raw data was around 34 dB. The SNR is defined

in image domain as:

(11)

where St and S denote the noise-free and noisy images respectively. Each method was

applied to datasets for 20 instances of random noise. The matrix size of each 2D image is 64

× 64, and field of view is 24 cm × 24 cm. Moreover, estimator (8) uses a mask in the image

domain to eliminate space outside the object. This mask can be obtained from the images

acquired for the B0 mapping or the BS images.

Using these simulated raw coil images, we compared the proposed regularized B1 estimation

method with standard non-regularized methods for B1 magnitude and phase. For the

proposed method, we manually selected the regularization parameter to be β = 0.15. The

matrix C in (7) was a second-order 2D finite differencing matrix. Fig. 2 shows the

reconstructed B1 magnitude and phase maps produced by the standard non-regularized
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method and the proposed regularized method for one instance of random noise. Fig. 2 also

shows the error maps of the complex B1 maps, i.e., |B̂ ⊙ eiϕ̂ − B ⊙ eiϕ| for each method,

where each pixel value is the average error magnitude over the 20 instances of random

noise. All the images in Fig. 2 are displayed with the mask used in the optimization. Based

on these images, we also computed the root mean square error (RMSE) for each complex B1

map:

(12)

We calculated the RMSE values both with the mask used in the optimization and a more

accurate mask obtained from the true brain image respectively, and they are denoted as

RMSE1 and RMSE2 respectively. The latter mask excludes signal-free regions within the

former mask, which is the skull region, because the skull region may dominate RMSE1 in

some methods but it is less important for pulse design. Fig. 2 shows those RMSEs (averaged

over the 20 instances of random noise) in the figure titles of the error maps. Compared to the

non-regularized method, the proposed regularized B1 estimation produced less noisy B1

maps that have significantly smaller errors.

E. Phantom Experiments

We performed phantom experiments to demonstrate the proposed regularized BS B1 map

estimation on a 3T GE scanner (GE Healthcare, Milwaukee, WI, USA) equipped with an 8-

channel custom parallel transmit/receive system [20] [21]. We used a spherical phantom

filled with distilled water. Due to a failure in one RF amplifier, only seven of the transmit

channels were used; the eighth has zero input throughout the experiment. All the data were

acquired with a SPGR sequence having a 2D spin-warp readout. We applied a 20 ms Fermi

BS pulse with ±4 kHz off-resonance frequencies. Other imaging parameters were: TE = 23

ms, TR = 200 ms, FOV = 24 × 24 cm, 64 × 64 reconstruction matrix size, and axial slice

imaging. The eight-channel parallel imaging data produces one image per channel using

FFT reconstruction. Each set of eight-channel images were then combined into single-

channel images by a weighted summation across channels. Each channel has one scalar

complex weight. Based on a set of receive sensitivity maps acquired off-line, the weights

were adjusted to produce a homogeneous receive sensitivity, which is analogous to RF

shimming for a homogeneous transmit sensitivity [22].

We first acquired a B0 map (ranges from −80 to 8 Hz) using two 2D SPGR scans with an

echo time difference 2.5 ms. A total of 14 proposed BS B1 mapping scans were acquired for

7-channel B1 estimation, where we applied the all-but-one coil combination with α1,1 = 0,

α1,2 = … = α1,N = 1. The reconstructed raw images were then put into the standard non-

regularized BS estimator and the proposed regularized BS estimator (8). For the proposed

method, we manually selected the regularization parameter to be β = 4, and the matrix C in

(7) was second-order 2D finite differencing matrix. A mask obtained from the SPGR image

used for B0 mapping was applied to the estimation. The whole reconstruction took less than

a minute on a computer with Intel Core i5 CPU @ 2.5 GHz, 4 GB RAM and Matlab 8.1.

Fig. 3 shows the estimated B1 magnitude and phase maps, where the mask used for the
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estimation is applied to all the images. The proposed regularized estimation improves the

quality of both the magnitude and phase maps. However, there are still several rough spots

in the magnitude maps that were corrupted by the low signal intensity regions so much that

they were not fully smoothed by the regularized algorithm. This is the main motivation for

us to propose coil combination optimization, to obtain better raw data for B1 estimation, as

discussed in the next section.

III. Coil Combination Optimization

A. Approximate Signal Model

The coil combination matrix A in (10) is conventionally chosen by an all-but-one strategy,

but this approach is unlikely to be optimal in practice. Therefore, we propose a method to

optimize the matrix A to improve the quality of the raw data for estimating the magnitude

and phase of B1 field in PEX. We use the CRLB to derive a lower bound on the variance of

the complex B1 field estimates in terms of the coil combination matrix A and then find the A

that minimizes the worst-case noise-to-signal ratio (NSR).

To simplify the CRLB analysis, we make some approximations for (5): asymmetric MT

effect is ignored so that , and the off-resonance effects in 

are ignored so that , which is a scalar constant. Assuming the real

and imaginary parts of the i.i.d. Gaussian noise are uncorrelated and distributed as (0, σ2)

where σ2 is the variance, then the approximate distributions of the signals for each pixel are

expressed as follows:

(13)

where the subscripts n, indices r, primes and tildes in (5) are omitted for simplicity,

subscripts r/i denote the real/imaginary parts.

B. Cramel-Rao Lower Bound Analysis

The CRLB is a lower bound on the covariance of any unbiased estimator under certain

regularity conditions. Although the nonlinear reqularized estimator (8) is biased in general,

even when β = 0, it is still desirable to minimize the CRLB to pursue improved data quality.

Equation (13) can be vectorized as follows:

(14)

where , μ = [M cos(KB2 + ϕ), M sin(KB2 + ϕ), M cos(−KB2 + ϕ), M

sin(−KB2 + ϕ)]T, θ = [B, ϕ]T. The Appendix verifies that this problem satisfies the regularity

condition for the CRLB theorem. Using a Taylor expansion and assuming the scans have

independent noise, the Appendix derives the lower bound of the variances of the complex B1

estimates of the N channels in location r:
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(15)

where n = 1, …, N, diag{z} denotes the diagonal matrix with vector z its diagonal entries,

and we have put back the subscripts n, indices r, primes and tildes in (5) except that we

move the indices r to the subscripts and make A be the argument, as A is the main unknown

of the coil combination optimization problem.

C. Optimize Linear Combinations of Array Elements

We optimize the SNR of the B1 estimates by minimizing the lower bound of NSR, defined

as the ratio between  and Bn(r). Since (15) is only for one single pixel, a scalar that

evaluates the noise performance of the whole 2D or 3D B1 field of the N coils must be

chosen for optimizing over the coil combination matrix A. To suppress the focal noise

amplifications that are common in PEX B1 mapping, we apply a min-max optimization

strategy by minimizing the maximal Vn,r(A) over all spatial locations and channels to

optimize the worst noise performance of the whole estimation. A practical issue is that PEX

systems have amplitude limits that bound the maximum magnitude of the elements of A.

Therefore, the final expression of this optimization problem is:

(16)

subject to

where λ is the amplitude limit of the PEX system. This method optimizes the noise

performance over all the elements αm,n of A, which is much more flexible than the method

in [7].

The cost function in (16) is highly nonlinear and nonconvex in terms of A, so it would be

very hard to find the global minimum. In practice, however, it should suffice to keep the

noise level below a certain reasonable value rather than to exhaustively search for the global

minimizer. Since A is relatively a small matrix, we found that the Simulated Annealing (SA)

method [10] in Matlab’s Optimization Toolbox can efficiently find a reasonably good local

minimum.

The CRLB expression (15) depends not only on the coil combination matrix A, but also on

other parameter maps that are not known, namely Mn,r(A) and B̃n,r(A). The composite maps

B̃n,r(A) can be described as:
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(17)

The maps Mn,r(A) depend on other parameters that are unknown, such as T1, T2 and spin

density, and can be modeled mathematically according to the specific imaging sequence. In

this paper, we focus on the SPGR based BS sequence, where Mn,r(A) can expressed as

follows [23]:

(18)

where  is the receive coil sensitivity map, ρ(r) is the spin density map, T1(r) and T2(r)

are the T1 and T2 maps respectively. Instead of attempting to determine these maps, which

would be impractical, we use uniform maps with nominal T1, T2, and ρ values for

optimizing A. For , we either use uniform values when signal is received by a single

coil in a non-high field scanner (≤3T), or acquire an off-line phantom data for a coarse

estimation of . For the transmit B1 magnitude, Bm(r), we use a set of B1 maps

estimated by a phantom off-line. For the transmit B1 phase, ϕm(r), we either use off-line

phantom estimates or fast on-line low resolution in-vivo B1 phase maps.

For our experiments, we focus on an eight-channel PEX head array that has 8-fold rotational

symmetry, so although the proposed method can optimize over all the elements of A, it is

natural to restrict the 8×8 matrix A to be circulant, saving computation time by reducing the

number of unknowns to 8. This approach also seems to be more robust to local minima

compared to optimizing all elements of A.

D. Simulation Study

In this study, we used the same reference B1 maps generated by FDTD simulation in the

section II-D (shown in Fig. 1). We also used the same set of brain tissue parameter maps

used in Section II-D as the true values for generating images produced by the BS sequence.

The image magnitude was generated based on the signal equation of SPGR sequence (17)

with TR = 200 ms, TE = 10 ms. The BS induced phase was simulated based on 8 ms ±4 kHz

off-resonance Fermi BS pulses (KBS = 76.9 rad/G2) and a realistic B0 field map acquired

from a brain on a 3T GE scanner (ranging from −86 Hz to 25 Hz). Furthermore, the  map

was acquired from a real single-channel body receive coil of the 3T GE scanner. By adding

i.i.d. complex Gaussian noise to the noiseless images generated based on (3), (17) and (18),

we simulated the raw data in image domain acquired by SPGR-based BS B1 mapping

sequence. The matrix size of these 2D images is 64 × 64. Note that the coil combination

matrix A has to be optimized before simulating the raw data. In the data simulation, the

standard deviation of the Gaussian noise stayed the same and the SNR of raw image data

ranged from 23 dB to 26 dB depending on the specific coil combinations.
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We used approximated parameters for the coil optimization step (16). T2 and spin density

were uniform maps with nominal values, as the absolute values of them do not affect the

optimization of (16); T1 maps were set to be the maximal value (2.6 s) of brain tissue. Since

the true receive coil sensitivity map, which was acquired from a single-channel at 3T, is

relatively uniform, we used a uniform  map for the optimization. Furthermore, we

performed another FDTD simulation for a uniform phantom using the same coil con-

figurations as we used for the brain simulation. The relative permittivity and conductivity of

the phantom were set to be the corresponding average values of brain tissue, that is, 42.3 and

0.489 S/m respectively. The phantom had uniform spin density over the same spatial regions

occupied by the brain in the previous FDTD simulation, and we cropped the phantom B1

maps to match the brain shape for the optimization (shown in Fig. 4). For the B1 phase

specifically, in addition to using the phantom B1 phase, which will be called “method 1”, we

also simulated a set of on-line low resolution (32 × 32 matrix) fast scans of the brain using

one transmit coil at a time to obtain the relative B1 phase, which will be called “method 2”.

Moreover, for comparison purposes, we also simulated the case where we optimized the coil

combinations based on the true B1 maps as well as true B1−, T1, T2 and spin density maps,

called “oracle method”. Table I summarizes the proposed methods. Circulant structure was

assumed for the matrix A, and the optimization algorithm was initialized with the all-but-one

combination. The threshold λ in (16) was set such that the RF power does not exceed a fixed

peak nominal power. Furthermore, a fast low resolution prescan of the subject was simulated

for defining a mask for the optimization. For illustration and analysis, a more accurate mask

extracted from the true brain image was applied to all the images shown and computed the

statistics for this simulation.

For comparison, we also simulated the results of the all-but-one combination with α1,1 = −1,

α1,2 = … = α1,N = 1 and the method proposed by Malik et al. [7]. For Malik’s method, we

investigated the diagonal entry αeiβ within the range suggested in [7], i.e., −11 < α < 11 and

−π/2 < β < π/2, while keeping the off-diagonal entries to be 1. The B1 mapping simulations

for this method were also based on the SPGR-based BS B1 mapping mentioned above. The

optimal choice of αeiβ was chosen by minimizing RMSE between the reconstructed complex

B1 maps and the corresponding truth.

Fig. 5 shows the coil combination coefficients selected by the different methods. As we

assumed circulant structure, only the first rows of each A, which are vectors of 8 complex

numbers, are shown in the complex plane. Compared to the all-but-one method and Malik’s

method, all the other optimized results are scattered more uniformly within the complex

plane and also “random-like”. Fig. 6 shows the condition numbers of all the combination

matrices and the corresponding composite B1 mangitude maps. The results of “oracle

method” and “method 2” have the smallest condition number, and both Malik’s method and

“method 1” reduced the condition number of the combination matrix compared to the all-

but-one method. The composite B1 magnitude maps show that “oracle method” and “method

2” significantly improved the low intensity regions, especially around the center where the

intensity is low in all the composite maps of the all-but-one method. Based on the results of

combination numbers and the composite B1 maps, one may expect “oracle method” and

“method 2” perform better than the other three methods.
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We then simulated the B1 map estimation with the five different coil combinations, where

we used the non-regularized method to estimate the B1 magnitude and phase. Fig. 7 shows

the resulting B1 magnitude and phase maps for one instance of random noise, and Fig. 8 also

shows the error maps of the complex B1 maps, i.e., |B̂ ⊙ eiϕ̂ − B ⊙ eiϕ|, where each pixel

value is the average error magnitude over the 20 instances of random noise. As predicted,

“method 2” and “oracle method” produced less noisy B1 maps than the other three methods.

Despite the model mismatch mainly in B1 magnitude, receive sensitivities and distributions

of spin density, T1 and T2, “method 2” still worked similarly well as “oracle method”. In

contrast, although “method 1” still improved the B1 estimation compared to the all-but-one

method, it did not perform as well as “method 2” and “oracle method”. Moreover, due to the

limited flexibility in Malik’s method, it did not improve B1 estimation as much as “method

2” and “oracle method”. The bottom-right part of Fig. 8 shows the RMSEs over all the

pixels, defined in (12), of the complex B1 maps reconstructed by the five methods;

specifically, it shows the averaged RMSEs of the 20 instances of random noise and the

corresponding error bars (shown on top of the averaged RMSE bars).

This empirical comparison illustrates that the proposed coil combination optimization can

improve the SNR of multi-coil B1 magnitude and phase estimation. Moreover, the proposed

methods generally outperform Malik’s method which optimizes only the diagonal entry of

A. In addition, the proposed methods are robust to inaccurate magnitude related parameters,

e.g., B1 magnitude, receive sensitivities and distributions of spin density, T1 and T2.

However, unlike the B1 magnitude estimated by phantom, B1 phase estimates from phantom

were far from the true B1 phase in brain, causing the inferior performance of “method 1”.

With such big B1 phase mismatch, the improvement of “method 1” over the all-but-one

method is mainly from the optimization of the matrix condition number. Since a set of low

resolution B1 phase maps takes very minimal scan time in practice, we conclude that

“method 2” is the more robust and practical method for the coil combination optimization.

IV. Discussion and Conclusion

We have proposed methods to improve BS B1 mapping for parallel excitation pulse design

in the following two main aspects: Estimation quality: the regularized method is proposed

to jointly estimate the magnitude and phase of multi-coil B1 maps from BS B1 mapping

data, improving estimation quality by using the smoothness of B1 magnitude and phase;

Raw data quality: the coil combination optimization based on CRLB analysis is proposed

to optimize the SNR of the non-regularized complex B1 estimation over the whole

combination matrix. Futhermore, a minor improvement from the proposed method is that it

avoids the B1 phase mapping scans that are required for conventional methods.

The cost function for regularized B1 estimation is non-convex, but our experiments have

shown that initializing by applying the standard BS B1 mapping and solving (3) is adequate

to obtain a good local minimum with our gradient-based optimization algorithm. The CG-

BLS algorithm efficiently optimizes the highly nonlinear cost function; a future work can be

to design monotonic line search updates to further improve the algorithm efficiency [24].

One disadvantage of regularized estimation is that the regularization parameter is generally

difficult to select automatically. In our implementation, the regularization parameters were
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chosen empirically. Theoretically, the regularization parameters control the spatial

resolution of the reconstructed images, so one can select the regularization parameters

automatically based on spatial resolution analysis [25]. Furthermore, based on our

experience, the proposed algorithm generally converges quickly with 40–120 iterations and

2–3 subiterations depending on the noise level of the initial images.

The modified BS sequence produces a minor improvement on scan time by avoiding the B1

phase mapping scans, but one may argue that the phase mapping scans are collected anyway

in “method 2” of the coil combination optimization. However, the coil combination

optimization and the regularized reconstruction are independent methods. When one only

needs the regularized method and uses a previously optimized coil combination, the

proposed B1 mapping method does avoid the B1 phase scans. If one needs both regularized

method and coil combination optimization, it may seem redundant to collect B1 phase twice,

but the resolution of the B1 phase collected for “method 2” may be too low for pulse design.

In addition, for 3D B1 mapping, one may need only one or a few low resolution 2D B1 phase

maps for “method 2”, whereas a full 3D phase map may be needed for pulse design.

Our simulation study shows that the optimization results are relatively insensitive to

accuracy of T1, T2, spin densities, receive sensitivities and B1 magnitude for 3T brain

imaging. Among these magnitude related parameters, the simulation results were more

sensitive to different T1 values (results not shown). We empirically found that using uniform

maps with the maximal T1 is generally more robust than using other T1 values for this T1

weighted SPGR-based BS sequence. As B1 phase of the phantom is likely to be far from the

in-vivo B1 phase, we prefer “method 2” which requires only minimal additional scan time.

An alternative to “method 2”would be to compute a library of optimized coil combintations

for different imaging anatomies and store them offline. This will require a thorough study

about the reproducibility of each optimized coil combination across subjects for each

imaging anatomy.

The highly nonlinear and nonconvex coil combination optimization produces random-like

combination coefficients, and is highly dependent on the initialization and the pseudo-

random seeds used in the SA algorithm, so they are probably not global minimums.

However, as we only need to find some combination coefficients that improve the raw data,

rather than being the very best choice, the proposed coil combination optimization method is

still useful in practice. Even so, further investigations on faster or more robust nonlinear

optimization algorithms for this challenging optimization problem will be interesting future

work.

Although the optimized coil combination works in practice, this CRLB analysis is only an

approximation because the MLE of B1 magnitude and phase are biased estimators in

general. Even more estimation bias can be introduced from regularization. Thus, future work

could be to design a coil combination optimization based on the biased CRLB analysis [26]

which is theoretically valid for regularized estimation.

Although good estimates of B1 maps may be achieved with the all-but-one combinations

using the regularized estimation, the proposed coil combinations produce raw data with
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much better SNR, improving robustness of the regularized estimation method. Sometimes,

the optimized coil combination yields adequate B1 estimates without requiring

regularization, which may be preferable for practical use.

The proposed coil combination optimization does not con-train specific absorption rate

(SAR), which could be a concern in BS B1 mapping sequences. Applying complex weights

to PEX channels may cause unpredictable local SAR increase depending on local

electromagnetic properties of the tissue [27], so future work can be to consider SAR limits

in the coil combination optimization, especially for high field PEX B1 mapping. One could

validate that the resulting sequences are within the relevant local SAR limits after the

optimization stage, based on local SAR models, e.g., those proposed in [28]–[30]. A better

solution would be to incorporate some SAR limit terms or SAR penalty terms to (16), so that

SAR constraints can be considered in the coil optimzation stage. Although the unconstrained

coil combination optimization may produce SAR problems, the optimization framework

provides opportunities for SAR reduction by providing more degrees of freedom for SAR

optimized BS pulse design compared to conventional leave-one-out methods.

The simulations for the coil combination optimization used the 2D SPGR sequence, but

similar principles can be easily applied for other typical 2D or 3D BS B1 mapping

compatible sequences. In addition, improving coil combination is generally important to

other multi-coil B1 mapping methods, including both phase-based and magnitude-based

methods. Although the proposed method was developed for BS B1 mapping, the framework

of the CRLB based coil combination optimization can be applied to other popular multi-coil

B1 mapping methods, e.g., AFI [2].
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Appendix

This appendix shows the detailed derivation for the CRLB analysis discussed in section II.E.

Following (14), we can get the log-likelihood, L(θ), and its gradient:

(19)

(20)

where the superscript H denotes Hermitian transpose, and ∇ denotes column gradient of

vectors. Thus, the estimation satisfies the regularity condition, i.e., E(∇L(θ)) = 0. The Fisher

information F(θ) of this model is:

(21)

According to CRLB, if the estimators [B̂, ϕ̂] are unbiased, their covariance has a lower

bound:

(22)

Assuming B̂ and ϕ̂ are close to the true values, the variance of B̂eiϕ̂ can be derived by Taylor

expansion approximation. For an arbitrary multi-dimensional function g(z), we have:

(23)

(24)

so if z = (B̂, ϕ̂), g(z) = B̂neiϕ̂, ∇g(z̄) = E[eiϕ, iBeiϕ], and (22) are plugged into (24), we have:

(25)

where we have put back the subscripts n, indices r, primes and tildes in (5) except that we

put indices r to the subscripts and make A be the argument, as A is the main unknown of this

optimization problem.

Zhao et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Assuming that noise in different scans is independent, the covariance of the estimated

composite B1 maps  is:

(26)

Using (9), the covariance of the original individual B1 estimates

 is:

(27)

where z−H ≜ (z−1)H. Since the diagonal entries of the covariance matrix are the variances of

the elements of the estimator, plugging in (25) and (26) into (27) yields the key formula of

this CRLB analysis, which is (15).
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Fig. 1.
B1 maps of a head, used as the ground truth in simulation study.
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Fig. 2.
The estimated B1 magnitude (top row), phase (middle row) maps and the error (bottom row)

maps by the non-regularized (NR) method (left) and the regularized (R) method (right) using

conventional all-but-one coil combination scans, in simulation study.
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Fig. 3.
The estimated B1 magnitude (top) and phase (bottom) maps by the non-regularized method

(left) and the regularized method (right), in phantom study.
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Fig. 4.
B1 maps of the phantom (masked by the brain shape), used for optimizing the coil

combinations.
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Fig. 5.
The first row of the coil combination matrices designed by different methods, where the

magnitude is normalized to the peak nominal power of the system.

Zhao et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6.
Magnitude of the composite B1 maps (masked), B̃n(r), by different methods, in μT. The

condition numbers (cond) of the coil combination matrices are shown on the titles.
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Fig. 7.
The simulation results of all the methods; left: B1 magnitude estimates (in μT), right: relative

B1 phase estimates (in radians).
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Fig. 8.
The error maps of the estimated complex B1 maps (in μT) of all the methods and the

corresponding RMSEs.
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TABLE I

Summary of the Methods in the Coil Combination Simulation

B1 magnitude estimation B1 phase estimation B1−, T1, T2, spin density

“method 1” Phantom (off-line) Phantom (off-line) Uniform maps

“method 2” Phantom (off-line) Low-res in-vivo (online) Uniform maps

“oracle method” True B1 magnitude True B1 phase True maps
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