
Exact Confidence Intervals for Channelized Hotelling Observer 
Performance in Image Quality Studies

Adam Wunderlich,
Department of Radiology, University of Utah, Salt Lake City, UT 84108 USA

Frédéric Noo [Member, IEEE],
Department of Radiology, University of Utah, Salt Lake City, UT 84108 USA

Brandon D. Gallas, and
Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, 
MD 20993 USA

Marta E. Heilbrun
Department of Radiology, University of Utah, Salt Lake City, UT 84108 USA

Abstract

Task-based assessments of image quality constitute a rigorous, principled approach to the 

evaluation of imaging system performance. To conduct such assessments, it has been recognized 

that mathematical model observers are very useful, particularly for purposes of imaging system 

development and optimization. One type of model observer that has been widely applied in the 

medical imaging community is the channelized Hotelling observer (CHO), which is well-suited to 

known-location discrimination tasks. In the present work, we address the need for reliable 

confidence interval estimators of CHO performance. Specifically, we show that the bias associated 

with point estimates of CHO performance can be overcome by using confidence intervals 

proposed by Reiser for the Mahalanobis distance. In addition, we find that these intervals are well-

defined with theoretically-exact coverage probabilities, which is a new result not proved by Reiser. 

The confidence intervals are tested with Monte Carlo simulation and demonstrated with two 

examples comparing X-ray CT reconstruction strategies. Moreover, commonly-used training/

testing approaches are discussed and compared to the exact confidence intervals. MATLAB 

software implementing the estimators described in this work is publicly available at http://

code.google.com/p/iqmodelo/.
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I. Introduction

Objective, task-based image quality assessments with mathematical model observers are a 

valuable tool for medical imaging system development, optimization, and characterization 

[1]–[3]. One type of model observer that has drawn considerable interest in the medical 

imaging community is the channelized Hotelling observer (CHO) [1]–[3], which is well-

suited to known-location binary discrimination tasks. The CHO is the population equivalent 

of the classical Fisher linear discriminant function used in multivariate statistics and pattern 

recognition [4], [5] applied to a vector of image features, called channel outputs in the 

medical imaging and vision literature. Through various choices of channels, which 

determine relevant features and are used for dimensionality reduction, CHOs have been 

shown to track both human [6]–[11] and ideal linear [12] observer performance for known-

location discrimination tasks. As a consequence, CHO methodology has been widely 

employed in medical imaging research, e.g., [13]–[25].

In some settings, CHO performance can be calculated accurately from analytical models 

[13], [15], [21]. However, due to complexities in the physics of data acquisition and in image 

formation, this approach is usually not feasible, and most practical evaluations instead 

estimate CHO performance from a finite set of images. Furthermore, the number of images 

available is typically limited for both real and simulated data sets by the available resources 

(acquisition time, computational cost, etc.), so that statistical variability in performance 

estimates cannot be neglected when making inferences.

One way to assess statistical variability in experimental results is through the use of 

confidence intervals. In contrast to traditional hypothesis testing, which is limited to only 

testing statistical significance, confidence intervals communicate statistical precision and 

effect size, in addition to statistical significance. These virtues make confidence intervals an 

attractive option for the presentation of experimental findings.

Typically, confidence intervals are constructed by starting with a point estimate. Two general 

approaches can be used to obtain point estimates of CHO performance from a set of images. 

In the first approach, all images are used to directly estimate the figure of merit by 

substituting sample estimates for population parameters [1, p. 972]. In the second approach, 

the images are split into two subsets, where one subset is used to estimate the observer 

template (i.e., train the observer), and the second subset is used to estimate performance of 

the trained observer (i.e., test the observer) [1, p. 973]. For the goal of estimating the 

performance of a CHO defined by population parameters (i.e., infinitely-trained), both 

approaches result in biased estimates. In this work, we adopt the first (direct) approach, and 

demonstrate how the point estimate bias can be overcome to obtain accurate confidence 

intervals for CHO performance. Later, we present a comparison of our confidence intervals 

with estimators based on training and testing.

This paper addresses the need for reliable confidence interval estimators for CHO 

performance. Specifically, we find that an approach introduced by Reiser [26] for interval 

estimation of the Mahalanobis distance can be applied to obtain confidence intervals for 

CHO performance. In addition, we prove that these intervals have theoretically-exact 
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coverage probabilities, which is a new result not given by Reiser [26]. The exact confidence 

intervals are further evaluated with Monte Carlo simulation and are found to be superior to 

conventional Wald-style intervals [27, p. 499]. The application of the exact confidence 

intervals is demonstrated with examples comparing X-ray CT reconstruction strategies.

Our theoretical results rely on two assumptions: 1) the channel outputs follow a multivariate 

normal distribution for each image class, and 2) the covariance matrices for the channel 

outputs are the same for each class. These assumptions are typically well-justified for fixed-

location discrimination tasks involving either a flat or a normally-distributed, variable 

background. Likewise, they can be employed when the measurement noise depends on the 

object and the mean difference between the two classes is small; in this case, the covariance 

matrices can be assumed to be the same.

More specifically, the first assumption is generally satisfied for reconstructed tomographic 

images, which are often approximately multivariate normal. Additionally, even for images 

that are not normally distributed, the central limit theorem implies that the channel outputs 

will tend to be normally distributed. For nuclear medicine applications, a strong argument 

justifying the normality assumption was provided by Khurd and Gindi [28]. In X-ray CT, the 

normality assumption was supported by Zeng et al. [29] with histogram plots, and by 

Wunderlich et al. in [30] using a univariate test and in [31] with a multivariate test. An 

argument in support of the second assumption for nuclear medicine was given by Barrett and 

Myers [1, p. 1209], and a quantitative analysis was presented by Wunderlich and Noo [30] in 

the context of X-ray CT.

In previous publications, we have presented related estimators for performance of linear 

observers [30], [32] and CHOs [33], [34]. To put the present work into proper perspective, it 

is helpful to clarify its relationship with these previous investigations. First, the estimators 

given in [30], [32] are designed for any linear observer defined by a fixed, known template, 

i.e., a classifier that is ready to be used in practice. Consequently, the estimators in [30], [32] 

are suitable for evaluations of finitely-trained observer performance when the template is 

determined by a fixed training set, or when the template is prespecified. By contrast, in this 

work and in [33], [34], the aim is to estimate performance of a CHO, which has a template 

that depends on unknown population parameters. Compared to [33], [34], in which the 

difference of class means is assumed to be known, the present work does not assume that 

any population parameters are known. Hence, the results given here can be seen as a 

complementary piece of a larger theory of model observer performance estimation. Further 

discussion of the relationships between the present work and other approaches is given at the 

end of the paper.

II. Background

In this section, we establish our notation by reviewing channelized Hotelling observers and 

associated performance measures.

One important component of a CHO is a set of channels. Channels are often used by model 

observers to reduce high-dimensional image data to a smaller number of relevant features. 
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Each channel is itself an image that corresponds to a feature, and the scalar product of a 

channel with an image yields a channel output. We write the image as a q × 1 column vector, 

g, and denote the number of channels by p, where p is typically much smaller than q. The 

weights defining each channel are collected into a column of a q × p channel matrix, U, 

which is applied to each image to obtain a p × 1 channel output vector, v, where v = UTg. 

General considerations regarding the choice of channels are beyond the scope of this paper. 

The reader is referred to [1, pp. 936–937] and [3] for surveys of the literature on different 

channel models. In Section V, we present two CHO examples using Gabor channels, and 

provide an explanation of their essential characteristics. Note that if no channels are used, 

then U is equal to the identity matrix, i.e., U = I with p = q.

A CHO is designed for a binary discrimination task in which the goal is to classify each 

image as belonging to one of two classes, denoted as class 1 and class 2. For example, in the 

case of lesion detection, the two classes correspond to lesion-absent and lesion-present, 

respectively. To classify an image with a corresponding channel output vector v, a CHO 

starts by generating a rating statistic, t = wTv, where w is the p × 1 CHO template (defined 

below). Next, the rating statistic is compared to a threshold, c. If t ≥ c, then the image is 

classified as belonging to class 2, otherwise, the image is classified as belonging to class 1 

[1].

We denote the means of the channel output vector, v, for classes 1 and 2 as μ1 and μ2, 

respectively, and their difference as Δμ = μ2 − μ1. In addition, let the (nonsingular) 

covariance matrices of v for class 1 and class 2 be Σ1 and Σ2, respectively, and write their 

average as Σ̅ = (Σ1 + Σ2)/2. In this notation, the template for a CHO is defined as w = Σ̅−1Δμ 
[1]. Throughout this paper, it is assumed that Σ1 = Σ2 = Σ, so that the CHO template takes 

the simplified form w = Σ−1Δμ.

For a binary classification task, an observer's performance is completely characterized by its 

receiver operating characteristic (ROC) curve, which plots true positive fraction (TPF) 

versus false positive fraction (FPF) over all decision thresholds [1], [35]. (In the medical 

literature, TPF and 1 − FPF are known as sensitivity and specificity, respectively.) A 

commonly used summary figure of merit for observer performance is the area under the 

ROC curve, denoted as AUC. If the observer's rating statistic, t, is normally distributed for 

each image class, then AUC can be expressed as , where Φ(x) is the 

cumulative distribution function (cdf) for the standard normal distribution, and SNR is the 

observer signal-to-noise ratio, defined as the difference of class means for t divided by the 

pooled standard deviation [1, p. 819], [35, pp. 83–84]. Above, because SNR and AUC are 

linked by a monotonic transformation, SNR is also useful as a figure of merit for observer 

performance [1, p. 819].

As discussed in the introduction, this work assumes that the channel output vector has a 

multivariate normal distribution for each class with a common covariance matrix. To express 

this assumption symbolically, we introduce the following notation. Let a p × 1 random 

vector x ∈ ℝp that follows a nondegenerate, multivariate normal distribution with mean, μ, 

and positive-definite covariance matrix, Σ, be denoted as x ~ p(μ, Σ). Writing the channel 
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output vectors for classes 1 and 2 as v(1) and v(2), respectively, our distributional 

assumptions can be expressed compactly as v(1) ~ p(μ1, Σ) and v(2) ~ p(μ2, Σ).

The above distributional assumptions have three important implications. First, the CHO is 

optimal among all observers that operate on the channel output vector, in the sense that it 

maximizes SNR2. In fact, if no channels are used, then the resulting observer coincides with 

the so-called “ideal observer” [1, p. 851]. Second, the observer rating statistic, t, is normally 

distributed under each class, so that , i.e., SNR and AUC are linked by a 

monotonic transformation. Third, the expression for observer SNR2 simplifies to SNR2 = 

ΔμTΣ−1Δμ [1, p. 967]. This last formula is our starting point in the next section. In the 

statistics literature,  is also known as the Mahalanobis distance [4]. 

Note that since Σ is positive-definite, it follows that if Δμ is nonzero, which is generally true 

for image-quality evaluations, then SNR > 0 and 0.5 < AUC < 1.

III. Exact Confidence Intervals

Consider a random variable, X, with a distribution depending on a nonrandom parameter, θ. 

A random interval estimate [θL(X), θU(X)] for θ is said to be a 1 − α confidence interval 

[27] if for any θ in the parameter space, the probability that the interval covers θ is 1−α, i.e., 

P(θ ∈ [θL(X), θU(X)]) = 1−α. The value 1 − α is called the coverage probability for the 

confidence interval. A confidence interval is said to be exact if the coverage probability 

equation is exactly satisfied. Otherwise, a confidence interval is said to be approximate.

In this section, we construct exact SNR and AUC confidence intervals for a CHO. The 

construction is based on an approach first suggested by Reiser [26] for interval estimation of 

the Mahalanobis distance. Although Reiser stated that his intervals were approximate, we 

prove that they are, in fact, exact as long as SNR > 0, which is typically the case for image 

quality evaluations. We start by introducing an SNR2 point estimator.

A. SNR2 Point Estimation

Suppose that we are given m independent, identically distributed (i.i.d.) measurements of the 

class-1 channel output vector, , and n i.i.d. measurements of the class-2 

channel output vector, . Write the sample means of the channel output 

vectors for classes 1 and 2 as  and , respectively, 

and their difference as Δv̅ = v̅2 − v̅1. Also, define a pooled estimate of the channel output 

covariance matrix, Σ, as

(1)

Recall that under our distributional assumptions, SNR2 = ΔμTΣ−1Δμ. Substituting the above 

sample estimates for Δμ and Σ into this formula results in a direct, plug-in point estimate 
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given by θ̂p = Δv̅TS−1Δv̅, where the subscript “p” stands for “plug-in.” Since S is 

nonsingular with probability one if m + n > p + 1 [4, Th. 3.1.4, p. 82], it follows that θ̂p is 

well-defined as long as m + n > p + 1. Note that θ̂p is equivalent to the maximum likelihood 

estimator (MLE) when multiplied by (m+n)/(m + n − 2).

It turns out that a multiplicative factor can be utilized to reduce the bias and variance of θ̂p. 

Namely, let

(2)

where γ is a positive function of m, n, and p. Below, we derive an attractive choice for γ.

Under our distributional assumptions, the sampling distribution for θ̂ is closely related to the 

noncentral F-distribution, which arises as the ratio of a noncentral χ2 random variable to an 

independent, central χ2 random variable [4]. We denote a random variable, X, following a 

noncentral F-distribution with degrees of freedom ν1 and ν2, and noncentrality parameter, δ, 

with standard notation as . The following theorem characterizes the sampling 

distribution of θ̂.

Theorem 1—Suppose that  for i = 1, 2, …, m and  for j 
= 1, 2, …, n are independent. If m + n > p + 1 and γ is positive, then

with ν1 = p, ν2 = m+n−p−1, and δ = SNR2(mn)/(m + n).

Proof: The result follows from the distribution of the two-sample Hotelling T2 statistic [4, 

Th. 3.2.13, p. 98].

We can draw three interesting observations from the above theorem that have implications 

for the confidence intervals presented in the next subsection. First, note that Theorem 1 

holds independent of the choice of γ, since this factor also appears in θ̂ and cancels out of 

the quantity on the left side. Second, observe that the distribution of θ̂ depends on four 

parameters: m, n, p and SNR. Since m, n, and p are fixed for a given experiment, the only 

unknown parameter is SNR. Third, for fixed m and n, the noncentrality parameter, δ, is 

proportional to SNR2. In the next subsection, this fact is utilized to construct confidence 

intervals for SNR.

Applying classical formulae for the mean and variance of the noncentral F-distribution [36], 

it is straightforward to obtain expressions for the mean and variance of θ̂. These expressions 

are collected in the corollary below.

Corollary 1: Suppose that the hypotheses of Theorem 1 are satisfied. If m + n > p + 5, then
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From the above expressions, it can be seen that by choosing

(3)

the multiplicative bias is removed, and the overall bias is reduced, as compared to γ = 1. 

Namely, the bias, E[θ̂] − SNR2, becomes (m + n)p/(mn), which increases with the number of 

channels, p, and decreases with the number of samples, m + n. Furthermore, the above 

choice of γ is seen to reduce the variance by a factor of [(m + n − p − 3)/(m + n − 2)]2. 

Observe that since γ is strictly positive if m + n > p + 3, it follows that θ̂ is well-defined as 

long as m + n > p + 3. The multiplicative constant, γ, defined in (3) is an original 

contribution of this work; we use this definition throughout the remainder of the paper. 

However, the reader should note that since the distribution in Theorem 1 does not depend on 

γ, the exact confidence intervals defined in the next section are independent of γ.

Given the above observations, it is evident that an unbiased point estimate of SNR2 can be 

obtained by subtracting the bias, (m + n)p/(mn), from θ̂ with γ given by (3). However, such 

bias subtraction is problematic, since it shifts the distribution of point estimates, and leads to 

potentially negative estimates of SNR2. Because conversion of SNR2 to SNR and AUC 

requires a square root operation, a negative SNR2 estimate cannot be converted to a real-

valued estimate of SNR or AUC, and its interpretation as a figure of merit is unclear. 

Moreover, truncation of a negative estimate at zero comes with another complication, since 

this operation will alter the statistical properties of the estimator and introduce a bias. This 

situation is similar to the possibility of negative estimates of variance components in the 

analysis of variance (ANOVA) when using unbiased estimators [37]. For the reasons 

mentioned above, we do not pursue an additional bias reduction through subtraction in our 

point estimates of SNR2.

B. Reiser Intervals and Main Result

Under our assumptions on the channel output vector
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(4)

follows a noncentral F-distribution by Theorem 1. Moreover, the noncentrality parameter, δ, 

for this distribution is a strictly increasing function of SNR, and hence, AUC. As a result of 

these relationships, confidence intervals for SNR and AUC can be obtained from a 

confidence interval for the noncentrality parameter. To find a 1 − α confidence interval for δ, 

we use an approach suggested by Reiser [26], as described below.

Denote the cdf for X as FX(x; ν1, ν2, δ) and suppose that α1, α2 ∈ (0, 1) are fixed numbers 

such that α1 + α2 = α for some α ∈ (0, 1). (For typical two-sided intervals, α1 = α2 = α/2.) 

Given an observation x of X, functions δL(x) and δU(x) are defined as follows, using the key 

property that the cdf for the noncentral F-distribution is a continuous, strictly decreasing 

function of δ; see Lemma 1 in the Appendix. First, if FX(x; ν1, ν2, 0) > 1 − α1, then δL(x) is 

defined as the implicit solution of the equation

(5)

Otherwise, δL(x) is defined to be zero. Similarly, if FX(x; ν1, ν2, 0) > α2, then δU(x) is 

defined as the implicit solution of

(6)

Otherwise, δU(x) is defined to be zero.

From Lemma 1 in the Appendix, it follows that δL(x) and δU(x) are well-defined, which is a 

fact not proved by Reiser [26]. Because the noncentral F cdf is a built-in library function in 

many statistical software packages, δL(x) and δU(x) can be easily computed by iteratively 

solving the implicit equations in (5) and (6) with standard root-finding algorithms.

The functions δL(X) and δU(X) given above are the lower and upper endpoints, respectively, 

of a nominal 1−α confidence interval for the noncentrality parameter, δ. From its definition 

it can be observed that the confidence interval for δ can potentially be [0, 0] when θ̂ is very 

small. When this happens, the result should be interpreted to mean that zero is the best 

estimate of δ.

The interval [δL(X), δU(X)] for δ can be transformed into a confidence interval for SNR 

through the mapping given in Theorem 1. Namely, lower and upper endpoints for an SNR 

interval are given by  and 

, respectively. The functional dependence of SNRL and 

SNRU on θ̂ comes from the fact that X is a function of θ̂ (here, m, n, and p are fixed). 

Likewise, a confidence interval for AUC can be obtained by applying the transformation 
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 to the SNR interval endpoints. We call the above confidence intervals for δ, 

SNR, and AUC Reiser intervals, since they were first defined in [26].

From heuristic reasoning and limited numerical evidence, Reiser [26] concluded that the 

confidence interval [δL(X), δU(X)] for δ has “essentially exact” coverage probability 1 − α. 

We have discovered that, in fact, this confidence interval has exact coverage probability 1 − 

α as long as δ > 0. Because the Reiser intervals for SNR and AUC are strictly increasing 

transformations of the interval for δ, they have the same coverage probability, and are thus 

exact under the condition that δ > 0, i.e., SNR > 0. Our findings are summarized below; see 

the Appendix for a proof.

Theorem 2—Suppose that the conditions of Theorem 1 are satisfied, and let SNRL(θ̂) and 

SNRU(θ̂) be defined as above for some α ∈ (0, 1). If SNR > 0, then [SNRL(θ̂), SNRU(θ̂)] 

and  are exact 1−α confidence intervals for SNR and 

AUC, respectively.

The above theorem is the main theoretical result of this paper, and to our knowledge, is new. 

For readers interested in mathematical details, it is instructive to note that the proof given in 

the Appendix uses a different technique than the proofs in our previous papers on exact 

confidence intervals [30], [32], [34]. Specifically, the proofs in our previous papers relied on 

a standard theorem for pivoting a continuous cdf [27, Th. 9.2.12, p. 432], which does not 

apply in the present setting, because (5) and (6) do not have solutions for all observations x 
of X. To get around this difficulty, the proof of Theorem 2 (particularly Lemma 2), uses a 

slightly more general approach by returning to first principles.

As mentioned at the end of Section II, it is generally the case that for evaluations of image 

quality, which are the applications of interest in this paper, Δμ is nonzero, and hence, SNR > 

0. Nevertheless, it is useful to note that when SNR = 0, the Reiser intervals are conservative. 

This fact was observed by Reiser [26], who gave an argument demonstrating that the 

coverage probability is 1 − α1 in this case.

IV. Monte Carlo Evaluation

A Monte Carlo simulation study was carried out to evaluate the coverage probability of the 

Reiser confidence intervals given in the previous section. For purposes of comparison, the 

coverage of approximate Wald-type intervals based on a normality approximation was also 

assessed. The Wald-type intervals are described below.

Let V̂ be the point estimate of Var[θ̂] obtained by substituting the point estimate for θ̂ into 

the variance formula given in Corollary 1. Assuming that  approximately 

follows a standard normal distribution, a classical Wald-type confidence interval [27, p. 499] 

for SNR2 with approximate coverage probability 1 − α is

(7)
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where zα/2 = Φ−1(1 − α/2) is the 1 − α/2 quantile for the standard normal distribution. Note 

that the lower bound of the Wald interval can possibly be negative. When the lower bound is 

positive, the above interval can be transformed into an SNR interval by taking the square 

root of the bounds, and into an AUC interval via the mapping .

For the simulation study, we used Monte Carlo simulation to test the coverage probabilities 

for the approximate Wald and exact Reiser confidence intervals. This was accomplished by 

simulating realizations of θ̂. For each estimate, we calculated the Reiser and Wald 

confidence intervals for SNR2. Then we checked if the interval successfully covered the true 

value. The proportion of successes over many Monte Carlo trials then gave an estimate of 

the coverage probability, which ideally, should be 1−α. (Recall the definition of coverage 

probability stated at the beginning of Section III.)

For our evaluation, we took α = 0.05(α1 = α2 = 0.025), p = 5, 20, 50, AUC = 0.6, 0.75, 0.9, 

and (m, n) = (150, 50), (100, 100). The sampling distribution in Theorem 1 was used to 

generate 100 000 random deviates of θ̂, from which SNR2 confidence intervals were 

obtained, and the coverage probabilities were estimated. Regarding the exact Reiser 

confidence intervals, note that since SNR and AUC are linked to SNR2 through a strictly 

increasing transformation, the coverage probabilities for SNR and AUC intervals are the 

same. However, for the approximate Wald confidence intervals, the link between SNR2, 

SNR and AUC is broken when the lower interval bound is negative.

The estimated coverage probabilities are listed in Table I. Since each entry is an estimate of 

a binomial proportion, the corresponding standard deviation is  [27], 

where CP is the true coverage probability and N is the number of Monte Carlo trials. For 

example, since the coverage probability of the Reiser intervals is 0.95, the standard deviation 

for a coverage probability estimate based on N = 100 000 trials is approximately 0.0007. For 

the Wald intervals, the true coverage probabilities are unknown, and the estimated coverage 

probability can be used in the above formula.

From Table I, it can be seen that the exact Reiser intervals have observed coverage 

probabilities very close to 95%, as expected. In contrast, the approximate Wald-style 

intervals are generally unreliable, especially for small AUC values and large numbers of 

channels. To better understand how the Wald intervals fail and the Reiser intervals succeed, 

plots of estimated probability density functions (pdfs) for the interval bounds (in the SNR2 

domain) are presented in Fig. 1 for the case p = 50, AUC = 0.75, and m = 150, n = 50, which 

is the fourth line from the bottom in Table I. The corresponding pdf for θ̂ is also plotted. In 

all plots, a dashed vertical line denoting the true SNR2 value is given for reference. The 

estimated pdfs for the interval bounds are smoothed histogram estimates obtained with the 

kernel density method as offered in MATLAB, applied to the results of 50 000 Monte Carlo 

trials, whereas the pdf for θ̂ was obtained from the analytical expression in Theorem 1. From 

these plots, it can be seen that the distribution for θ̂ exhibits a positive bias, which strongly 

impacts the Wald interval bounds. On the other hand, the Reiser interval bounds are centered 

around the true SNR2 value, and are not affected by the point estimation bias. Furthermore, 

it can be seen that the estimated pdfs for the lower and upper Reiser interval bounds both 
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have spikes at SNR2 = 0. This observation is expected, since the definition of the Reiser 

intervals implies that both the lower bound and the upper bound can be zero. In summary, 

the inaccuracy of the Wald intervals is largely a result of the positive bias of θ̂, whereas the 

Reiser intervals overcome this problem by using knowledge of the complete distribution for 

θ̂.

V. Examples

To illustrate the exact CHO confidence intervals, we present two examples assessing image 

quality in X-ray computed tomography (CT). The first example uses simulated data of the 

XCAT phantom [38], and the second example is based on real CT scans of the QRM torso 

phantom.

Because noise in CT images is typically anisotropic due to its object-dependent nature, we 

implemented the CHOs in both examples with 18 Gabor channels centered on the location 

of interest. Gabor channels consist of a Gaussian modulated by a cosine function, and are 

circularly asymmetric and sensitive to image characteristics in different orientations. They 

have been used to model aspects of the human visual system [10], [39], and have been found 

to be yield higher detection performance than circularly symmetric channels in CT [40]. 

Mathematically, Gabor channels have the form [39]

(8)

where fc denotes the center frequency of the channel, ws is the spatial width of the channel, 

the point (x0, y0) is the center of the channel, θ is the channel orientation, and ξ is a phase 

factor. The spatial width of the channel, ws, is related to wf, the full-width-at-half-maximum 

of the Fourier transform of the channel, through ws = 4(ln 2)/(πwf). We used three channel 

passbands, given by [1/32, 1/16], [1/16, 1/8], and [1/8,1/4] cycles/pixel, respectively; this 

choice of passbands is similar to those in [21], and was motivated by previous studies 

involving model observers [6], [7], [9]. The center frequencies for the passbands are fc = 

3/64, 3/32, and 3/16 cycles/pixel, with spatial channel widths of ws = 28.24, 14.12, and 7.06 

pixels, respectively. In addition, we used three orientations: θ = 0, π/3, and 2π/3 radians, 

and two phases: ξ = 0, π/2. Hence, there were 3 frequency bands × 3 orientations × 2 phases 

for a total of 18 channels.

A. Example 1

This example compares image quality for three fan-beam CT image reconstruction methods 

by using a known-location, background-variable classification task in which a CHO is 

applied to discriminate between two types of kidney stones. According to Kambadakone et 
al. [41], knowledge of kidney stone composition is an important factor influencing patient 

management. In particular, CT attenuation measurements have been found to be valuable for 

differentiation of uric acid stones from other stone types [41]. Motivated by this knowledge, 
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we selected the task of discriminating between a uric acid stone (450 HU) and a struvite 

stone (600 HU) at a fixed location in the left kidney (recall that the left kidney is commonly 

displayed on the right side of transverse-plane CT images).

To generate images, we simulated CT data for the XCAT phantom [38] slice shown in Fig. 2. 

All images were reconstructed for a 96 × 96 region of interest (ROI) centered on the left 

kidney, with a pixel size of 1 mm × 1 mm. To simulate anatomical variations in the left 

kidney, we made two additions to the phantom, as follows. First, a circular disk of fat with a 

random radius between 5 mm and 10 mm was added to the kidney, near the ureter. Second, a 

random background was added to the kidney to simulate texture. This variable background 

was modeled as colored Gaussian noise following a power law model with an exponent of 

two [42], with an amplitude of ±6 HU. Last, a kidney stone of diameter 4 mm was added at a 

fixed location, with attenuation values of 450 HU for class 1 and 600 HU for class 2; see 

Fig. 2. Once a realization of the phantom was defined, fan-beam sinograms were computed, 

and Poisson noise with a photon level of 10 000 was added to the data with models for tube 

current modulation and a bowtie filter, as described in [21].

We compared three fan-beam filtered backprojection (FBP) image reconstruction 

algorithms: A: Noo et al. [43] for full-scan data, B: Dennerlein et al. [44] for full-scan data, 

and C: Noo et al. [43] for short-scan data (240°). All algorithms were implemented so that 

resolution was matched near the field of view center. Algorithms A and B were expected to 

yield comparable CHO performance (since the kidney is fairly close to the field-of-view 

center), whereas algorithm C was anticipated to be worse since it uses less CT data.

To carry out the evaluation, 250 class-1 sinograms and 200 class-2 sinograms were 

generated. Next, every sinogram was reconstructed with the three algorithms to yield three 

sets of 450 images, i.e., one set for each reconstruction method. Finally, exact AUC 

confidence intervals describing CHO performance were estimated for each reconstruction 

algorithm.

Multivariate normality of the channel outputs was validated at the 10% significance level 

with the Henze–Zirkler normality test [45]. Since the confidence intervals were correlated, 

the coverage probability for each confidence interval was selected to be 96.67% so that the 

joint coverage probability for the three intervals was at least 90% by the Bonferroni 

inequality.1 The results, given in Table II, indicate that Algorithms A and B were both better 

than Algorithm C with statistical significance. However, there was no statistically significant 

difference between Algorithms A and B, which was consistent with our expectations.

B. Example 2

In this example, we evaluate image quality for two fan-beam CT image reconstruction 

methods applied to real CT data by using a CHO to detect a lesion at a known location in a 

torso phantom. Data was collected with a Siemens SOMATOM Sensation 64 CT scanner by 

1For arbitrary events E1, E2, …, Ek, the Bonferroni inequality [27, (1.2. 10), p. 13] takes the form 

.
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repeatedly scanning a torso phantom 175 times over a circular source trajectory. The torso 

phantom, constructed by QRM (Möhrendorf, Germany), was used together with two water 

bottles placed on the sides to simulate arms. A mean image of the phantom estimated from 

all 175 scans is shown in Fig. 3. The scans were executed in thorax scan mode using a 2-

slice acquisition with a slice thickness of 1 mm, a rotation speed of 3 rev/s, X-ray tube 

settings of 25 mAs and 120 kVp, and no tube current modulation. Fan-beam measurements 

for the first of the two slices over the 175 repeated scans were used for the evaluation.

The CT data was read with software provided by Siemens and then reconstructed using our 

implementation of the classical FBP algorithm for direct reconstruction from either short-

scan or full-scan fan-beam data [21]. Short-scan reconstructions used data collected from 

230° of the source trajectory. Images were reconstructed on a 550 × 550 grid centered on the 

heart insert, as shown in Fig. 3, with a pixel size of 0.2 mm × 0.2 mm.

For both short-scan and full-scan reconstructions, we considered a known-location lesion 

detection task in which the lesion was either absent or present at the center of a 64 × 64 

region-of-interest (ROI). From each reconstructed image of the heart insert, we extracted 

three ROI images, labeled 1a, 1b, and 2 in Fig. 3. ROI-1a and ROI-1b were used for class-1 

(lesion absent), and ROI-2 was used for class-2 (lesion-present). The lesion in ROI-2 had a 

diameter of 1 mm and a contrast of 210 HU with the background value of 40 HU. We 

assumed that the three ROIs obtained from a given CT image were statistically independent. 

This assumption was justified by a previous study of fan-beam FBP reconstruction from 

simulated CT data [21], which indicated that correlations between image pixels are 

negligible over the distance that separated the ROIs.

Since two class-1 ROIs and one class-2 ROI were extracted from each heart insert image, 

CHO performance for each reconstruction algorithm was estimated from a total of 350 

class-1 and 175 class-2 ROI images. Multivariate normality of the channel outputs was 

checked with the Henze-Zirkler test [45]. As in Example 1, we found that the null 

hypothesis of multivariate normality was supported at the 10% significance level. Estimated 

95% AUC confidence intervals for the short-scan and full-scan reconstructions are shown in 

Table III. By the Bonferroni inequality (see earlier footnote), the combined coverage 

probability of both intervals was at least 90%. The full-scan reconstruction was observed to 

be better than the short-scan reconstruction with statististical significance. This finding was 

consistent with the fact that the short-scan reconstruction used less data than the full-scan 

reconstruction.

VI. Comparison to Training/Testing Approaches

As mentioned in the introduction, CHO performance may also be estimated using a training/

testing approach. In this approach, the CHO template is first estimated from a set of training 

images during the training phase. Second, during the testing phase, the estimated template is 

applied to a set of testing images to generate ratings, from which a performance estimate is 

obtained. Due to frequent use of training/testing in CHO performance evaluations, e.g., [11], 

[12], [14], [16]–[18], [20], [25], it is worthwhile to clarify the relationship between the 

approach of this paper and the training/testing paradigm.
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The present work is concerned with performance estimation of a CHO that is defined by the 

template w = Σ−1Δμ. Generally, the population quantities Δμ and Σ are unknown, and cannot 

be determined exactly from a finite sample of training images. Therefore, this work can be 

characterized in terms of training/testing terminology by saying that we aim to estimate 

infinitely-trained CHO performance, i.e., the performance that results from the true template. 

Alternatively, for a fixed number of training images, one can instead seek to estimate 

finitely-trained CHO performance, i.e., the performance that results from a template 

estimated with a finite training set. These contrasting goals are examined below.

Two strategies for training and testing are often employed in CHO evaluations. The first 

strategy, called the resubstitution method, uses the same images for training and testing. The 

second strategy, called the hold-out method, uses independent sets of images for training and 

testing. For the purpose of estimating the performance of an infinitely-trained CHO, it is 

well known from the pattern recognition literature that the resubstitution method yields point 

estimates with a positive bias, and that the hold-out method gives point estimates with a 

negative bias [46], [47].

Fig. 4 illustrates these biases for a CHO with p = 18 channels when the channel output 

vector is multivariate normal under each class, and the class covariance matrices are equal. 

In this example, Σ was taken to be the identity matrix and Δμ was chosen so that AUC = 

0.75. Specifically, the class means were taken to be μ1 = 0, and μ2 = 0.831ν, where ν was a 

p × 1 vector with entries increasing from 0.025 to 0.45 in increments of 0.025. For each 

point in Fig. 4, we generated 100 000 independent Monte Carlo trials with the number of 

training images equal to the number of testing images, Ntrain = Ntest, and estimated AUC 

using the unbiased Mann-Whitney statistic [35]. The resulting mean AUC estimates are 

plotted as a function of Ntrain. As expected, the resubstitution and hold-out methods have 

positive and negative biases, respectively, which decrease with the number of training 

images.

Two aspects regarding the biases described above deserve comment. First, the point 

estimator presented in Section III-A, like the resubstitution approach, utilizes all available 

images. In fact, it is straightforward to show that the resubstitution estimate of SNR2 is 

equivalent to the plug-in estimator, θ̂p, given in Section III-A, which as discussed earlier, has 

a positive bias. This observation is in agreement with the results given in Fig. 4 for the 

resubstitution estimator.

Second, although the hold-out method yields a negatively-biased estimate of infinitely-

trained CHO performance, it gives an unbiased estimate of finitely-trained performance (if 

an unbiased performance estimator is used on the testing results), since the testing set is 

independent from the training set. This is the performance that is expected for a classifier 

that is applied in practice. The dependence of classifier performance on training is often 

depicted with a curve like the hold-out curve in Fig. 4, called a “learning curve” ([48, p. 

215]). Learning curves are vital to understanding the effectiveness of training/testing 

approaches, as we will see next.
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In addition to point estimates for CHO performance, training/testing methods can also be 

used to estimate confidence intervals. To illustrate the accuracy of confidence intervals 

obtained-with training and testing, and to compare such approaches with the Reiser intervals 

introduced in Section III, we carried out a Monte Carlo evaluation in which the channel 

output vectors were assumed to satisfy our distributional assumptions, i.e., multivariate 

normal under each class with equal class covariance matrices. Specifically, four types of 

bootstrap AUC confidence intervals were evaluated: 1) resubstitution with bootstrapping 

over testing cases only, 2) resubstitution with bootstrapping over both training and testing 

cases, 3) hold-out with bootstrapping over testing cases only, and 4) hold-out with 

bootstrapping over both training and testing cases. Bootstrap samples were obtained by 

sampling with replacement, and each confidence interval was estimated from 1000 bootstrap 

samples with the percentile method [49]. As above, p = 18 channels were used, Σ was taken 

to be the identity matrix, and Δμ was chosen so that AUC = 0.75. Coverage probabilities of 

confidence intervals were evaluated for Ntrain = 50, 100, 200, 500, and 1000 training images. 

The hold-out method was applied with an independent set of Ntest = 200 testing images, 

while the resubstitution method utilized the same images for training and testing. In other 

words, letting Ntot denote the total number of images used, the Reiser and resubstitution 

methods utilized Ntot = Ntrain images, while the hold-out method was applied with Ntot = 

Ntrain + Ntest = Ntrain + 200 images. Coverage probability estimates were obtained from 100 

000 independent Monte Carlo trials, in which the channel output vectors were generated as 

random deviates from multivariate normal distributions with the previously specified 

parameters.

Estimated coverage probabilities of 95% AUC confidence intervals for infinitely-trained and 

finitely-trained CHO performance are listed in Tables IV and V, respectively. Here, the 

results for infinitely-trained performance assessed coverage of AUC = 0.75, whereas the 

results for finitely-trained performance assessed coverage of the mean AUC value obtained 

with the hold-out method, listed as the “target AUC” in the table, which was estimated from 

100 000 Monte Carlo trials. From Table IV, we see that the Reiser intervals resulted in 

consistently accurate coverage for infinitely-trained performance. By contrast, the 

resubstitution method was not reliable, and the hold-out method was accurate only for a 

large number of training images. Given the learning curve in Fig. 4, this phenomenon is not 

surprising, since the biases of resubstitution and hold-out methods decrease with increasing 

numbers of training images. On the other hand, for the goal of estimating finitely-trained 

CHO performance, i.e., the value on the hold-out (learning) curve in Fig. 4, Table V 

illustrates that the hold-out method with bootstrapping over both training and testing sets 

gives conservative coverage, and that the hold-out method with bootstrapping over testing 

only is reliable for large numbers of training images. This latter result is consistent with the 

expectation that training variability becomes smaller as the number of training images 

increases. For both types of bootstrapping, the resubstitution method is seen to be unreliable, 

which is likely due to the positive bias of resubstitution (relative to the learning curve) as 

seen in Fig. 4. Last, as expected, the Reiser intervals were not as reliable for estimating 

finitely-trained performance, since they are not designed for this purpose.
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In summary, the Reiser intervals were found to be well-suited for estimating infinitely-

trained performance for all sample sizes. By contrast, the hold-out method, which uses 

independent training and testing sets, was observed to be best-suited for estimating finitely-

trained performance, although it was also effective for estimation of infinitely-trained 

performance when the size of the training set was large. Lastly, the resubstitution method 

was not generally reliable for either purpose, although its accuracy improved as the number 

of training images increased.

It should be emphasized that the results presented above are for a limited number of 

examples, and that the channel output vector was taken to be multivariate normal under each 

class with equal class covariance matrices. A more thorough comparison of the Reiser 

intervals with methods based on training and testing is beyond the scope of the present work.

VII. DISCUSSION AND CONCLUSION

A widely-used approach for the characterization of medical image quality involves 

estimating the performance of a CHO applied to a known-location discrimination task. For 

the problem of estimating confidence intervals for CHO performance measures, we have 

shown that a method proposed by Reiser [26] can be used to obtain confidence intervals for 

SNR and AUC. In addition, we rigorously proved that these intervals are well-defined and 

exactly achieve the desired coverage probability, as long as SNR > 0, which is a new result 

not given in [26]. The coverage probability of the Reiser confidence intervals was verified 

with Monte Carlo simulation, and was found to be more robust than that for conventional 

Wald-style intervals based on a normality assumption. Application of the Reiser confidence 

intervals was demonstrated with two examples comparing reconstruction algorithms for fan-

beam CT. Last, the relationship between the Reiser intervals and training/testing approaches 

was discussed and illustrated with examples based on Monte Carlo simulation.

To our knowledge, the Reiser intervals investigated here are presently the only known exact 

confidence intervals for CHO performance when both Σ and Δμ are unknown. As clarified in 

Section VI, these intervals are designed for estimation of infinitely-trained CHO 

performance, which is typically the goal of image quality studies aimed at imaging system 

optimization. On the other hand, if the goal is to estimate finitely-trained CHO performance, 

then approaches based on training and testing with independent data sets are preferable.

Our theoretical results assume that the channel output vector for a given class follows a 

multivariate normal distribution with equal covariance matrices for each class. As discussed 

in the introduction, these assumptions are often well-justified for image discrimination tasks 

involving a small lesion at a known location with either a flat or normally-distributed, 

variable background. Indeed, these assumptions are typically well-justified for tomographic 

imaging applications. To be sure of the applicability of the Reiser intervals in practice, it is 

generally desirable to check the aforementioned distributional assumptions; recall from the 

image quality evaluation examples in Section V, that multivariate normality was checked 

using the Henze-Zirkler normality test. We did not investigate robustness of the Reiser 

intervals to violations of the distributional assumptions. However, since the Reiser intervals 

are based on the two-sample Hotelling T2 test statistic, which is invariant under nonsingular 
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affine transformations of the channel output vector, it can be conjectured that the Reiser 

intervals possess robustness properties similar to those of the T2 test [4]. Further research 

into this issue, both on theoretical grounds and with Monte Carlo studies, is a topic of high 

interest for future work.

It is useful to note that although our presentation concentrated on exact confidence intervals 

for SNR and AUC, exact confidence intervals can also be obtained for other figures of merit. 

In particular, because our distributional assumptions imply that the ROC curve is 

parameterized by only SNR, it follows that TPF at fixed FPF and partial AUC (pAUC) are 

strictly increasing functions of SNR. Consequently, Lemma 3 implies that exact confidence 

intervals for these figures of merit can be obtained through suitable transformations of an 

exact SNR interval; see [30], [34] for further details. Moreover, it turns out that the union of 

exact 1 − α TPF intervals over all FPF values is an exact, simultaneous 1 − α confidence 

band for the entire ROC curve in this setting [30].

As one might intuitively expect, smaller confidence intervals can be obtained when prior 

knowledge is available. For example, in a recent paper [34], we have introduced exact 

intervals for situations when Δμ is known. To illustrate the advantage offered by prior 

knowledge of Δμ, Fig. 5 contains plots of mean confidence interval length (MCIL) for exact 

95% AUC confidence intervals versus sample size. These plots compare the MCIL for the 

unknown-Δμ Reiser confidence intervals presented here to the known-Δμ confidence 

intervals given in [34]. Each point on these curves was calculated through a numerical 

integration as described in [34]. Note that in both cases, for given values of m, n, and p, the 

underlying statistical distributions depend only on AUC, and that the plots are valid for any 

choices of Δμ and Σ that yield the stated AUC value. From the plots in Fig. 5, it is evident 

that a large decrease in confidence interval length can be gained when Δμ is known, and that 

this decrease is larger as the nominal AUC value becomes smaller.

MATLAB software implementing the confidence interval estimators described in this work 

and in previous related publications [30], [32], [34] is publicly available at http://

code.google.com/p/iqmodelo/.
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Appendix

We prove Theorem 2 with the aid of three lemmas.

Lemma 1

The cdf of the noncentral F-distribution is a strictly-decreasing, continuous function of the 

noncentrality parameter.
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Proof

Let . By the definition of the non-central-F distribution, X = U/V, where 

 and  are independent random variables, i.e., U is a noncentral χ2 random 

variable with ν1 degrees of freedom and noncentrality parameter δ, and V is a central χ2 

random variable with ν2 degrees of freedom. Denote the pdf's for U and V as fU(u; ν1, δ) 

and fV(υ; ν2), respectively, and denote the cdf of U as FU(u; ν1, δ). Since X = U/V, the cdf 

for X is FX(x; ν1, ν2, δ) = P(X ≤ x) = P(U ≤ xV), and hence

Since FU is differentiable with respect to δ [36, p. 442], we can differentiate under the 

integral sign to obtain

(9)

From (29.33e) in [36, p. 443], for any and u, ν1 and δ, ∂FU(u; ν1, δ)/∂δ < 0. Combining this 

fact with (9), we see that ∂FX(x; ν1, ν2, δ)/∂δ < 0.

Lemma 2

Let α1, α2 ∈ (0, 1) be fixed numbers such that α1 + α2 = α for some α ∈ (0, 1) and let 

, where ν1, ν2, and δ are fixed. Further, for each observation x of X, define the 

functions δL(x) and δU(x) as in Section III-B. If δ > 0, then the random interval [δL(X), 

δU(X)] is an exact 1 − α confidence interval for δ.

Proof

Denote the cdf of X by FX(x; ν1, ν2, δ). We partition the sample space with the following 

three disjoint events:

By a standard theorem [27, Th. 2.1.10, p. 54], FX(X; ν1, ν2, δ) is uniformly distributed. It 

then follows that P(A) = α1, P(B) = 1 − α and P(C) = α2. We will consider each of these 

events separately to determine their contribution to the overall coverage probability. Below, 
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we repeatedly utilize the fact that FX(x; ν1, ν2, δ) is a strictly decreasing function of δ, as 

stated by Lemma 1.

For X ∈ A, the definition of δL(X) and Lemma 1 imply that δL(X) > δ. Hence, P(δ ∈ 
[δL(X), δU(X)]|A) = 0. Now, consider X ∈ B. The definition of δU(X) and Lemma 1 imply 

that δ ≤ δU(X). For δL(X), there are two cases: either (a) FX(X; ν1, ν2, 0) ≥ 1 − α1 or (b) 

FX(X; ν1, ν2, 0) < 1 − α1. In case (a), the definition of δL(X) and Lemma 1 imply that 0 < 

δL(X) ≤ δ. In case (b), the definition of δL(X) and Lemma 1 imply that δL(X) = 0 < δ. Either 

way, we have δL(X) ≤ δ, and thus, P(δ ∈ [δL(X), δU(X)]|B) = 1. Finally, consider X ∈ C. If 

FX(X; ν1, ν2, 0) ≥ α2 then the definition of δU(X) and Lemma 1 imply that δU(X) < δ. 

Otherwise, if FX(X; ν1, ν2, 0) < α2, then the definition of δU(X) and Lemma 1 imply that 

δU(X) = 0 < δ. Thus, P(δ ∈ [δL(X), δU(X)]|C) = 0.

Therefore, the coverage probability is

Lemma 3

Let g(δ) be a continuous, strictly increasing function of δ. If [δL, δU] is a 1 − α confidence 

interval for δ, then [g(δL), g(δU)] is a 1 − α confidence interval for g(θ).

Proof

See Lemma 3 in [30].

Theorem 1 and Lemma 2 imply that [δL(X), δU(X)] is an 1 − α exact confidence interval for 

δ. Finally, since SNR and AUC are strictly increasing functions of δ, Lemma 3 yields the 

stated result for Theorem 2.
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Fig. 1. 
Estimated marginal distributions for Wald and Reiser SNR2 confidence interval bounds with 

p = 50, AUC = 0.75(SNR2 = 0.91), m = 150, and n = 50. (Top) pdf of θ̂, (Middle) estimated 

pdfs of upper and lower Wald bounds, (Bottom) estimated pdfs of upper and lower Reiser 

bounds. The true SNR2 is denoted by the dashed vertical line.
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Fig. 2. 
(Top) Slice of the XCAT phantom. (Lower Left) ROI centered on left kidney. (Lower Right) 

Noisy reconstruction. Grayscale: [−150, 250] HU.
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Fig. 3. 
(Top) Mean image of QRM torso phantom. (Lower Left) Mean image focused on the heart 

insert with ROIs marked by white boxes. (Lower Right) A noisy reconstruction of the heart 

insert. Grayscale: [−250, 500] HU.
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Fig. 4. 
Mean estimated AUC obtained from the resubstitution and hold-out methods as a function of 

the number of training images, for a CHO with AUC = 0.75 and p = 18 channels.

Wunderlich et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Mean confidence interval length (MCIL) for exact 95% AUC confidence intervals plotted 

versus sample size in the cases of unknown and known difference of class means, Δμ, for a 

CHO with p = 5 channels and m = n. Top Left: AUC = 0.6, Top Right: AUC = 0.75, Bottom 

Left: AUC = 0.9, Bottom Right: Ratio of MCIL for unknown Δμ to MCIL for known Δμ 
plotted versus sample size for AUC = 0.6, 0.75, and 0.9.
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TABLE II

Estimated 96.67% AUC Confidence Intervals for the Three Reconstruction Methods in Example 1

A: [0.8044 0.8828]

B: [0.7947 0.8754]

C: [0.6892 0.7917]
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TABLE III

Estimated 95% AUC Confidence Intervals for the Two Reconstruction Methods in Example 2

short-scan [0.8736 0.9267]

full-scan [0.9282 0.9635]
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