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Abstract

Sparsity-promoting regularization is useful for combining compressed sensing assumptions with 

parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms 

are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-

promoting regularization. These methods are very general and have been observed to work with 

almost any regularizer; however, the tuning of associated convergence parameters is a commonly-

cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single 

Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type 

MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-

variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant 

aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the 

regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster 

than state-of-the-art variable splitting algorithms when combined with momentum acceleration 

and adaptive momentum restarting. Furthermore, the tuning parameters associated with the 

proposed methods are unitless convergence tolerances that are easier to choose than the constraint 

penalty parameters required by variable splitting algorithms.
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I. Introduction

Magnetic resonance imaging (MRI) is an imaging modality where improving the resolution 

requires increased acquisition time. As a result, the cost of MRI also increases with higher 

resolution since the cost is directly proportional to the scan time. In addition to reducing the 

cost of high-resolution MRI, scanning time reductions can also help accommodate pediatric 

and elderly patients that have difficulty remaining motionless during long scans. Such scan 

time reductions are facilitated by combining undersampling and advanced signal processing 

methods to remove the associated aliasing artifacts. SENSitivity Encoding (SENSE) is an 

MRI technique that undoes aliasing effects caused by undersampling by exploiting 

variations in the sensitivity profiles (i.e., B1 maps) of multiple coils placed around the 

patient [1]. When the image can reasonably be assumed to be sparse in some transform 

domain, compressed sensing techniques can be applied to facilitate further accelerations [2].

Image estimation that leverages SENSE MRI and compressed sensing assumptions can be 

mathematically formulated as an ℓ1-regularized optimization problem [3]. Since the ℓ1 term 

is nondifferentiable, these problems are difficult to minimize using standard gradient-based 

methods. Some methods convert such problems into a different form where fast 

minimization techniques can be applied. One such class includes variable splitting 

algorithms, where one forms a constrained optimization problem and then proceeds within 

the augmented Lagrangian formalism to find the solution to the original ℓ1-regularized 

problem [4]–[7]. A difficulty with applying these methods is the tuning of a constraint 

penalty parameter that heavily affects convergence speed. Sufficient conditions for 

optimally choosing these parameters are unknown, so current practice is to resort to 

heuristics for setting these parameters [7]. Since the optimal parameter can change from 

problem to problem (i.e., patient to patient), robust performance of these methods can be 

difficult to ascertain.

Alternatives to variable splitting methods are majorize-minimize methods such as fast 

iterative soft thresholding (FISTA) [8]. FISTA methods converge at a rate that depends on 

the Lipschitz constant, a constant that upper bounds the eigenvalues of the Hessian of the 

data fit term. This constant is on the order of the maximum of the sum of squared absolute 

values of the sensitivity coils. As such, the Lipschitz constant can be very loose for low 

signal regions that occur at the center of the object in SENSE MRI. As a result, majorize-

minimize methods such as FISTA have performed poorly relative to their variable splitting 

counterparts in MRI applications [7].

We address the looseness of the Lipschitz bound by formulating tighter bounds that vary 

spatially based on the sensitivity coil profiles. The approach requires finding a diagonal 

majorizer in the range of the regularizing matrix. In this paper we show that for several 

regularizers of interest (including orthogonal wavelets, anisotropic total variation, and 

undeci-mated Haar wavelets), such diagonal upper bounds are simple to compute and give 

large accelerations relative to FISTA with the Lipschitz constant. When combined with 

adaptive momentum restarting [9], these methods outperform variable splitting methods in 

all of these cases. The proposed methods also use parameters in the form of convergence 
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tolerances, but in numerical experiments we found that once a reasonable choice was made 

for these parameters, further optimization was not necessary.

II. Problem Formulation and General Approach

From compressed sensing theory, one can recover a sparse signal by minimizing a convex 

cost function with ℓ1 regularization [3]. Let C denote the number of sensitivity coils, D 

denote the number of data points, and N denote the number of pixels to be estimated. The ℓ1-

minimization procedure for parallel MR image reconstruction can be mathematically 

formulated as

(1)

where F ∈  is a block-diagonal matrix with each block having the same down-sampled 

DFT operator and S ∈  is a block-column matrix with diagonal blocks. We include a 

masking set, , that constrains elements outside the mask to be zero. We call f(x) the data 

fit term and R(x) the regularizer. Weighted quadratic data fit terms used for noise 

correlations between coils can be converted to this unweighted form [7]. The parameter, β, 

must be selected by the user to balance trade-offs between the data fit term and the 

regularizer (Monte Carlo techniques have been developed for estimating these parameters 

that perform well under mean-squared error metrics [10].) Defining A = FS, we note that S 
gives A a highly shift-variant nature, a property that we will consider in our algorithm 

design. R is a sparsifying transform. If R is left-invertible (i.e., NR = I for some matrix, N), 

we say that (1) is a synthesis reconstruction problem since we can define u = Rx and rewrite 

(1) as an optimization problem over u. We assume that R ∈ . If R is not left-invertible, 

then we call (1) an analysis reconstruction problem and assume that R ∈ ℝM×N. This 

restriction of R to be real-valued includes important classes of analysis regularizers such as 

total variation [2] and undecimated Haar wavelets [7]. Each of these regularization forms 

necessitates different algorithm considerations.

Although solving (1) allows one to obtain high-quality estimates of x with less data, (1) is 

typically difficult to minimize. Most methods instead minimize a different problem related 

to (1). The related problem should be easy to minimize relative to (1), but still offer 

information relevant to the solution of (1). Two procedures for defining and minimizing 

related problems are majorize-minimize procedures and variable splitting procedures. For 

completeness we note that “corner rounding” has also been proposed for dealing with the 

nondifferentiability of the ℓ1 regularizer [2], but this has been found to yield algorithms 

slower than those of the variable splitting class [7]. Our method is of the majorize-minimize 

class, but is different from previous majorize-minimize methods in that it carefully considers 

any coupling of the structures of A and R. We outline the general approach in the following 

section.
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A. Separable Quadratic Surrogates

Majorize-minimize methods work by forming a surrogate cost function (i.e., a majorizer, 

ϕk(x)) and then minimizing the surrogate each iteration to find the minimizer of the original 

cost function. Any quadratic of the form  can be majorized with a separable 

quadratic surrogate (SQS), a procedure that we briefly review [11], [12]. If a surrogate, 

ϕk(x), satisfies the following two conditions, then decreasing the surrogate will decrease the 

original cost function [13]:

(2)

(3)

We allow the surrogate to be indexed by k since it can vary with iteration. We form such a 

surrogate for SENSE MRI by first rewriting f(x) around a current estimate, x(k), as

(4)

where ℜ{·} returns the real part of its argument and AH is the Hermitian transpose of A. If 

we have AHA ⪯ Df ∈ ℝN×N for some diagonal matrix, Df (where M ⪰ 0 implies that M is 

positive semidefinite), we can write

(5)

where ζ is a constant that arises from completing the square and is independent of x. 

Decreasing ψ(x, x(k)) causes ϕk(x) to decrease by the same amount. Standard majorize-

minimize procedures use Df = LI, where L is the maximum eigenvalue of AHA. We instead 

use a more general Df that is a tighter bound for AHA. In the case where A = FS, we have 

AHA = SHFHFS. In general FHF ⪯ FI, where F is the maximum eigenvalue of FHF. In the 

case of Cartesian MRI with unitary DFT matrices, F = 1. One can estimate F offline in the 

non-Cartesian case via power iteration since it does not depend on the object. Noting this, 

we have

(6)

where SHS is a diagonal matrix with the sum of the squared absolute values of the sensitivity 

coils along its diagonal. We could use Df to upper bound any SENSE-type quadratic data fit 

term with a separable quadratic surrogate. We will use this property in the following 

sections. Furthermore, Df is easy to compute once one has determined the coil sensitivities, 

Muckley et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and with the recent development of fast algorithms for SENSE map estimation it is quickly 

available in online settings [14].

B. Proposed Minimization Algorithm

We note through the majorization conditions that solving the following problem will 

decrease the cost function in (1):

(7)

The minimization problem in (7) is where synthesis and analysis regularizers differ. In the 

synthesis case, η(x, x(k)) is either fully separable or it can be converted into a fully separable 

form. When η(x, x(k)) is fully separable, closed-form solutions exist via shrinkage functions. 

In the analysis case, closed form solutions do not exist and we have to run a few steps of an 

iterative algorithm to decrease η(x, x(k)). We discuss the synthesis case in detail in Section 

III and the analysis case in Section IV.

Iteratively applying (7) qualifies as a majorize-minimize procedure, and as such it can be 

accelerated with momentum techniques [8]. Momentum accelerations can be enhanced with 

adaptive momentum restarting [9]. This gives a general algorithm, which we call B1-based, 

Adaptive Restart, Iterative Soft Thresholding Algorithm, or BARISTA, since it has step 

sizes that depend on the sensitivity or B1 maps. Fig. 1 shows the overall algorithm. Variants 

of this general form are shown in Fig. 2 for the synthesis case and Fig. 3 for the analysis 

case. The tracking of the momentum is provided by the τ(k) parameter and an auxiliary 

variable, z(k). If the algorithm takes a step in a certain direction, then z(k+1) takes a larger 

step in the same direction where the size is determined by τ(k). The restart is shown with the 

“if” statement at the end of an algorithm step. If the cosine of the angle between x(k+1) − z(k) 

and x(k+1) − x(k) is greater than α, then the momentum is wiped away. This helps prevent the 

generalized gradient and the momentum term from taking the algorithm in opposite 

directions. In our numerical experiments we found that good values for α are negative and 

lie near 0; we used α = − cos(4π/9). As stated previously, one challenge is in the 

minimization of η(x, z(k)). Another associated challenge is the design of matrices similar to 

Df, but in the range of the regularizer for both synthesis and analysis regularization. The 

following sections discuss these topics.

III. Synthesis Regularization

A. Synthesis Algorithm Formulation

We use the term synthesis regularization when R is left-invertible, which allows rewriting 

the minimization problem in the basis of the regularizer. For notational simplicity in this 

section, we discuss R that forms a tight frame, i.e., RHR = I. Orthogonal wavelet transforms 

for SENSE MRI and DFT/DCT regularizers for dynamic MRI are examples of unitary 

matrices that might be used in synthesis problems in MRI. Defining u = Rx, we can rewrite 

(1) as
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(8)

where  is a synthesis mask that restricts a subset of the synthesis coefficients to be zero. 

It is less natural to use a mask for the synthesis approach than for analysis, so if masking is 

desired we recommend using the algorithm outlined in Section IV. Now, if we find a 

diagonal matrix, DR, such that

(9)

and defining B = ARH, the surrogate in (7) is

(10)

the constrained minimum of which is a shrinkage solution:

(11)

where .  is a vector composed of the diagonal elements 

of , and the shrinkage function is defined as shrink(b, β) = diag{sign(bi)}(|b| − β1)+. In 

this case, |·| denotes the absolute value function, (·)+ sets values less than zero to zero, 

diag{·} takes the input elements and arranges them as a diagonal matrix, and sign(·) returns 

the complex sign of its argument. The  operator projects its argument on to the set, , 

which in this case corresponds to setting all elements outside the mask to zero. Fig. 2 shows 

the synthesis version of BARISTA. Our goal now is to design DR, which will allow us to 

take larger step sizes in step 5 of Fig. 2 and apply more aggressive shrinkage in step 6.

B. Diagonal Upper Bounds in Unitary Bases

The challenge in designing DR is that it must be constructed in the basis of the regularizer, 

while Df is in the basis of the image. For this purpose we will use Theorem 1, which gives a 

means of constructing DR. Theorem 1 can be applied for any R, although it is most useful 

for unitary regularizing matrices that have rows with compact support. We will use it here 

since orthogonal wavelets fall into this class.

Theorem 1—Let R ∈  be any matrix and let Df ∈ ℝN×N be diagonal with diagonal 

elements dn,f. Let rm be the mth row of R and let  ⊂ {1, …, N} be the support set for rm. 

Define τm =  (dn, f) and . Let DR be a diagonal 

matrix with diagonal elements dm,R, then DR ⪰ RDf RH.
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The Appendix shows a proof of Theorem 1. Theorem 1 states that any matrix of the form 

RDf RH can be upper bounded with a diagonal matrix by taking maximums over patches of 

Df and scaling those maximums by sums of inner products. These inner product sums 

increase as R becomes less unitary, but in our synthesis case we assume unitary R so dm,R = 

tm. We have found that this is an effective majorizing matrix for unitary regularizing 

matrices, and we used Theorem 1 to design DR for orthogonal Haar and Daubechies D4 

wavelets in our numerical experiments where we ran the algorithm in Fig. 2.

IV. Analysis Regularization

A. Analysis Algorithm Formulation

In the analysis setting R is not left-invertible and we can no longer define u = Rx and 

rewrite (1) as an optimization problem over u. As such, we must leave (1) in its original 

form. The forms of R of this type that are of interest for SENSE MRI include anisotropic 

total variation regularizers [2] and undecimated wavelets where the approximation co-

efficients are unregularized [7], [15]. However, we can still form a quadratic surrogate for 

the data fit term. This gives the analysis denoising problem. Since we do not have a closed-

form solution of this problem, we run a few iterations of a denoising procedure. Fig. 3 shows 

the overall analysis algorithm, while the denoising procedure is shown in Fig. 4.

We must decide on a stopping criterion for the iterative algorithm used for the denoising 

step. Previous methods have used a fixed iteration count for this step [7], [16], but we 

instead use an ε(k) criterion. When large steps are being taken in the outer iterations, the 

denoising step only needs to provide an approximate solution to progress the algorithm, 

whereas very accurate solutions are beneficial for later iterations where the outer steps are 

small.

Fig. 3 shows a strategy for choosing ε (k) that was effective in our numerical experiments. ε
(k) is chosen to be εdiff times the norm-difference of the previous iteration, restricted between 

the upper and lower bounds of ε (k−1) and εmin. We choose εdiff to balance the cost of solving 

the denoising problem and progressing the outer iterations. In all experiments we used εdiff = 

10−1. We choose εmin based on the precision level of the machine that runs the algorithm; its 

primary purpose is to prevent the algorithm from stalling as a result of numerical precision. 

For double precision, we observed that εmin = 10−12 gave agreeable convergence in later 

iterations. We set ε(0) = 10−1. We decrease ε(k) monotonically so that the denoising 

subproblem is solved more accurately as the algorithm progresses toward the solution.

B. Analysis Denoising Subroutine

We now discuss the so-called analysis denoising problem that needs to be solved in step 6 of 

the algorithm in Fig. 3, which is formulated as follows:

(12)
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This is equivalent to solving step 4 of the algorithm in Fig. 1. There are many potential 

approaches to solving this step, including nonlinear CG [2] and split Bregman schemes [4]. 

As mentioned in the previous section, our goal is to minimize the cost function in (12) to 

some pre-specified numerical precision. As a result, whatever procedure is chosen should 

perform well under all numerical precision environments, a property not satisfied by 

nonlinear CG due to its corner-rounding parameter or split Bregman due to its constraint 

penalty parameter. Instead, we choose to extend the results in [16] to general ℓ1 regularizers, 

adapt it to complex numbers, and reintroduce our diagonal majorizing matrix in the range of 

the regularizer. This approach meets the numerical precision requirements and gave 

agreeable convergence speed in numerical experiments. Our derivation requires real-valued 

R, which includes interesting classes of anisotropic total variation and undecimated Haar 

wavelet regularizers. Fig. 4 shows the algorithm that arises from extending the results in 

[16]. The Appendix derives this algorithm.

The (·) operator in Fig. 4 projects its argument on to the set, , the ℓ∞-unit ball. This set 

arises from our dual formulation discussed in the Appendix. In this case this means that 

(·) examines each element in its input vector and normalizes any elements with an absolute 

value greater than 1 to an absolute value of 1, preserving the complex sign. For this inner 

denoising step we include an ε stopping criterion, the choice of which as discussed in 

Section IV depends on the step sizes of the outer iterations of the algorithm in Fig. 3. 

Although not noted in Fig. 4, we also included a maximum iteration number to prevent the 

algorithm from stalling. We did not observe that this was necessary in our numerical 

experiments, but we wanted to ensure stable convergence in a variety of circumstances. We 

measure the convergence based on x(k,j+1), which is calculated from the momentum variable 

v(j), although the actual convergence would depend on the dual variable, q(j). This 

simplification avoids making extra computations each iteration that would be required to 

estimate x from q(j), and with the adaptive restart we expect v(j) to be a good approximation 

for q(j) near the solution. Lastly, we note that we initialized the analysis denoising algorithm 

with the last value for q from the previous run of the algorithm. This warm start greatly 

helps the convergence speed of the analysis denoising subroutine.

The algorithm in Fig. 4 requires computing a DR that satisfies the analysis majorizer 

condition:

(13)

where RT is the transpose of R. We discuss DR for the cases of anisotropic total variation 

and undecimated Haar wavelets.

C. Diagonal Majorizers for Analysis Regularizers

One could use Theorem 1 to upper bound any matrix, including . However, in 

practice we have found that bound somewhat loose for the analysis regularizing matrices of 

anisotropic total variation and undecimated Haar wavelets. We discuss tighter bounds for 

these two cases. For the case of anisotropic total variation, we choose
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(14)

where abs(·) returns a matrix that has entries that are the absolute value of the input matrix. 

This is guaranteed to be a majorizer as it is a modification of the techniques of De Pierro 

[17], and we have found it to be very tight for anisotropic total variation. Its calculation is 

also simple.

For the case of undecimated Haar wavelets, we present a different approach that builds on 

Theorem 1 via the polarization identity. The idea is to split up a non-orthogonal R into 

orthogonal pieces for which Theorem 1 will provide tight diagonal majorizers. Consider R 
of the form,

(15)

where Q is the number of submatrices of R. Defining  for any arbitrary 

vector  (possibly different sized wi), we then have

(16)

where one proceeds from the first to the second step by applying the polarization identity,

(17)

and collecting all inner product pairs. Thus, finding a majorizer for each 

submatrix will provide a majorizer for . Such a structure applies to the 2-level 

undecimated Haar wavelet case since a 2-level undecimated Haar wavelet can be written as 

a cascade:

(18)

In this case the first step of the cascade, RA, can be broken up into pieces:
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(19)

where each of the RA,i is an orthogonal 1-level Haar wavelet transform. We apply the 

inequality in (16) to majorize  while using Theorem 1 to majorize each 

 term. We applied the procedure recursively to RB since it has a similar 

structure. In the undecimated Haar wavelet case each of the RA,1, …RA,4 is a similar 

operation, so we expect that each of the ci will be approximately linearly dependent and this 

inequality approach will be fairly tight.

V. Experiments

A. Experimental Setup

In the interest of reproducible research, MATLAB code for implementing these methods 

will be uploaded to the Image Reconstruction Toolbox at web.eecs.umich.edu/~fessler/. All 

experiments were run on a machine with an Intel Xeon E31230 Processor that had four cores 

with each core running at 3.2 GHz. The machine had 16 GB of memory. All experiments 

used α = − cos(4π/9).

We compared the convergence speed of BARISTA to state-of-the-art variable splitting 

methods in several experiments on four data sets. We present in vivo brain results in the 

main paper body and include results for a numerical brain phantom, a breast phantom, and 

an American College of Radiology phantom in the supplementary material. The variable 

splitting methods were each of the AL-P1 or split Bregman type [7]. The AL-P2 method in 

[7] uses condition number heuristics to tune AL penalty parameters, but we found that these 

condition number heuristics could change between different regularizers. Tuning AL-P2 for 

each regularizer would have required setting multiple condition number parameters. AL-P1 

has only one constraint penalty parameter, μ, and it had comparable speed to AL-P2, so we 

used AL-P1 with careful manual tuning of μ as a representative of AL-based methods. We 

also investigated dynamically updating the μ parameter using update rules and parameters 

proposed by Boyd (Section 3.4.1 of [18]), which helps mitigate tuning difficulties. We 

initialized such AL methods with dynamic μ updates with one of the manually-tuned μ 

values. In the plots this method with dynamic μ updates is denoted as “AL, dynamic μ.” We 

also introduced a diagonal preconditioner for the conjugate gradient (CG) subroutine in step 

4 of AL-P1. We used P = (SHS + μI)−1 for all wavelet regularizers and P = (SHS)−1 for the 

total variation regularizer. These preconditioners were not mentioned in [7], but we 

observed that they accelerated AL-P1 on the order of 50% time to reach the same point of 

convergence. The AL-P1 methods all used 5 preconditioned CG (PCG) iterations for step 4 

of AL-P1.

To track convergence, we computed the following normalized residual as a function of 

iteration:
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(20)

where x(∞) is a “converged” solution obtained by running many thousands of iterations of 

AL-P1. Note that even though R is not full column rank in the total variation case, the AL-

P1 method is still convergent [19]. In our convergence plot comparisons to AL-based 

methods we set the lower bound for ξ(k) at −140 dB. We chose to do this for two reasons: 1) 

our raw MRI data were less precise than single precision and 2) BARISTA vastly 

outperformed all other methods in reaching double precision, so these parts of the plots were 

less interesting. We also stored the time at which the kth estimate was computed and in our 

figures and we plot ξ(·) as a function of elapsed CPU time instead of iteration. We choose to 

do this since iterations of the proposed majorize-minimize methods and the variable splitting 

methods have drastically different compute times due to the PCG subroutine and the 

analysis denoising step in the proposed methods. All methods used identical subroutines for 

matrix multiplications.

We selected regularization parameter, β, to give visually appealing solutions for each 

regularizer. In practice the regularization parameter could be estimated via Monte Carlo 

SURE methods [10].

In our plots we only show BARISTA from the classes of majorize-minimize algorithms as 

opposed to other methods such as FISTA with Df = LI since BARISTA was always the 

fastest majorize-minimize method. Fig. 5 shows an example of the relative convergence 

speed of majorize-minimize methods in the case of orthogonal Haar wavelet regularization. 

In this case, BARISTA was twice as fast as RFISTA (restart FISTA), three times as fast as 

NRBARISTA, (non-restart BARISTA) and over five times as fast as FISTA in reaching 

−120 dB. Although RFISTA converges rapidly to double precision, in early iterations it is 

not competitive with BARISTA or variable splitting methods. In a practical setting, the 

algorithms may not even be run to convergence, so early-iteration convergence speed is 

critical for general adoption of the proposed methods. Furthermore, negligible time is 

required to use the majorizing matrices discussed in this paper, so the factor of two speed-up 

over RFISTA more or less comes for free. We also observed the factor of two speed-up or 

greater with the orthogonal Daubechies D4 regularizer and the undecimated Haar wavelet 

regularizer. Speed-up of BARISTA vs. RFISTA in the anisotropic total variation case was 

negligible. We are unsure why this occurred, but it may be that a shift-variant majorizer 

makes the analysis denoising problem more difficult to solve in the total variation case.

For the in vivo experiment, a 3D data set was acquired on a GE 3T scanner with an 8-

channel head coil with acquisition parameters TR = 25 ms, TE = 5.172 ms, and voxel size 1 

mm × 1.35 mm × 1 mm. The data matrix size was 256 × 144 × 128 uniformly spaced 

samples. Sensitivity maps were estimated using a quadratic regularized least squares routine 

[14]. The data were retrospectively undersampled in the Fourier domain using a Poisson 

disk sampling scheme [20] with a fully sampled center (32-by-32 block), which has been 

demonstrated to be useful in compressed sensing MRI applications [21]. This sampling 

pattern simulates one slice of a 3D MRI experiment where the sampling pattern in Fig. 6b is 

Muckley et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in the phase encode plane [7], [21] (this sampling pattern would be impractical for 2D MRI). 

Only 20% of the full DFT sampling was used for reconstruction. Fig. 6a shows x estimated 

from fully sampled data, while Fig. 6b shows the Poisson-disc sampling pattern with a 

densely-sampled center used in all the in vivo experiments.

B. Synthesis Regularizer Results

As stated earlier, we performed numerical experiments with orthogonal Haar and 

Daubechies D4 wavelet regularizers to examine the convergence speed of the proposed 

method in the synthesis setting. We set the regularization parameter to zero for the 

approximation coefficients since a sparse model does not fit these coefficients as well as the 

detail coefficients [15]. Fig. 7a shows an example of the diagonal majorizing elements in the 

Haar wavelet basis. Fig. 7b shows the majorizer for the Daubechies D4 wavelets. The 

majorizer for the Daubechies D4 wavelet case is smoother than the Haar case since it 

requires taking maximums over larger patches.

Fig. 8a and Fig. 8b show the convergence results for Haar and Daubechies D4 wavelets, 

respectively. BARISTA converges faster than the other methods. The time positions when 

BARISTA undergoes restart are visible in the stair step pattern in the convergence plots. 

Several AL parameters are shown to demonstrate the range of speeds of AL-based methods, 

although we can make no theoretical guarantees on the optimal speed of AL-based methods 

since we do not know any theoretically optimal way to tune the penalty parameter.

C. Analysis Regularizer Results

We performed numerical experiments with total variation and 2-level undecimated Haar 

wavelet regularization to examine the convergence speed of the proposed methods in the 

analysis setting. Our anisotropic total variation implementation took differences in vertical, 

horizontal, and diagonal directions. We did not regularize the approximation coefficients of 

the 2-level undecimated Haar wavelet transform [15]. Fig. 9 shows examples of elements 

from DR for the analysis cases. Since for the analysis case we design , the 

sensitivity elements are now inverted relative to the synthesis case. Our analysis algorithm 

formulation required setting the εdiff, εmin, and ε(0) parameters. We chose εmin = 10−12, εdiff 

= 10−1, and ε(0) = 10−1. We note that although these convergence criteria parameters require 

some tuning, we were able to use the same convergence criteria for all regularizers in all 

experiments. Conversely, we had to tune the constraint penalty parameters for the AL-P1 

method each time when changing regularizers or data sets.

Fig. 10 shows results for the analysis regularizers. BARISTA matches the other methods in 

early iterations and outperforms all other methods in later iterations. As previously, the time 

steps at which the algorithm restarts are shown in the stair step pattern in the convergence 

plots. We also observed that all algorithms converged slower with the total variation 

regularizer than the other regularizers. Results with analysis regularizers with an image 

domain mask were similar and are shown in the supplementary material. Notably, 

BARISTA converged about twice as fast when using a mask than without a mask.
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VI. Discussion

A. Convergence Speed of BARISTA vs. AL Methods

BARISTA was observed to converge faster than the AL-based methods in both early and 

late iterations. The early iteration speed of BARISTA is due to its tight approximation of the 

Hessian of the cost function via the diagonal majorizers developed in this paper and the use 

of Nesterov momentum acceleration. Nesterov momentum has been added to AL algorithms 

in some cases [22], although those algorithms require an estimate of the Lipschitz constant, 

so the diagonal majorizers presented here may be useful for those methods.

The late-iteration speed of BARISTA is due to the use of adaptive restart. We are unaware 

of a means to apply adaptive restart to AL-based methods. We attempted to recover some of 

the benefits of adaptive restart through the use of dynamic AL parameter updates, but this 

did not give the same large convergence speed boost as adaptive restart.

B. Selection of AL Penalty Parameters

We manually optimized the AL penalty parameters for speed. For some cases, such as total 

variation and 2-level undecimated Haar wavelet regularizers, we observed a tradeoff 

between early and late iteration convergence speed, with smaller parameters favoring early 

iteration speed and larger parameters favoring late iteration speed. In our tests we chose the 

small parameters that gave reasonable convergence to −120 dB; however, this behavior 

suggests that changing the penalty parameter in a dynamic fashion may improve the 

convergence speed of AL-based methods. The dynamic tuning method from [18] helped in 

some cases, but not consistently, and we still observed faster convergence with BARISTA in 

both early and late iterations.

From a theoretical point of view, analysis of AL-based methods considers static penalty 

parameters [23]. The fact that AL theory considers static penalty parameters is considered 

one of the primary motivations for using AL methods instead of penalty methods in the first 

place [7], [23]; adaptively changing the parameter removes this advantage. Conversely, our 

use of the ε(k) parameter falls within the MFISTA theory provided monotonicity checks are 

used, and although [16] does not cover the case of adaptive restart we observed stable 

convergence of BARISTA in all numerical experiments.

C. Surrogate Tightness and Sensitivity Coil Smoothness

In our data set, the sum of squares of absolute values of the sensitivity coils exhibited high 

variability across the object. As the sensitivity coils become more uniform, our proposed Df 

and DR matrices will more closely approximate their Lipschitz counterparts (i.e., Df = LI). In 

these cases, the advantages of BARISTA will diminish relative to that of RFISTA. 

However, we typically expect RFISTA to be a lower bound for the speed of BARISTA. 

Furthermore, as the sensitivity coils become smoother, the proposed surrogate functions 

actually become better approximations to the original cost function in (1), so we expect the 

speed of the proposed methods to be superior with smooth sensitivity coil profiles than our 

case with large sensitivity coil variability.
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D. Tuning the Restart Criterion

The restart criterion in [9] used α = 0 in all of their experiments. We found that this choice 

led to too infrequent restarts because using α = 0 allows the momentum and generalized 

gradient to begin to point in different directions before restarting. Instead, in our 

experiments we used α = −cos(4π/9). We found that this choice gave very good early-

iteration convergence in 24 numerical experiments with four different regularizers (see 

supplementary material).

E. Near-monotonicity of BARISTA

In [16] it is stated that when an iterative procedure is applied to minimize the surrogate cost 

function, one should apply a monotonicity check to ensure stable convergence of the 

algorithm in the analysis total variation setting. The primary cause of non-monotonicity with 

FISTA algorithms is when the momentum takes the algorithm in a bad direction near the 

solution [9]. In our numerical experiments we observed that the combination of the ε(k) 

parameter and adaptive restart made the monotonicity checks in [16] unnecessary and the 

proposed method performed as a monotone algorithm. Nonetheless, the monotonicity checks 

of [16] could be included in a practical setting if monotonicity is still deemed to be an issue.

F. Relations to Proximal Newton Methods

The methods outlined in this paper have some relations to proximal Newton methods (e.g., 

[24]), which use alternative methods to approximate the Hessian. One issue with such 

methods is that the memory storage requirements can be undesirably large for medical 

imaging problems. Low-memory versions of these methods also exist (e.g., L-BFGS, see 

[24], [25]). BARISTA can also be thought of as having a low-memory approximation to the 

Hessian due to its diagonal structure, which may be more accurate if the SENSE maps 

dominate the behavior of the Hessian. Comparisons between our proposed method and these 

more general proximal Newton methods are an avenue for future investigation. One could 

even potentially modify BARISTA to use an L-BFGS Hessian approximation update, 

although proximal Newton methods are often developed for real numbers and may require 

adaptations for the complex numbers in MRI reconstruction.

VII. Conclusion

We have introduced generalizations of the FISTA algorithm, which we call BARISTA, for 

SENSE-type MR imaging with compressed sensing regularizers that compensate for the 

shift-variant aspects of the sensitivity coils. The methods gave superior convergence speed 

relative to state-of-the-art variable splitting methods in numerical experiments. Furthermore, 

the proposed methods avoid the penalty parameter tuning associated with variable splitting 

methods, instead relying on unitless convergence tolerance parameters. We have provided 

heuristics for selecting these parameters and found that the same values worked well across 

24 numerical experiments conducted with four different regularizers on four different data 

sets. We expect that the proposed methods will give fast, high-quality reconstructions across 

a wide variety of data sets and will aid in the adoption of compressed sensing methods in a 

clinical setting.
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Appendix

A. Proof of Theorem 1

To prove Theorem 1 we first define RH = [r1, …, rM ], where rm denotes the mth column of 

RH. We then recognize that the inner product of two compactly-supported vectors can be 

computed over either vector’s support, i.e.,

(21)

The entries in V:= RDf RH are weighted inner products of the form,

(22)

where vm,l is the mth, lth entry of V. We recall that if D1 ⪰ Df, then RD1RH ⪰ RDf RH. One 

such D1 is a diagonal matrix where the diagonal entries are defined as

(23)

We also note that finding a DR ⪰ RDf RH is equivalent to finding a DR such that wH DRw ≥ 

wH RDf RHw for any vector w. To accomplish this, we make the partition, , 

where . We also make the partition, w = [w1, w2]. We now have

(24)

Muckley et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://arxiv.org/abs/1401.6607
http://papers.nips.cc/paper/4740-proximal-newton-type-methods-for-convex-optimization
http://papers.nips.cc/paper/4740-proximal-newton-type-methods-for-convex-optimization


which comes from applying (21) and (22). This implies that

(25)

Without loss of generality, we can assume that t1 ≤ t2 ≤ … ≤ tM. If this is not satisfied, then 

the appropriate permutation can be applied to V to make it so. The procedure can again be 

applied to , and then again recursively. Applying this procedure recursively 

through M gives Theorem 1.

B. Analysis Denoising Derivation

For the extension of the results in [16], we assume R ∈ ℝM×N, which includes the classes of 

total variation and undecimated wavelet regularizers that are of interest to us. The difficulty 

in minimizing (12) is the fact that R mixes different elements of x. To decouple the mixing 

effects, we will introduce dual variables. Let γ ∈ ℝ and ν ∈ ℝ be two variables and define 

= {(γ, ν) ∈ ℝ2: γ2 + ν2 ≤ 1}. Then for any c ∈  we have

(26)

where ℑ{·} returns the imaginary part of its argument. Noting this, we now have

(27)

where  is a Cartesian product of M sets of the form of . Note that  is the ℓ∞-unit ball 

in . We also have

(28)

To simplify notation, we will now drop the “arg” and implicitly take x from wherever the 

critical point of the cost function is. Since  is a convex set,  is a compact, convex set, 

and (28) is convex in x and concave in (γ, ν), we apply Sion’s Theorem [26] to exchange the 

order of maximization and minimization, which gives

(29)

Now we use the fact that since Df ∈ ℝN×N and is diagonal, the weighted 2-norm squared is 

separable into its real and imaginary parts, i.e.,
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(30)

Defining q = γ + iν, the inner minimization in (29) has a solution where 

. As stated previously, the (·) operator simply sets elements 

outside the mask to zero. Plugging this back into (29) reveals a new maximization problem:

(31)

Since the target cost function is now a constrained minimization over a quadratic, we can 

once again apply the separable quadratic surrogates techniques outlined in Section II. We 

choose to do this instead of developing other quadratic minimization routines due to the 

presence of the constraint. Applying this procedure gives the minimization problem over a 

surrogate:

(32)

for . This is obtained by recognizing that the  (·) operator where  is a 

masking set can be formulated as a projection matrix, M, where (·) = M(·). The Hessian in 

(31) arising from the inclusion of this linear projection matrix is 

, which is upper bounded by . The majorize-

minimize algorithm arising from using this surrogate with momentum acceleration and 

adaptive momentum restart is shown in Fig. 4.
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Fig. 1. 
BARISTA: B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithm
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Fig. 2. 
BARISTA for synthesis
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Fig. 3. 
BARISTA for analysis
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Fig. 4. 
Analysis denoising algorithm
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Fig. 5. 
Comparison of different majorize-minimize methods with orthogonal Haar wavelet 

regularization. Markers are placed at 50 iteration intervals. FISTA used Df = DR = LI while 

BARISTA and NRBARISTA (non-restart BARISTA) used the proposed Df and DR. 

BARISTA is the fastest method; this was also observed for the other experiments with 

varying degrees of acceleration. Both restart methods exhibit a stair step pattern, where new 

“steps” arise when the momentum is restarted.
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Fig. 6. 
Images corresponding to the in vivo experiments. (a) x estimated from fully sampled data. 

Some residual noise is present at the center. (b) Sampling pattern for the in vivo experiments 

with a densely sampled 32 × 32 center.
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Fig. 7. 
Examples of diagonal elements of DR for synthesis regularizers, rearranged into an image. 

(a) Elements of the diagonal of DR in the Haar wavelet basis. Areas outside the brain have 

been masked for presentation. (b) Elements of DR for the Daubechies D4 basis. Since the 

rows of a Daubechies D4 matrix have larger support than those of the Haar, the majorizer is 

smoother. For both cases color bars are shown to give a sense of the variation across the 

image caused by the sensitivity coils. The Lipschitz constant was 2.98, while the maximum 

value of the squared absolute values of the sensitivity coils was 3.36. Many of the entries in 

DR are smaller than the Lipschitz constant.

Muckley et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8. 
Summary of convergence results for two different synthesis regularizers. Markers are placed 

at 30 iteration intervals for all algorithms. (a) Convergence plot comparing the proposed 

method to variable splitting methods for orthogonal Haar wavelets. The proposed method 

with momentum restarting is faster than the other methods. (b) Another convergence plot 

with orthogonal Daubechies D4 wavelets.
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Fig. 9. 
Examples of diagonal elements of DR for analysis regularizers rearranged into an image. (a) 

A subset of the elements of DR for the total variation case with areas outside the brain 

masked for presentation. Since this matrix must upper bound , the sensitivity 

elements have been inverted. (b) A subset of the elements of DR for the undecimated Haar 

wavelet case.
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Fig. 10. 
Summary of convergence results for two different analysis regularizers. (a) Convergence 

plot comparing the proposed method to variable splitting methods for total variation 

regularization. Markers are placed at 100 iteration intervals. The proposed method with 

momentum restarting is faster than the other methods. (b) Convergence plot comparing 

BARISTA to variable splitting methods with undecimated Haar wavelet regularization. 

Markers are placed at 30 iteration intervals. The proposed method with momentum 

restarting is faster than the other methods, especially in later iterations.
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