
Graph-Based Airway Tree Reconstruction from Chest CT Scans: 
Evaluation of Different Features on Five Cohorts

Christian Bauer [Member, IEEE],
Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242. 
christian-bauer@uiowa.edu

Michael Eberlein, and
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 
52242. michael-eberlein@uiowa.edu

Reinhard R. Beichel [Member, IEEE]
Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, 
the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 
52242, and the Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA, 
52242.

Abstract

We present a graph-based framework for airway tree reconstruction from CT scans and evaluate 

the performance of different feature categories and their combinations on five lung cohorts. The 

approach consists of two main processing steps. First, potential airway branch and connection 

candidates are identified and represented by a graph structure with weighted nodes and edges, 

respectively. Second, an optimization algorithm is utilized for generating an airway detection 

result by selecting a subset of airway branches and connections based on graph weights derived 

from image features. The performance of the algorithm with different feature categories and their 

combinations was assessed on a set of 50 lung CT scans from five different cohorts, including 

normal and diseased lungs. Results show tradeoffs between feature categories/combinations in 

terms of correctly (true positive) and incorrectly (false positive) identified airways. Also, the 

performance of features in dependence of lung cohort was analyzed. Across all cohorts, a good 

trade-off with high true positive rate (TPR) and low false positive rate (FPR) was achieved by a 

combination of gray-value, local shape, and structural features. This combination enabled 

extracting 91.80% of reference airways (TPR) in combination with a low FPR of 1.00%. In 

addition, this variant was evaluated on the public EXACT’09 test set, and a comparison with other 

airway detection approaches is provided. One of the main advantages of the presented method is 

that it is robust against local disturbances/artifacts or other ambiguities that are frequently 

occurring in lung CT scans.
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I. Introduction

Segmentation of airway trees in chest CT scans is an important step in the analysis of 

various lung diseases like asthma and facilitates other image analysis tasks such as 

segmentation of lung lobes. In CT scans, airways appear as dark tubular structures, which 

are surrounded by a brighter airway wall. An example of a healthy human lung imaged with 

CT and the corresponding airway tree are depicted in Figs. 1(a) and 1(f), respectively. 

Airways branch recursively, following typical patterns of branching angles and diameter 

decreases. While the lumen of larger airways in CT scans is well contrasted, distinguishing 

small distal airways from lung parenchyma can be difficult, because of partial volume 

effects, noise and imaging artifacts. In addition, lung disease may alter the morphology and 

appearance of the airway tree and/or the surrounding parenchyma and can cause the 

obstruction of airways. Fig. 1 gives some examples, showing the impact of lung disease on 

airways and parenchyma.

Several methods for segmentation of airways have been proposed in the literature. For a 

detailed overview, we refer to a recently published review article by Pu et al. [1]. Commonly 

used methods are region-growing variants based on gray-value features, where the 

segmentation starts from a seed point and adjacent regions are merged iteratively based on 

local image density or contrast. Such approaches tend to perform reasonably well for larger 

airways, but have limitations in identifying smaller weakly contrasted airways. Thus, 

alternatives have been investigated to improve the identification of smaller airways. For 

example, classification based on machine learning [2], [3] or methods that identify airways 

based on their tubular shape have been proposed. Airway identification can be achieved 

either directly in the image space utilizing bronchi-detection-filters (e.g. based on eigen-

value analysis of the Hessian matrix [2]) or in a geometric space after iso-surface extraction 

[4].

Distinguishing airways from background based solely on local image features of the CT 

scan is difficult and may lead to leakage or undersegmentation due to ambiguities caused by 

poor image contrast, obstructions along the airway lumen, motion artifacts, etc. Some 

leakage can be prevented, or removed in a post-processing step by pruning, utilizing 

structural features such as local airway diameter increase or abrupt changes in branching 

angles [5]. However, dealing with situations where the local image information is 

ambiguous and the features do not justify classification as an airway is a more difficult 

issue. In case of region-growing like algorithms, this may result in a premature (local) 

termination of the algorithm, and consequently, whole airway subtrees could be missing in 

the segmentation result. Also, lung disease may alter the morphology and appearance of the 

airway tree as well as surrounding lung tissue (Fig. 1). Thus, typical assumptions 

incorporated into methods may become invalid.
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Segmenting many generations of airways in CT scans in a robust way is a challenging task, 

as shown in a recent study based on a publicly available lung CT image database 

(EXACT’09) [6]. Even the best performing state-of-the-art methods were not able to 

identify more than approximately 60% of in the CT scans visible airways, on average, 

without producing major leakage. To facilitate research of lung diseases and development of 

new imaging-based biomarkers, algorithms are needed that allow segmentation of more 

smaller, distal airways and that perform robustly across various lung diseases. This requires 

methods that are able to deal with situations where the local image information is 

ambiguous.

Our previous work has addressed the issue of ambiguous local image information in the 

context portal vein [7] as well as simultaneous portal and hepatic vein [8] segmentation in 

contrast enhanced CT scans. Both methods reconstruct the vascular tree(s) in two steps. 

First, all tubular structures in the data set are identified based on their shape. Second, the 

tubular structures are connected into one [7] or several [8] vessel tree(s) based on properties 

between the individual tubular structures. During this process, gaps between the individual 

tubular structures that may result from local ambiguities or occlusions are closed. The 

method presented in [8] utilized a predefined set of rules with several hard thresholds to 

identify vessels and connect them into tree structures. Although the method was not 

designed for this application, evaluation of the method in the context of airway segmentation 

showed promising results on the EXACT’09 database [9], [6]. A similar approach for airway 

tree segmentation was recently utilized by Graham et al. [10]. First, the authors performed a 

region-growing based segmentation of larger airways. In subsequent processing steps, 

smaller airway cross-sections were identified, combined into airway segments, and then 

connected into an airway tree structure. The method was tested on lung CT scans acquired 

for bronchoscopy procedures [10], but was not evaluated on the public EXACT’09 database 

or a diverse set of lung CT scans that include different types of lung diseases.

Building on our previous work reported in [9], which utilized a graph-based approach for 

tree reconstruction, we make the following contributions in this paper. First, we have 

expanded the approach. Specifically, we now use different detectors for small and large 

airways, are less restrictive in defining potential connection candidates, define weights for 

airway branch and connection candidates, and introduce an optimization step that considers 

branch and connection candidates at the same time. Second, we substantially increased the 

number of features that are utilized to model the airway reconstruction problem in a graph 

and convert the majority of “hard” thresholds/requirements into “soft” features/weights that 

are now incorporated in the graph-based formulation of the problem. This is an important 

step, which allows us to better deal with ambiguities and variation caused by disease (Fig. 

1), avoiding the issue of fine-tuning parameters (e.g., thresholds) for a specific cohort of 

lung diseases to achieve good results. Third, it is a priori not clear which features work best 

across different cohorts or for a given cohort. To address this issue, we assess and compare 

the detection performance of different feature combinations on a large set of lung MDCT 

scans, which includes data sets of normals and different lung diseases. In addition, for 

comparison with other airway segmentation approaches, we present an evaluation on the 

public EXACT’09 data set.

Bauer et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Image Data

For this work, two sources of image data were utilized, as described below.

1) CT scans from five different cohorts for training and evaluation

Chest CT scans of lungs with no significant abnormalities (normals), chronic obstructive 

pulmonary disease (COPD; including GOLD 1 to 4), asbestosis, sarcoidosis, and asthma 

(both severe and non-severe) were available for method development and evaluation. For 

each cohort, 20 scans were available, resulting in a data set of 100 chest CT scans. Fig. 1 

shows a typical example of a CT cross-section for each cohort. This data set was divided by 

means of stratified random sampling into two disjoint sets, one for method development and 

one for evaluation, each consisting of 50 CT scans. The airway tree reconstruction approach 

was designed utilizing the development data set. Once this process was completed, a 

performance assessment utilizing the evaluation data set was performed. All CT scans were 

acquired at total lung capacity. Thirteen different CT scanners from Siemens, Philips, and 

GE Medical Systems were utilized for imaging. The images were reconstructed with 

different kernels, slice thickness, and pixel spacing. Pixel spacing ranged from 0.49 to 1.00 

mm with a median of 0.5 mm. Slice thickness ranged from 0.5 to 1.3 mm with a median of 

0.75 mm. Soft, medium, and hard image reconstruction kernels were utilized, but the 

majority of images were reconstructed with soft kernels.

2) Exact’09 data sets

The public EXACT’09 database [6] consists of 40 data sets; 20 for method development and 

20 for evaluation. It consists of scans from patients with different lung diseases, which were 

acquired with CT scanners from all four major vendors using several different imaging 

protocols. The EXACT’09 test data set also contains low dose CT scans, scans acquired at 

full expiration or with intravenous contrast agent. The majority of scans were reconstructed 

using medium or hard image reconstruction kernels [6].

III. Graph-based Airway Tree Reconstruction

Distinguishing airways from background based only on local image information without any 

additional information is difficult. To address this problem, we utilize a graph-based 

optimization framework which considers potential airway branches and connections 

between them in a global context. The individual steps are illustrated in Fig. 2. First, we 

identify airway branch candidates based on the local appearance of airways in the CT scan 

(Fig. 2(a)) and plausible connection candidates between pairs of these airway branch 

candidates (Fig. 2(b)). Note that neither the detection of airway branches nor the detection of 

connections has to be perfect and may produce many false positives. In a next step, we 

represent airway branch and connection candidates as nodes and edges in a graph structure 

(Figs. 2(c) and 2(d)) and assign weights to each of them, which represent the confidence 

(weight) that the airway branch/connection candidate is actually part of the airway tree. 

Then, we utilize a graph-based optimization algorithm to select the airway branch and 

connection candidates that maximize the confidence in the resulting airway tree structure 

and remove false positive candidates (Figs. 2(e) and 2(f)). Because the optimization 
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algorithm considers individual airway branch and connection candidates in the context of 

the whole tree structure and does not rely solely on local decisions, the segmentation process 

becomes more robust against local ambiguities present in the data set.

In the following sections, we will describe in detail the detection of airway branch 

candidates (Section III-A) and plausible connection candidates (Section III-B), followed by 

the optimization algorithm (Section III-C). The definition of different features utilized to 

obtain graph-weights will be discussed separately in Section IV.

A. Detection of Airway Branch Candidates

Airway branches appear as dark tubular structures in CT images. To identify them, we 

utilize tube detection filters (TDFs), which provide a measure of tube-likeliness for each 

voxel of the data set based on local shape information. Because large airways and small 

airways have different appearance, two different TDFs are utilized. Then, from the TDF 

results, centerline-based representations of individual airway branch candidates are extracted 

utilizing a height ridge traversal. Examples of the TDF results and the extracted airway 

branch candidates are shown in Fig. 3. For computational efficiency, all operations are 

performed only inside of a rough lung mask. The lung mask is obtained with region growing 

with a fixed threshold of −500 HU followed by a morphological closing operation with a 

spherical structuring element of 10 mm radius.

Detection of large airways—Large airways appear typically well contrasted in CT 

images. We obtain a tube-likeliness measure for these airways by utilizing a multi-scale 

TDF [8]. The CT scans are preprocessed by truncating the voxel's density to a range of 

−1000 HU to −700 HU and inverting the gray-value range. Then, given the discrete range of 

radii r ∈ {0.5, 1.0, 1.5, ..., 10.0} mm, the filter calculates a response for each voxel. First, 

the filter estimates the tangent direction of the tubular structure for a given radius utilizing a 

Hessian scale space. Then, the method samples gradient information at the airways expected 

surface and center, which is then utilized to derive a tube-likeliness measure. For each voxel 

location, the maximum response over all test radii gives the final response together with a 

radius estimate. This filter allows robust extraction of large airways (Fig. 3(a)), but is not 

well suited for extraction of thin weakly contrasted airways that are surrounded by 

inhomogeneous tissue (e.g. in case of adjacent vessels of similar diameter).

Detection of small airways—For detection of small airways, we first apply a slice-based 

enhancement of cavities (small regions that are darker than the surrounding area) similar as 

in [11], [12], [10] followed by a single-scale tube-likeliness calculation. The cavity detection 

is applied to all axial, coronal and sagittal image slices individually and the results are then 

combined using the voxel-wise maximum operator to produce a 3D result. Cavities in 

individual 2D image slices are identified as follows. Starting from each local minimum in 

the 2D image slice, an associated cavity is identified. Therefore, a region growing method is 

applied where the threshold is continuously increased, until the associated area exceeds an 

area of 12 mm2, thus only cavities up this this maximum size are identified. While 

increasing the threshold, the average gray-value of the associated segmented area and the 

minimum gray-value of the adjacent boundary pixels are monitored, and a cavity-score is 
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calculated based on their difference. The threshold with the highest score and the associated 

region-growing segmentation is selected as the cavity area. All pixels of the cavity area are 

assigned the cavity-score in the cavity enhancement result image.

After combining the axial, coronal and sagittal cavity detection results, a single-scale 3D 

TDF response is calculated for each voxel. Therefore, we utilize Frangi's vesselness measure 

[13]. However, contrary to Frangi's method we do not utilize the eigenvalues of the Hessian 

matrix, but instead the eigenvalues obtained from the derivative matrix ∇Fn(x) of a 

normalized image gradient vector field  where F = ∇(Gσ ⋆ I), I 

is the original image, Gσ is a Gaussian filter kernel at scale σ and Fmax the normalization 

parameter. Utilizing such a normalized vector field leads to sharp responses directly at the 

center of tubular structures and makes the response less sensitive to inhomogeneities along 

the airway. The parameters utilized for obtaining the gradient vector field are σ = 0.5 mm 

and Fmax = 50 HU. The parameters of Frangi's measure are α = 0.5, β = 0.5, and γ = 100. 

The resulting response of this small airway detection step is sensitive to thin, weakly 

contrasted elongated structures, but not very specific and may result in many false positive 

responses (Fig. 3(c)).

Centerline extraction—After calculation of the TDF responses, centerline-based 

representations of airway branch candidates are extracted utilizing a height ridge traversal 

method with hysteresis thresholding [8]. The centerlines for large airways and small airways 

are extracted separately, with thresholds adjusted such that the method provides centerlines 

for all structures that are potentially airways. For the large airways, thigh = 25 and tlow = 15 

are used. For small airways, thigh = 0.008 and tlow = 0.002 were selected. While the 

estimated radii of large airway centerline points are determined by the TDF, for small 

airways it is set to a constant value of 0.5 mm. Centerlines shorter than 3 voxels are 

discarded as noise responses. Remaining centerlines are split at sharp turns. Thus, for each 

centerline point, an angle is calculated based on the relative location of neighboring 

centerline points and the centerlines are split at locations where the angle is above 90°. The 

TDFs only provide a measure of tube-likeliness. Separating all true airways from 

background based on a single threshold is generally not feasible because of ambiguities in 

the data. As a result, there might be many false positive airway candidates (Figs. 3(b) and 

3(d)). These will be removed during the optimization step (Section III-C).

B. Finding Connection Candidates

The airway branch candidates are generally unconnected with gaps in between. These gaps 

may result from bifurcation locations (non-tubular shape), poor contrast, imaging artifacts, 

or occlusions along the airway lumen (stenosis or mucus, for example). To close these gaps 

and obtain a fully connected airway tree, the correct connection paths between the airway 

branch candidates need to be identified. In our approach, we obtain a set of potential 

connections between the airway branch candidates with two different approaches utilizing: 

(a) gray value information and (b) a continuation of an airway branch candidate beyond it's 

end points. Please note, that there might be several connection candidates between a pair of 

airway branch candidates (Fig. 4).
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Connections based on gray-value—The lumen of an airway is typically darker than 

the surrounding wall. Therefore, to identify suitable connection paths that stay inside of the 

airway lumen, a minimum cost path technique can be utilized. A suitable cost image is 

obtained based on the image gray-values, utilizing C(x) = max(I(x) + 1000, 0) where I(x) is 

the gray-value at location x in the original CT volume. Instead of calculating minimum cost 

paths between each pair of airway branch candidates separately, we utilize an approach 

based on the method described by Cohen and Deschamps [14]. Starting from a set of 

connected components (the airway branch candidate centerlines in our case), a geodesic 

distance transformation in the cost image is applied utilizing a fast marching algorithm. 

Then, saddle points in the distance image are identified and connection paths between the 

components are obtained using backpropagation in the distance image starting from the 

saddle points. This enables extraction of a set of minimum cost paths between the airway 

branch candidates in one processing step.

Connections representing a continuation of airway branch candidates—While 

above described minimum cost path approach is suitable to identify correct connections 

between airway branch candidates in many cases, such an approach does not necessarily 

succeed in cases of an occlusion or other disturbance along the airway lumen. Typically, 

each airway branch candidate continues beyond it's end point and connects to another airway 

branch along a short connection path. Therefore, to obtain suitable potential connections in 

cases of occlusions/disturbances along the airway, we also include connection candidates in 

our approach that extend from the end-point of an airway branch candidate to the centerline-

points of other airway branch candidates, if the length of the connection is smaller than 30 

mm. This may result in several connection candidates between the same two airway branch 

candidates, as indicated by the multiple red dotted lines depicted in Fig. 4. Limiting the 

distance to 30 mm avoids considering implausible connections between airway branch 

candidates that are too far apart, and thus, help reducing computation time.

C. Tree Reconstruction

After detection of airway branch and connection candidates, we utilize an optimization 

procedure to select the airway branch and connection candidates that represent the actual 

airway tree. Therefore, the airway branch and connection candidates are organized in a 

graph-structure G = (V, E) with a set of nodes V and a set of directed edges E. Each airway 

branch candidate corresponds to a node and each connection path candidate corresponds to a 

pair of directed edges. Different connection candidates between the same nodes are 

represented by different edge pairs. Each node v and edge e are assigned weights wv and we, 

respectively (Section IV). Then, an optimization procedure identifies the airway tree in two 

steps. First, we optimize the selection of branch connections such that each airway branch 

candidate becomes connected to a parent branch by selecting one edge pointing towards the 

airway branch candidate (Section III-C1). Second, the final set of airway branch candidates 

is selected by pruning subtrees who's overall weight does not justify inclusion in the final 

airway tree (Section III-C2).

Weights—The node and edge weights represent the confidence to include or exclude an 

airway branch or connection candidate in the segmentation result. Positive weights 
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encourage the selection of an airway branch or connection candidate and negative weights 

discourage the selection. The magnitude of the weight reflects the strength of the influence. 

The weights can be based on various features (Section IV), like for example branching 

angles. In order to calculate branching angles (and the resulting weights) in the tree structure 

correctly, it has to be known which end of the parent airway branch is closer (more 

proximal) to the trachea, as illustrated in Fig. 5. This information is not known a priori, but 

is obtained during the optimization process.

1) Optimization of Connections: In the first optimization step, we reduce the initial graph 

to an optimized rooted directed spanning tree by selecting a subset of branch connections E′ 

⊆ E where the sum of the associated weights is to be maximized. A rooted directed spanning 

tree is defined as a graph where each node (except the root) has one and only one incoming 

edge. The resulting graph G′ = (V, E′) is loop-free and contains all nodes of the initial graph 

G but only |V | − 1 edges. In our application, the root node is know as the trachea, which we 

can identify easily as the airway branch candidate with the largest volume starting in a fixed 

pre-defined area of the data set. Then, for optimization of the branch connections, we utilize 

Prim's minimum spanning tree algorithm [15] with the trachea as root node. Starting from 

the root node, the algorithm iteratively expands the tree structure until all nodes are merged 

based on the weights of adjacent outgoing edges. We calculate these weights on the fly, 

which allows correct calculation of branching angles and resulting weights.

2) Optimization of Branch Selection: As a result of the first optimization step described 

above, a fully-connected loop-free tree structure is obtained, which consists of true and false 

airway branch candidates. In the second optimization step, false airway branch candidates 

are removed by pruning the initial tree. This is accomplished by utilizing an approach that 

does not just consider weights of individual nodes or edges, but instead the overall combined 

weight of complete subtrees. For this purpose, we define a subtree weight for nodes, which 

is the overall sum of all node and edge weights in the subtree. Similar to individual weights, 

a positive subtree weight indicates that the subtree should be included in the final airway 

tree and a negative weight indicates that the subtree should be removed. The magnitude of 

the weight reflects the confidence. Then, subtrees who's subtree weight does not justify 

inclusion in the final airway tree are removed from the initial tree structure utilizing an 

adapted version of the global graph partitioning algorithm [10]. Because the original global 

graph partitioning algorithm may remove complete subtrees that have a high confidence in 

case of a single high cost connection to the parent branch, we introduce an additional 

criterion to preserve these structures. All nodes in the initial tree structure are sorted based 

on their depth in the tree. Starting from the distal ends of the tree, two tests are performed on 

each node. First, if a node has an overall subtree weight above a threshold tconf = 100.0 we 

have a high confidence that this node (airway branch candidate) is part of the airway tree. 

Then, the airway branch candidate and it's whole path from the trachea should be included in 

the airway tree and all nodes on the path from the trachea are not further considered for 

pruning. Second, if a node has an overall subtree weight below zero, it should not be 

included in the airway tree and is pruned from the initial tree structure.
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IV. Features and Weights

The weight of a node/edge in the graph can be based on different features, such as gray-

value along the centerline, the TDF response, or structural properties. In the following, we 

define several suitable features  for nodes v ∈ V and  for edges e ∈ 

E that can be utilized to obtain graph weights (Sections IV-A to IV-C). All or a subset of 

these features are then normalized and combined into the final node and edge weights for the 

graph-optimization algorithm (Section IV-D). A priori it is not obvious which feature subset 

will produce the best results. Therefore, the influence of various feature combinations 

(Section V) on the segmentation result will be evaluated (Section VI). A complete list of all 

defined features and related weight terms is provided in Table I.

A. Gray-Value Features

Gray-value based features such as the average density of a candidate airway branch or 

abrupt changes of density between connection candidates provide valuable information 

about what airway branch candidates to include and how to connect them to generate the 

final airway trees.

Let meanGRY (p), stdGRY (p), minGRY (p) and maxGRY (p) be the average, standard deviation, 

minimum and maximum density along the airway branch candidate centerline path or 

connection path p, respectively. Then, diffGRY (p1, p2) = max{|maxGRY (p2) − meanGRY (p1)|, 

|minGRY (p2) − meanGRY (p1)|} represents the maximum gray value deviation on centerline 

p2 compared to the average of centerline p1. p(e) and c(e) are the parent and child node of e, 

respectively. Then, we define the following three gray-value based features:

•  = meanGRY (v) is the average density along the airway branch candidate.

•  = diffGRY (p(e), e) is the largest difference in density along the connection 

path e relative to p(e).

•  = diffGRY (p(e), c(e)) is the largest difference in density along the airway 

branch candidate c(e) relative to p(e).

B. Local Shape Features

The TDF responses utilized to identify large and small tubular structures in Section III-A 

provide information about the local shape of the airway candidate. We define the local shape 

feature :

•  = meanTDF (v) is the mean TDF response along the airway branch candidate 

centerline path of v.

C. Structural Features

Besides the features described above, which consider information available for each voxel 

location, structural information of airway branch candidates or between airway branch 

candidates such as branching angles, radius change, or ”curvedness” of a centerline path, 

provide additional features on a higher abstraction level.
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Let p1 and p2 be the start and end point of a connection path e between a potential parent 

airway branch candidate v1 = p(e) and child branch candidate v2 = c(e) with associated 

tangent directions t1 and t2 and radii r1 and r2, respectively (Fig. 6). We define a measure of 

line curvedness for a centerline path d as S(d) = centerline_length(d)/

start_end_point_distance(d). In addition, we define the following six structural features:

•  = S(v) is the curvedness of the airway branch candidate centerline.

•  = S(e) is the curvedness of the connection path.

•  is the angle between the two airway candidates.

•  is the angle between the airway branch candidate v1 and the 

connection path e.

•  is the angle between the connection path e and the airway 

candidate v2.

•  is the relative increase in airway radius between the potential child 

and parent branch, where h(·) is the Heaviside step function.

D. Conversion of Features into Weights

To obtain the graph weights, all or just a subset of the features listed in Sections IV-A to IV-

C may be utilized. However, a suitable normalization and aggregation of the feature values 

into a graph-weight wv for each node v ∈ V and a weight we for each edge e ∈ E in the graph 

is required as described below.

Normalization—For normalization of each individual feature x, the following 

normalization function is utilized:

(1)

Eq. 1 normalizes a feature value x based on parameters μ and σ that are related to the feature 

type. Equation 1 may result in positive or negative values with values close to 0 for 

measurements close to μ and values between −1 and +1 for measurements within the 

standard deviation.  produces positive weights for feature values above μ and negative 

weights for feature values below μ. By utilizing  the inverse behavior can be achieved. 

This allows us to define the weighting functions appropriately such that a suitable balance 

between positive and negative weights is obtained, which is required by the graph-

optimization algorithm (Section III-C). The utilized weighting functions for all feature types 

are listed in Table I.

Combination—After transformation of the set of feature values  of a 

node into a set of weights , these are combined into a single weight for 
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the node by averaging over all individual weights. The same applies to 

of an edge and the resulting . Taking the average leads to a suitable 

balance between node and edge weights in the graph in case the number of individual node 

and edge weights are unequal. In addition, the weight of each node and edge is scaled 

proportionally by the length l(·) of the associated centerline of the airway branch candidate 

or connection path candidate, respectively. This gives longer centerlines a stronger influence 

compared to shorter centerlines. The final node and edge weights are obtained by:

(2)

and

(3)

E. Parameter Selection

The above features are weighted independently utilizing equation 1. Individual parameters μ 

and σ for each feature type were determined using statistical analysis on the development 

data sets described in Section II-1. The found parameters are listed in Table I.

V. Experimental Setup

A. Performance Comparison of Feature Combinations

To assess the performance of features introduced in Section IV, we utilized different feature 

combinations for graph-based airway reconstruction and evaluated the performance on the 

evaluation set described in Section II-1.

1) Feature Combinations—To generate meaningful feature combinations, all features 

were grouped into subsets of gray-value, local shape, and structural features, out of which 

seven feature combinations were generated, as summarized in Table II.

Feature combination TDF contains only one feature (local shape) with positive weight 

values (Section IV-B). However, the optimization algorithm requires positive and negative 

weights for the pruning step (Section III-C2). In order to be able to study only structural 

features, we introduce a constant counter balance weight  and add it to the group of 

local shape weights (see Table I) for all further experiments, which involved local shape 

features. The value of this weight was determined in an experiment on the development data 

sets based on an ROC analysis. Using feature combination TDF, the value of  was 

varied until an optimal balance between leakage and undersegmentation was found at 

.
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2) Reference Standard—For performance evaluation, we established reference airway 

tree segmentations following a similar approach as selected by the organizers of the 

EXACT’09 segmentation challenge [6].

For each CT scan, all airway branches from all tree reconstruction results produced with the 

different feature combinations were visually inspected for correctness by a trained 

pulmonologist with several years experience in analyzing lung CT scans. The pulmonologist 

visually assessed each branch of each airway tree reconstruction result and labeled them 

as ’true airway’ or ’false airway’ using custom software . The software allows visualization 

of the 3D airway tree structure, selection of individual branches, and visualization of cross-

sectional CT images around the branch for verification of it's correctness. Note that several 

of the branches included in the segmentations resulting from the different feature 

combinations are identical. To reduce the effort to inspect the same branches several times, 

branches that were previously assessed as ’true airways’ were automatically labeled. The 

visual evaluation required on average about 30 minute per data set.

After assessment of all segmentation results from the same data set, a reference airway tree 

was constructed as the union of all airway branches that were classified as ’true airways’. To 

obtain a clean structural representation of the reference airway tree without any duplicate 

centerlines, we utilized following procedure. Each ’true airway’ branch was individually 

transformed into a binary data set, using an inverse distance transformation based on a fast 

marching method [16], the individual binary segmentations were combined into one binary 

segmentation data set, from which we obtained clean centerline/radius based representations 

using skeletonization with pruning of surface-noise induced skeletonization artifacts [17] 

and distance transformation [18].

Average centerline lengths and number of branches of the resulting reference airway trees 

are summarized in Table III.

3) Performance Measures—Our performance measures focus on the structural 

correctness of the airway tree, which is represented as a set of centerline points T with 

associated radius information r(t) for each centerline point t ∈ T in the skeleton. Given a 

segmentation result TS and a reference segmentation TR, we use the true positive ratio T P 

R(TS, TR) = l(I(TR, TS))/l(TR), which represents the percentage of the correctly identified 

reference airway tree, and the false positive ratio F P R(TS, TR) = l(I(TS, TR))/l(TR), 

representing the percentage of airway branch/connection candidates that were falsely 

included in the segmentation. The function l(T ) represents the length of all centerlines in T 

and I(T1, T2) is the intersection between T1 and T2:

(4)

i.e. I(T1, T2) is the subset of T1 that remains after removing from T1 all centerline points that 

are outside of the volume covered by T2. In addition, the overall length and number of 

branches of the tree structure are reported.
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B. Evaluation on EXACT’09

For comparison of our approach with other airway segmentation methods, we applied our 

method on CT data sets from a publicly available database provided by the organizers of the 

EXACT’09 challenge [6]. During the EXACT’09 challenge, the organizers collected airway 

segmentation results obtained by several research groups with different segmentation 

algorithms on a common set of CT scans. Based on these individual segmentation results, 

the organizers constructed a reference segmentation for each CT scan by visual assessment 

of the individual airway branches. Using this approach allowed the organizers to measure 

and compare the performance of several state-of-the-art airway tree segmentation methods 

in a fair way. Algorithm developers can still submit new segmentation results for evaluation 

against this undisclosed standard. However, as mentioned by Lo et al. [6] “...some correctly 

segmented branches from newly submitted algorithms may be classified as incorrect if they 

are missing from the current [at the time of completion of the EXACT’09 competition] 

reference standard”. Thus, performance measures for newly submitted algorithms can 

partially be misleading in these cases.

We applied our method with all features included (feature combination ALL) to the CT 

scans in the EXACT’09 database. The EXACT’09 evaluation framework requires binary 

segmentations of the airway lumen for evaluation. To obtain such segmentations for the 

identified airway trees, we used an optimal surface finding method described in [19] to 

obtain a mesh-based segmentation of the inner and outer airway wall and voxelized the 

meshes representing the airway lumen surfaces. In addition, for two of the EXACT’09 

evaluation data sets (Case 24 and Case 26), Hounsfield units in the airways were 

significantly off from expected values with some voxels in the trachea (air) having a gray 

value < −1200 HU. We adjusted those data sets, by shifting the gray-values before 

processing them. All binary segmentations were sent to the EXACT’09 organizers, who in 

return provided evaluation measurements for the 20 evaluation cases in the database. For 

exact definitions of the performance measures, we refer to the paper of Lo et al. [6].

VI. Results

The average performances for each feature combination and cohort are summarized in Table 

IV. Figs. 7(a) and 7(b) show boxplots comparing TPR and FPR of the individual feature 

combinations, respectively. Fig. 7(c) compares the average TPRs and FPRs on all evaluation 

data sets. Some typical examples showing the impact of different feature combinations on 

the segmentation results are depicted in Fig. 8. Table V summarizes the average centerline 

lengths of correctly and falsely identified airway branches in the tree reconstruction results 

for feature combination ALL.

For feature combination ALL, the median TPR was 93.14% and the 1st quartile was TPR 

89.38% on all 50 evaluation data sets. Only 4 data sets had a TPR below 85%. The median 

FPR was 0.34% and the 3rd quartile was 0.63%. Only 3 data sets were found to have an FPR 

above 5%, all of which were IPF/sarcoidosis cases. Fig. 8(u) shows such a worst case 

scenario with an FPR of 5.26%.

The computation time on a single CT scan was about 10 minutes.
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Evaluation results on the EXACT’09 database are provided in Table VI. The mean tree 

length was 162.8 cm and the mean tree length detection ratio was 71.6 %. The mean false 

positive rate was 9.75 %. Results for the two data sets with the highest leakage count (Case 

34) and the largest leakage volume (Case 36) are shown in Figs. 9(a) and 9(b), respectively.

VII. Discussion

A. Performance of Feature Combinations

The method presented in Section III translates airway detection/reconstruction in CT scans 

into a graph-based optimization problem. While this is a promising approach, its 

performance largely depends on the confidence assigned to possible branch and connection 

candidates. We have defined eleven features and grouped them into gray-value, local shape, 

and structural categories (Table I). Because it is not clear a prior which feature or feature 

combination is best suited for processing a specific cohort or a mixture of cohorts, we 

evaluated all possible combinations of feature groups regarding their TPR and FPR.

Ideally, a combination yielding 100% TPR and 0% FPR is preferable (point in the upper left 

corner in Fig.7(c). As can be seen in Fig. 7(c) and Table IV, no feature combination is 

totally error free and reaches this point. In absence of a perfect feature combination, a trade-

off has to be made. Clearly, the best compromise depends on the target application. For 

example, for some applications (e.g., lung fissure detection) falsely detected airways can be 

critical and need to be avoided, while for others a higher detection rate (TPR) is more 

preferable (e.g., computer-aided measurement of airway diameters based on user selected 

path).

1) Performance across cohorts—The combination TDF+STR offers the highest 

airway detection performance (TPR), but at the cost of 5.55% falsely detected airways 

(FPR). The lowest FPR rates offer combinations GRY+STR and ALL, where ALL has a 

higher TPR (91.8%) versus GRY+STR (86.94%) at the cost of a slightly increased FPR 

(+0.18%). The differences in FPR and FPR were both found to be statistically significant in 

a signed rank test with p = 9.1e−10 and p = 7.6e−10, respectively.

The features TDF, STR, and GRY as well as the combination GRY+TDF are not 

recommended, because neither of them performs well regarding TPR or FPR. Out of these 

four constellations, the feature GRY, which only considers gray-value characteristics, is 

clearly the worst performer (lower right corner in Fig. 7(c)).

Note that all good performing feature combinations (ALL, GRY+STR, and TDF+STR) 

include the feature category STR, whereas STR alone is not performing well.

2) Performance per cohort—On normals, all feature combinations performed well with 

small differences among feature combinations (Table IV). However, for cohorts with lung 

dis ease, the performance variation amongst feature combinations is getting larger. In 

particular, on the cohort IPF/sarcoidosis, results obtained with most feature combinations 

showed a large amount of leakage (bottom row in Fig. 8). Only feature combinations TDF
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+STR and ALL had an average FPR≤ 5%, while all other feature combinations had an 

average FPR≥ 10% on IPF/sarcoidosis cases.

When looking at the results on individual cohorts, a similar picture emerges as described in 

Section VII-A1 above, with only a few exceptions. First, combinations GRY+STR and ALL 

show a good combination of high TPR and low FPR. On all five cohorts, the combination 

ALL shows a better TPR with a statisically significant improvement for all cohorts, as 

shown by a signed rank test with a significance level of 5%, while the differences in FPR 

were not statistically significant.

The feature combination ALL showed an FPR≥ 5% on only 3 data sets, all of which were 

IPF/sarcoidosis cases. One of these cases is shown in Fig. 8(u). IPF and sarcoidosis are 

diseases that can lead to progressive fibrosis of the lung parenchyma and in advanced stages 

to peripheral honeycombing (i.e., clustered cystic air spaces between 3-10 mm in diameter, 

which are usually sub-pleural and basal in distribution). These fibrotic changes lead to 

architectural distortions of the airway tree anatomy (Fig. 1(d)), making it difficult to 

distinguish true airways from the background of end-stage fibrotic lung parenchyma/

honeycombing.

The top TPR across cohorts is delivered by the combination TDF+STR, but at the cost of 

statistically significantly higher FPR (p = 7.6e−10) compared to combination ALL. For this 

combination, the FPR is quite high for IPF/sarcoidosis (18.18%) in comparison to the results 

on the other four cohorts. As IPF and sarcoidosis can lead to substantial peripheral 

honeycombing of the lung parenchyma and to architectural distortions of the airway tree 

anatomy, local shape features (TDF) and structural features (STR) are affected.

B. Comparison with Other Methods

A direct comparison of our airway segmentation framework with other approaches is not 

straight forward. For example, we have tested it with feature combination ALL on the 

EXACT’09 challenge database [6], and the achieved results were presented in Section VI. 

However, when comparing these results to the EXACT’09 challenge results summarized in 

[6] (Table VII lists some best performing approaches including two of our previous 

published methods), the limitations discussed in Section V-B need to be taken into account. 

Because the EXACT’09 reference standard segmentations may not contain all true airways, 

airway branches that were correctly identified by our method might have been misclassified 

as leakage, as demonstrated in Fig. 9. For this example, the two EXACT’09 data sets with 

the highest reported leakage volume and leakage count were selected. The EXACT’09 

classification is shown in Figs. 9(a) and 9(b). For these two cases, we asked an experienced 

pulmonologist to identify true leakage using the approach described in Section V-A2, which 

is similar to the EXACT’09 approach. The results of the expert assessment are depicted in 

Fig. 9(c) and 9(d). Based on this expert analysis, the leakage (FPR) would have been 3.08% 

and 1.78%, respectively. Independent of these limitations, our method performed well on the 

EXACT’09 data (Table VII). Thus, it could help improving the performance of approaches 

that fuse the results of different airway segmentations, as proposed by Lo et al. in [6].
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In previous work we presented an other approach for reconstruction of airway trees from 

CT, which also identifies tubular structures and connects them into an airway tree [9]. The 

method imposed several hard constraints (thresholds) during the tree reconstruction to avoid 

leakage into non-airway structures. The decision whether an airway branch was connected 

or not was made for each airway branch/connection candidate individually, solely based on 

local image information, which can lead to missing airway subtrees. Further, the method 

utilized only structural features for weight calculation. In contrast, the new framework 

utilizes soft weights for airway branch/connection candidates. These weights are then 

utilized in the optimization algorithm, which considers the weights of airway branch/

connection candidates in the context of the whole tree structure. This leads to an improved 

robustness against local ambiguities and thus to improved results (Table VII).

C. Computational Costs

Processing of a single CT scan takes approximately 10 minutes on a workstation with a 2.4 

GHz processor and Tesla C-2070 card. Finding potential branch and connection candidates 

consumes the vast majority (97%) of the required computing time. Thus, finding a good 

performance tradeoff between computing time and detection performance has little practical 

impact, because the overall computation time is virtually independent of the utilized feature 

combination.

D. Parameters

The method utilizes two categories of parameters. The first kind is utilized to define airway 

branch and connection candidates (Sections III-A and III-B). For example, these parameters 

specify the expected airway diameter range or minimum required tube likeliness. Their 

values are set less restrictive, only discarding completely implausible airway branch or 

connection candidates. Thus, a number of false positive candidates are expected to remain 

after this processing stage. The second type of parameters are used for the feature weighting 

functions, which are utilized during the tree reconstruction step (Section III-C) to distinguish 

between true and false candidates. The parameters used for the weighting function (Equation 

1) do not act as hard thresholds, but define a positive, neutral (weights close to 0), and 

negative impact range instead. These values were found based on a statistical analysis on the 

training data set (Section IV-E), and we observed that small variations of these values had 

little impact on detection results.

E. Imaging Protocol

The vast majority of CT scans for detection, characterization, and quantitative assessment of 

lung disease is performed at inspiration (TLC). For example, the American College of 

Radiology (ACR) recommends that thoracic computed tomography for lung cancer 

screening should be obtained in a suspended state of full inspiration whenever possible.1 

Similarly, many large clinical trials follow a TLC only imaging protocol. In contrast, end-

expiratory images are typically utilized to evaluate for air-trapping and are far less 

frequently performed. Consequently, our airway detection approach was developed for TLC 

1http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/LungScreening.pdf
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lung CT scans. However, our approach is also applicable to expiratory lung CT scans (Fig. 

10). Clearly, at functional residual capacity (FRC), less airways are visible compared to 

TLC, because of the reduced lung volume, and airway detection is more difficult. Further 

more, other aspects of the imaging protocol like utilized CT reconstruction kernel also 

impact achievable airway detection performance (Fig. 10). In this context, note that the 

results shown in Fig. 10 were produced without any adaptions of our method or its 

parameters. Thus, it is very likely that detection performance can be further optimized for a 

given imaging protocol.

F. Current Limitations

While there is a potential large number of features that could be utilized by the presented 

graph-based airway tree reconstruction method, we have focused on eleven features, which 

cover many features utilized by published airway detection/segmentation methods. Also, to 

reduce computational and other complexities of this effort, we have grouped these features 

into three categories. Nevertheless, we are not aware of similar studies that have 

systematically evaluated different features on several cohorts in the context of graph-based 

airway segmentation.

Results presented in this study are a good starting point for further investigations as well as 

development of new, powerful features for airway detection.

The method as presented obtains a structural representation of the airway trees, consisting of 

centerline points with radius estimates. In case, accurate airway lumen and wall surface 

segmentations are required, one can utilize the structural information obtained from our 

method as a shape prior to initialize a consecutive surface segmentation method such as that 

proposed by Liu et al. [19], for example.

VIII. Conclusion

We have presented a graph optimization based airway tree reconstruction framework and 

evaluated the utility of different features for this specific task. As demonstrated by 

evaluation results, a high airway detection rate in combination with a low number of false 

positives across different lung cohorts, including normal and diseased lungs, is achievable 

with our approach. A comparison with other methods on the EXACT’09 data set has shown 

that our approach is one of the top performers. In addition, it is very likely that additional 

discriminative features will allow us to further increase the airway detection rate, while 

reducing the number of false positives. Thus, future work will focus on studying new 

features and combinations thereof. One advantage of the presented framework is that it can 

be easily adapted to other application domains (e.g., vessel detection), mainly requiring the 

definition of suitable (gray-value) features.
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Fig. 1. 
Chest CT scans and corresponding airway tree segmentations in patients with different lung 

disease. (a)-(e) Coronal image slices of CT scans showing one of the lungs. All CT scans are 

visualized using the same gray-value window −1000 to −300 HU. (f)-(j) Corresponding 

airway tree reference standard segmentations. (a) and (f) Healthy individual. (b) and (g) 

Patient with chronic obstructive pulmonary disease. (c) and (h) Patient with asbestosis. (d) 

and (i) Patient with sarcoidosis. (e) and (j) Patient with severe asthma.
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Fig. 2. 
Airway tree reconstruction based on graph-optimization. (a) Airway branch candidate 

centerlines. (b) Airway branch connection candidate centerlines (red) and (c) corresponding 

graph structure. Each airway branch candidate is represented by a node and each connection 

candidate is represented by a pair of directed edges. (d) The graph structure alone, which is 

utilized for airway tree reconstruction. (e) Nodes and edges selected by the optimization 

algorithm. (f) Final airway tree.
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Fig. 3. 
Examples of airway branch candidates. (a) Large airway TDF result shown as inverted 

Maximum Intensity Projection (MIP). (b) Large airway branch candidate centerlines. (c) 

Small airway TDF result shown as inverted MIP. (d) Small airway branch candidate 

centerlines.
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Fig. 4. 
Connection candidates between two airway branch candidates (1) and (2). Dotted green line: 

minimum cost path connection candidate. Dashed red lines: several connection candidates 

representing continuation of the airway branch candidate.
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Fig. 5. 
The branching angle between a parent branch (1) and a child branch (2) depends on which 

end of the parent branch is closer to the trachea. (a) Left end of parent branch is closer to 

trachea. (b) Right end of parent branch is closer to trachea.
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Fig. 6. 
Illustration of structural information utilized to obtain weights for an edge e between nodes 

v1 and v2.
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Fig. 7. 
TPRs and FPRs for different feature combinations. (a) Boxplots of TPRs. (b) Boxplots of 

FPRs. (c) Average TPRs versus FPRs.
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Fig. 8. 
Influence of different feature combinations on tree reconstruction performance on three 

different CT scans. The images show the airway trees with true positives (green), false 

positives (red), and false negatives (yellow). Renderings of the airways are based on the 

centerline and radius estimate information.
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Fig. 9. 
Results on the two EXACT’09 data sets with the highest leakage count and volume when 

compared to the EXACT’09 reference standard segmentations. For comparison, we 

performed on the same data sets an evaluation of the segmentation results using independent 

expert branch-by-branch assessment as described in Section V-A. Airways classified as 

correct are shown in green, airways classified as leakage are shown in red. (a) CASE34 

when compared to EXACT’09 reference standard (leakage count = 206). (b) CASE36 when 

compared to EXACT’09 reference standard (leakage volume = 4565.3 mm3). (c) CASE34 

analyzed by independent expert (FPR = 3.08%). (d) CASE36 analyzed by independent 

expert (FPR = 1.78%). Renderings of the airway in (c) and (d) are based on the centerline 

and radius estimate information only, while the renderings in (a) and (b) are based on voxel-

accurate delineations of the airway lumen.
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Fig. 10. 
Comparison of airway detection results generated with our method in dependence of utilized 

reconstruction kernel (B30, B35, and B50) and respiratory state (TLC and FRC) of a lung 

imaged with a Siemens Somatom Definition Flash scanner. All airways are rendered based 

on calculated centerline and estimated radius information.
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TABLE I

List of individual features and weight terms for nodes and edges. A detailed description of features can be 

found in Sections IV-A- IV-C.

Parameters of normalization function W (Eq. 1)

Weight w μ σ Description of feature x

Gray-value feature based weights (Section IV-A):

wGRY 1
v = − W(xGRY 1

v ) –800 150 mean gray-value

wGRY 2
e = − W(xGRY 2

e ) 0.0
stdGRY(p(e))

* gray-value deviation on connection path

wGRY 3
e = − W(xGRY 3

e ) 0.0
stdGRY(p(e))

* gray-value deviation of child branch

Local shape feature based weights (Section IV-B):

wTDF 1
v = + W(xTDF 1

v ) 0.0

wTDF 2
e = − 3 – – TDF counter-balance weight for connections

Structural feature based weights (Section IV-C):

wSTR1
v = + W(xSTR1

v ) 1.0 0.3 curvedness of branch centerline

wSTR2
e = + W(xSTR2

e ) 1.3 0.3 curvedness of connection path

wSTR3
e = + W(xSTR3

e ) 0.0 0.3 angle between parent and child branch

wSTR4
e = + W(xSTR4

e ) 0.0 0.3 angle between parent branch and connection path

wSTR5
e = + W(xSTR5

e ) 0.0 0.3 angle between connection path and child branch

wSTR6
e = + W(xSTR6

e ) 0.0 0.1 relative increase in airway radius

*
This parameter depends on properties of the parent airway branch candidate and is not a constant value.
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TABLE II

Evaluated feature combinations.

Feature combination Utilized features

gray-value local shape structure

GRY ✓

TDF ✓

STR ✓

GRY+TDF ✓ ✓

GRY+STR ✓ ✓

TDF+STR ✓ ✓

ALL ✓ ✓ ✓
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TABLE III

Average centerline length and number of branches of reference airway trees.

Cohort Centerline length (in cm) Number of branches

normals 348.2 279.6

COPD 351.5 270.4

asbestosis 426.2 344.6

IPF/sarcoidosis 513.8 413.5

asthma 352.2 307.2

average 398.4 323.1
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TABLE V

Average centerline length of correctly identified airway branches and false airway branches per data set for 

feature combination ALL.

Cohort Length of correctly identified branches (cm) Length of false positive branches (cm)

normals 334.9 0.9

COPD 325.9 1.5

asbestosis 388.1 1.2

IPF/sarcoidosis 451.1 18.8

asthma 321.5 1.4

average 365.7 4.8
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TABLE VII

Results of different methods on EXACT'09 database (see Lo et al. [6] for details).

Method Tree length detected False positive ratio Comment

Evaluation on EXACT'09 after the challenge: false positives may be correct airways missing in the EXACT'09 reference standard (Section 
V-B)

Proposed method 71.60% 9.75% with feature combination ALL

EXACT'09 challenge participants: false positives for these methods represent true leakage

Feuerstein et al. [20] 73.30% 15.56% Adaptive region growing and local image enhancement

Tschirren et al. [21] 58.90% 1.19% Automated region growing with manual branch adding and leak 
trimming which requires approximately 1 hour user interaction per 
data set

Bauer et al. [22] 58.40% 1.44% Gradient vector flow

van Rikxoort et al. [23] 57.0% 7.27% Multi-threshold region growing

Fetita et al. [24] 55.90% 1.96% Morpholocial aggrevative

Bauer et al. [9] 55.20% 2.44% Tube detection and linkage

Lo et al. [25] 54.00% 0.11% Voxel classification and vessel orientation

... 8 more methods showed a lower tree length detected
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