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Abstract—Electron and Light Microscopy imaging can now
deliver high-quality image stacks of neural structures. However,
the amount of human annotation effort required to analyze them
remains a major bottleneck. While Machine Learning algorithms
can be used to help automate this process, they require training
data, which is time-consuming to obtain manually, especially
in image stacks. Furthermore, due to changing experimental
conditions, successive stacks often exhibit differences that are
severe enough to make it difficult to use a classifier trained for a
specific one on another. This means that this tedious annotation
process has to be repeated for each new stack. In this paper
we present a domain adaptation algorithm that addresses this
issue by effectively leveraging labeled examples across different
acquisitions and significantly reducing the annotation require-
ments. Our approach can handle complex, non-linear image
feature transformations and scales to large microscopy datasets
that often involve high-dimensional feature spaces and large 3D
data volumes. We evaluate our approach on four challenging
Electron and Light Microscopy applications that exhibit very
different image modalities and where annotation is very costly.
Across all applications we achieve a significant improvement over
the state-of-the-art Machine Learning methods and demonstrate
our ability to greatly reduce human annotation effort.

Index Terms—Electron and Light Microscopy, Domain Adap-
tation, Transfer Learning, Boosting, AdaBoost, Machine Learn-
ing

I. INTRODUCTION

Imaging modalities such as Electron (EM) and Light Mi-
croscopy (LM) can now deliver high-quality, high-resolution
image stacks of neural structures, such as the ones depicted by
Fig.[I] Typically, a combination of manual and semi-automated
segmentation or annotation tools such as [[1], [2]], [3]] are then
used to extract structures of interest. However, while the ever
growing amount of available imagery should help unlock the
secrets of neural functioning, the required amount of human
annotation effort remains a major bottleneck. Therefore, there
has been a great interest in automating the annotation pro-
cess and most state-of-the-art algorithms nowadays rely on
Machine Learning.

However, such algorithms still require significant amounts
of manual annotation to train classifiers that can generalize
well to unseen data. In microscopy, this can be a problem
because the data preparation processes tend to be complicated
and not easily repeatable, which means that a classifier trained
on one acquisition will not perform very well on a new one,
even when using the same modality. This is because Machine
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Learning normally relies on the fact that the training and run-
time data samples are drawn from the same distribution.

For example, acquiring the Electron Microscopy (EM) im-
ages of brain structures shown in the top two rows of Fig. [I]
requires tissue staining to increase contrast, followed by resin
encasing before the acquisition. As a result, two samples of
the same brain region acquired at different times may look
significantly different due to differences in their preparation.
This is even more true when the samples come from different
parts of the brain, so that classifiers trained for one of them
perform poorly on the other. While it is theoretically possible
to gather new training data after each new image acquisition,
it is impractical if high-throughput is desired because manual
labeling of 3D image stacks is incredibly time-consuming.

A practical solution is to use Domain Adaptation [4] and
acquire sufficient amounts of training data after one specific
image acquisition and then to use it in conjunction with a
small amount of additional training data that can be acquired
quickly after each subsequent one to retrain the classifiers.
Following the terminology of Domain Adaptation, we refer
to the acquisition with sufficient training data as the source
domain and the one with with limited supervision as the farget
domain. Our goal is then to exploit the labeled data in the
source domain to learn an accurate classifier in the target
domain despite having only a few labeled samples in the latter.
While Domain Adaptation has received significant attention
in the Machine Learning and Computer Vision communities,
to our knowledge it has only recently been gaining interest
in Medical Imaging, and remains largely unexplored for the
acquisition problem depicted by Fig. [T} For many bio-medical
applications, such as the ones considered in this work, we
believe it is greatly needed to reduce annotation effort and
make machine learning algorithms of practical use.

Current approaches to Domain Adaptation, and more gen-
erally Transfer or Multi-Task Learning [3], [6], [[7], [8], treat
classification in each domain as separate but related problems
and exploit their relationship to learn from the supervised
data available across all of them. Multi-task learning methods
typically assume that the decision boundaries in each domain
can be decomposed into a private and a shared term in a
common feature space X, as illustrated by Fig. [J(a). Unfortu-
nately, acquisition artifacts like the ones shown in Fig. [T(a-d)
may induce a significant, possibly non-linear transformation
in feature space that may violate this assumption, as shown in
Fig. P|b).

To correct for these unknown transformations, we propose
to learn a non-linear mapping of the features in each domain,
such that samples can be mapped to a common discriminative
latent space Z, where a shared decision boundary exists, as
depicted by Fig. J[b). Such mappings seek to compensate
for domain differences and acquisition artifacts, so that the
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classification task can be shared among them.

In this paper we develop a boosting-based approach [9],
[LO], [8] that can simultaneously learn the non-linear mappings
as well as the shared decision boundary. We boost regression
trees or stumps and model the domain-specific mappings
with a set of common regression trees that are shared across
domains, but whose thresholds have been adapted to each
of them. Our approach does not require neither specific a
priori knowledge about the mappings’ global analytical form
or explicit correspondences between training samples in the
different domains. This is unlike more conventional Latent
Variable Models that can be applied to learn a shared map-
ping, such as those based on Canonical Correlation Analysis
(CCA) [L1], [12]. These methods generally require instance-
level correspondences which limits their applicability because
they rarely are explicitly available and can be difficult to
establish reliably. The situation is further complicated by the
fact that the unknown mappings often are non-linear. Although
kernel methods can handle this in theory [L1], [13], [14], they
require kernel functions that can be difficult to specify a priori.
Furthermore, the computational complexity of kernel methods
scales quadratically with the number of training samples, thus
limiting their applicability when there are large amounts of
data available in the source domain.

In contrast, our approach easily scales to large training
datasets and high-dimensional feature spaces, often found
in medical imaging [15]], [L6], [17]. Moreover, unlike other
methods, our approach does not require tuning any parameter
except those needed by the boosted classifier it relies on. In
practice, this is an important advantage, since cross-validation
can be unreliable when few labeled data is afforded in the
target domain.

We evaluate our approach on the four challenging bio-
medical applications depicted by Fig.

o The first two applications are mitochondria and synapse
segmentation from large 3D Electron Microscopy (EM)
stacks of neural rat tissue where the task is to classify
voxels that belong to either structure of interest. We use as
source and target domains stacks coming from different
parts of the brain, each exhibiting different acquisition
artifacts, making it difficult to apply standard machine
learning to learn a classifier that generalizes across image
stacks and for which domain adaptation is required to
reduce costly annotation effort.

e We also consider the detection of Olfactory Projection
Fibers from two-photon Light Microscopy stacks and
axons in Brightfield imagery. Although these represent
two very different imaging modalities, the task is the
same in each, where we want to classify voxels as to
whether they belong to tubular structures. To showcase
the power of our approach, we use as our source domain
the 2D aerial images of roads shown in the bottom left of
Fig. [T} This is of practical significance for two reasons.
First, the appearance of the roads is very different from
that of the fibers or dendrites. Second, delineating semi-
automatically in 2D is much easier than delineating in 3D
and our method makes its possible to leverage this easily
obtainable 2D data to perform the much harder 3D task.

We will show that our approach consistently outperforms
recent multi-task learning techniques [8]], [[18], [L1] across this
wide range of applications. Our approach was first introduced
in a conference paper [19]. Here, we include an extended
discussion of related work, a more detailed description of our
method, and a more extensive evaluation including two new
bio-medical applications and a comparison to an additional
baseline method [[18]].

II. RELATED WORK

Domain Adaptation and more generally Multi-Task Learn-
ing have received considerable attention in the Machine Learn-
ing and Computer Vision communities. However, they have
only recently been gaining interest in Medical Imaging [20],
[21]], [22], and remain largely unexplored for the acquisition
problem. In this section we briefly review the state-of-the-
art methods in each of these communities and clarify their
connections to our work.

Initial approaches to multi-task learning exploited super-
vised data from related tasks to define a form of regularization
in the target problem [3]], [23]]. In this setting, related tasks,
also sometimes referred to as auxiliary problems 6], are used
to learn a latent representation and find discriminative features
shared across tasks. This representation is then transferred to
the target task to help regularize the solution and learn from
fewer labeled examples. The success of these approaches cru-
cially hinges on the ability to define auxiliary tasks. Although
this can be easily done in certain situations, as in [6]], in many
cases it is unclear how to generate them.

More recent multi-task learning methods jointly optimize
over both the shared and task-specific components of each
task [7], [24], [8], [25]. In [7] it was shown how the two
step iterative optimization of [6] can be cast into a single
convex optimization problem. In particular, for each task their
approach computes a linear decision boundary defined as
a linear combination between a shared hyperplane, shared
across tasks, and a task-specific one in either the original
or a kernelized feature space. This idea was later further
generalized to allow for more generic forms [24], [26]], [27],
[25]], as in [24] that investigated the use of a hierarchically
combined decision boundary.

For many problems, such as those common to domain
adaptation [4], the decision problem is in fact the same across
tasks, however, the features of each task have undergone some
unknown transformation. Feature-based approaches seek to
uncover this transformation by learning a mapping between
the features across tasks [28]], [29], [14]. A cross-domain
Mahalanobis distance metric was introduced in [28]] that lever-
ages across-task correspondences to learn a transformation
from the source to target domain. A similar method was
later developed in [30] to handle cross-domain feature spaces
of a different dimensionality. [31] devises a surrogate kernel
approach for modeling covariate shift that matches domain
feature distributions in Hilbert space and avoids the need for
cross-domain correspondences. Shared latent variable models
have also been proposed to learn a shared representation across
multiple feature sources or tasks [L1], [29], [13], [14], [32].
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Fig. 1.

Segmentation and path classification applications we consider: (a,b,c,d) slice cuts from four 3D Electron Microscopy acquisitions from different

parts of the brain of a rat. Each 3D stack contains millions of voxels to be classified. (e,f,g) 2D aerial road images and 3D neural axons from Olfactory
Projection Fibers (OPF) and Brightfield microscopy. Ground truth positive samples shown in yellow. Best viewed in color.

Feature-based methods generally require well established
cross-domain correspondences and/or model non-linearities
using the kernel-trick that relies on the selection of a pre-
defined kernel function and is difficult to scale to large
datasets. In this paper, we pursue a discriminative learning

approach that does not require explicit cross-domain corre-
spondences, and exploits the boosting-trick [8], [9] to handle
non-linearities and learn a shared representation across tasks,
overcoming these limitations.

The use of boosting for multi-task learning was explored
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(a) Standard Multi-task Learning

Fig. 2.

>
(b) Domain Adaptation

Ilustration of the difference between (a) standard Multi-task Learning (MTL) and (b) our Domain Adaptation (DA) approach on two tasks. The

feature points for each task are shown in either red or blue, and each point is drawn as a cross or circle depending on its class. The dotted and dashed curves
represent the decision boundaries of each task. MTL assumes a single, pre-defined transformation ¢(x) : X — Z and learns shared and task-specific linear
boundaries in Z, namely 8,, 81 and B2 € Z. In contrast, our DA approach learns a single linear boundary 3 in a common feature space Z, and task-specific

mappings ¢1(x), ¢2(x) : X — Z. Best viewed in color.

in [8] as an alternative to kernel-based approaches. For each
task they optimize for a shared and task-specific decision
boundary, as in [7], except that non-linearities are modeled
using a boosted feature space. As with other methods, how-
ever, additional parameters are required to control the degree
of sharing between tasks and can be difficult to set, especially
when one or more tasks have only a few labeled samples. Simi-
larly, [33] devises a boosting-based domain adaptation method
assuming that the source domain contains out-dated samples
that are down-weighted during learning. Even though [8] and
[33] address different adaptation problems, both assume that
there exist weak learners that can be shared between domains
or tasks as a means of regularizing inter-domain learning,
which may not be true in cases such as those shown in Fig. [I]

Another interesting method is that of [18] that learns a
boosted regressor for web search ranking, using regression tree
weak learners. They adapt boosted regression trees learned in
the source domain to the target domain by interpolating the
thresholds and leaf-node responses in each tree. In this way,
similar to [8]], [33], they seek to recover the private component
of the target domain that in our problem corresponds to the
unwanted acquisition artifacts. Furthermore, they require an
interpolation parameter that weights the different domains,
which, as with [8], can be difficult to cross-validate when
afforded few training samples in the target domain.

In contrast to [8]], [33], [18]], we learn a mapping to a
shared feature space that preserves the task-relevant features
and learn the thresholds across domains by jointly minimizing
a common loss that does not rely on a pre-defined adaptation
parameter.

Within the Medical Imaging community, domain adaptation
has been applied to augment training data from synthetically
generated samples [22], [34], as well as to modality fusion [35]]
and multi-task anomaly detection in CT and ultrasound [20]].
However, the data acquisition problem depicted by Fig.
remains largely unexplored. An exception is [21], which
targets image segmentation using labeled samples obtained
across multiple image acquisitions. However, [21] is based

on a sample re-weighting scheme that relies on having several
labeled acquisitions, not always available in large numbers for
EM and LM, and is difficult to scale to large training datasets.
In contrast, our approach can leverage as little as one source
acquisition, and is also easily amenable to large data volumes
and high dimensional feature spaces.

III. OUR APPROACH

In this section we first introduce our shared latent space
model. We then discuss the specific weak learners we use.

A. Shared Latent Space Model

We consider the problem of learning a binary decision func-
tion from supervised data collected across multiple domains.
In our setting, each task is an instance of the same underlying
decision problem, however, its features are assumed to have
undergone some unknown non-linear transformation. Even
though rask and domain originally denote different concepts, in
the remainder of this paper we use these terms interchangeably
as is generally done in the literature [33]], [8]].

Assume that we are given training samples X
{xt,y!}Ne, from t = 1,...,T tasks, where x! € RP repre-
sents a feature vector for sample 7 in task ¢ and y! € {—1,1}
its label. For each task, we seek to learn a non-linear transfor-
mation ¢;(x") that maps x’ to a common, task-independent
feature space Z, accounting for unwanted feature transforma-
tions. Instead of relying on pre-defined kernel functions, we
model each transformation using a set of M task-specific non-
linear functions #; = {hf,...,hi,}, h% : RP — R, to define
bt 2 X — Z as ¢i(x) = [Ah(xh),...,hh,;(x")]T. In the
context of boosting, the hﬁ() represent all the possible weak
learners and M = |H;| is the total number of them, which
can be large and possibly infinite.

In this paper we consider functions of the form

j:]-a"'aM7 (1)

B(x!) = (! = 7).
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where H = {hq, ...,
RP are task-specific.

An interpretation of Eq. [l] is that all tasks share mid-
level representations of the decision boundary, namely the
weak learners h;(-). However, for those representations to
be shared among domains, the low level responses must be
adapted to compensate for varying imaging conditions. The
latter is accomplished through the T;. Empirically we found
this model to work well in cases of domain shift resulting
from differences in acquisition artifacts, such as those typically
encountered in bio-medical applications.

Assuming that the problem is linearly separable in Z, the
predictive function f;(-) : R” — R for each task can then be
written as

has} are shared across tasks, while T; S

fr(x) = BT ¢(x

Z Bihs(x'
where 3 € RM is a linear decision boundary in Z that is
common to all tasks, and corresponds to a non-linear boundary
in each of the original task-specific input spaces via the ¢;.
This contrasts with previous approaches to multi-task learning
such as [7]], [8] that learn a separate decision boundary per
task, 3, in a common input space ¢(-), as shown in Fig. 2| In
the results section we show that our approach performs better
for applications such as those depicted by Fig. [I]

We learn the functions f;(-) by minimizing the exponential
loss on the training data across each task

- 7- 2

T
B* T = %11%12 ¢t L(B,Ty; Xy), 3)
Tot=1

where ¢; € R is the weight of task ¢, and

L(B,T; X;) = Zexp — yt fi(xh)] @
= Zexp[ yZZﬁJ -], ®
i=1
with T = [I'y,..., 7] and Ty = [7'1, cey o]

The explicit minimization of Eq. (3) can be very difficult be-
cause in practice the dimensionality of 3 can be prohibitively
large and the h;’s are typically discontinuous and highly
non-linear. Luckily, this is a problem for which boosting is
particularly well suited [9]]. It has been shown to be an effective
method for constructing a highly accurate classifier from a
possibly large collection of weak predictors. Similar to the
kernel-trick, the resulting boosting-trick [9]], [10]], [8] can be
used to define a non-linear mapping to a high dimensional
feature space in which we assume the data to be linearly
separable. Unlike the kernel-trick, however, the boosting-trick
defines an explicit mapping for which 3 is assumed to be
sparse [36], [8]. Within this setting, each h; can be interpreted
as a weak non-linear predictor of the task label.

We use gradient boosting [9], [10] to solve for f;(-).
Given any twice-differentiable loss function, gradient boosting
minimizes the loss in a stage-wise manner for iterations k = 1
to K. More specifically, we use the quadratic approximation

introduced by [10]. When applied to minimizing Eq. (@), the
goal at each boosting iteration is to find the weak learner
h € H and the set {7!,..., 77} that minimize

T [Nt
Z wak [ﬁ(xt

t=1 i=1

_ 7~.t> it ]2 (6)
ik )

where wf, and r!, can be computed by dlfferentlatrng the
loss of Eq. (3)), obtaining w!, = cie —vife(xD) and rhe = yk.
Once h and {7, 71} are found, a line-search procedure
is applied to determine the optimal weighting for h and
the predictive functions f;(-) are updated, as described in
Alg. [1l Shrinkage may be applied to help regularize the
solution, particularly when using powerful weak learners such
as regression trees [9]].

Our proposed approach is summarized in Alg. [I] The main
difficulty in implementing it is at line 4. Finding the optimal
values of i and {#',..., 77} that minimize Eq.|6|can be very
expensive, depending on the type of weak learners employed.
In the next section we show that regression trees and boosted
stumps can overcome this problem.

B. Weak Learners

In this section we introduce the weak learners used in our
approach and their corresponding training procedure. We con-
sider both regression tree and decision stump weak learners.

Regression trees have proven very effective when used as
weak learners in conjunction with gradient boosting [37]]. An
important advantage is that training regression trees involves
almost no parameter tuning and is very efficient when a greedy
top-down approach is used [9]].

Decision stumps are a special case of single-level regression
trees. Despite their simplicity, they have been shown to achieve
high performance in challenging tasks such as face and object
detection [38], [39]]. In cases where feature dimensionality D
is very large, decision stumps may be preferred to regression
trees to reduce training time.

1) Regression Trees: We use trees whose splits operate
on a single dimension of the feature vector, also known as
orthogonal splits, and follow the top-down greedy tree learning
approach described in [9]]. The top split is learned first so as
to minimize

argmin
ne{l,..., D}

T Ny 5
Z (Z 1{x2[n]—7‘*} wfk‘ [771 - rzt'k'}

=1

f,
+ Z i{xﬂn]*‘ft} Wik [772 - Tfk]2> (D
i=1

where x[n] € R denotes the value of the n™ dimension of
x, 1 Bt is the step function, and i{,} =1- 1{.}. As in
Eq. 6| the weights, wfk, and residuals, rfk, are computed by
differentiating the loss of Eq. (3). The difference with classic
regression trees is that, in addition to learning the values of
M1, N2 and n, our approach requires the tree to also learn a
threshold 7t € R per task. Given that each split operates on
a single attribute x[n], the resulting 7° is sparse, and learned
one component at a time as the tree is built.
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Algorithm 1 Non-Linear Domain Adaptation with Boosting

Input: Training samples and labels for 7" tasks X; = {(x¢,y!)} Y,
t

Task weights ¢; € R for each task ¢. Typically ¢, =1 V

Number of iterations K, shrinkage factor 0 < v <1
. Set ft()ZO Vt:1,7T
2: for k=1 to K do

t t
3 Letw!, =cie %) and 7l =yt

—_

4: Find weak learner and parameters:
{h(), 7 7T =

5: Find & through line search:
T N

T N
argmin
heH,r1,... 7T =1 i=1

a = argminz Z ¢t exp [f yl (ft(x'g) + a h(x

t=1 i=1

6: SetB:'yd

7. Update fi(:) = fy(:)+Bh(-—F") Vit=1,...,T
8: end for

9: return f;(-) Vit=1,...,T

DD wik [

)

(xt —7t) —rh]?

Once the top split is learned, new splits are learned on chil-
dren leaves recursively. This process stops when the maximum
depth L, given as a parameter, is reached, or there are not
enough samples to learn a new node at a given leaf.

2) Decision Stumps: Decision stumps consist of a single
split and return values 7;,72 = %1. If also !, = £1, which
is true when boosting with the exponential loss, then it can
be demonstrated that minimizing Eq can be separated into
T independent minimization problems for all D attributes for
each n. Once this is done, a quick search can be performed
to determine the n that minimizes Eq. (7).

This makes decision stumps feasible for large-scale appli-
cations with very high dimensional feature spaces.

When using the exponential loss in conjunction with deci-
sion stumps, Alg. [T] reduces to a procedure similar to classic
AdaBoost [40]], with the exception that weak learner search is
done in the multi-task manner described above.

3) Training Complexity: Both regression trees and decision
stumps require storage linear in the number of training samples
in each task. Similarly, the time complexity of training a
single decision stump is linear in the total number of training
examples or O(N), with

T
N = Z N;. (8)
t=1

This contrasts with kernel machines whose storage and time
complexity is O(N?).

Regression trees are more costly to train as they require a
joint search over the thresholds across tasks whose complexity
is O(], N¢). In this work we mainly focus on applications
containing a single source and target task, representative of
the most common domain adaptation setting. In such cases
T = 2 and the complexity of training regression trees remains

smaller than that of kernel machines, since N1 Ny < (N1)? +
(N3)? + 2Ny N.

For T' > 2, regression trees become costly and their
complexity can grow faster than N2. It may still be possible
to train them efficiently, but we leave this as a topic for future
work.

IV. EVALUATION

We evaluated our approach on four challenging and rep-
resentative domain adaptation problems for which annotation
is very time-consuming. We first describe the datasets, our
experimental setup and baselines, and finally present and
discuss our results.

A. Datasets

The experiments used for evaluation are described below,
and Table [[ summarizes the different datasets employed, their
characteristics and amount of labeled data available.

1) Mitochondria and Synapse Segmentation: Mitochondria
and synapses are structures that play an important role in
cellular functioning. Here, the task is to segment mitochondria
and synapses from large 3D Electron Microscopy (EM) stacks,
acquired from the brain of a rat. Example slice cuts are
presented in Fig. [T[(a-d). As in the path classification problem,
3D annotations are time-consuming and exploiting already-
annotated stacks is essential to reduce labeling effort and speed
up analysis.

We use our boosting-based method with contextual fea-
tures [17], which is designed for 3D stacks and whose source
code is publicly available. This method is based on boosted
stumps, which makes it very efficient at both train and test
time. Our contextual features capture information about the
context surrounding the voxel of interest, which is particularly
informative to segment synapses [17].
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Available Labeled Data

Experiment Modality / Acquisition Image(s)/stack size (pos / neg samples)
. . 39 mitochondria
Source Domain EM / Striatum 853x506x496 (15k, 275k)
Target Domain
Mitochondria Segmentation Train 1024%653% 165 10 r(n311t(oc1hzolz1)dr1a
EM / Hippocampus ’
42 mitochondria
Test 1024 x883x165 (14k, 265K)
. 11 synapses
Source Domain EM / Cerebellum 853x506x496 (k. 645k)
Target Domain
Synapse Segmentation . 10 synapses
Train 1024x653%x165 (Tk. 510K)
EM / Som. Cortex ’
28 synapses
Test 1024 x883x165 (35K, 6M)
. . . . 6 images 30k paths
Source Domain  Brightfield / Neural axons ~ 800%800x90 each (15K, 15Kk)
Target Domain
Paths: Brightfield to OPF Train 4 stacks 20k paths
OPF / Neural axons =~ 512x512x70 each (10k, 10k)
Test 4 stacks 20k paths
; ~~ 512x512x70 each (10k, 10k)
. 8 stacks 40k paths
Source Domain OPF / Neural axons ~ 512%512%70 each (20k, 20K)
Target Domain
Paths: OPF to Brightfield Train 3 stacks 15k paths
Brightfield / Neural axons ~ 800x750x80 each (7.5k, 7.5k)
Test 3 stacks 15k paths
=~ 700x900x 100 each (7.5k, 7.5k)
. . - . 6 images 30k paths
Source Domain Aerial Images / Roads ~ T50%850 each (15K, 15Kk)
Target Domain
Paths: Roads to OPF Train 4 stacks 20k paths
OPF / Neural axons =~ 512x512x70 each (10k, 10k)
Test 4 stacks 20k paths
’ ~ 512x512x70 each (10k, 10k)
. . 6 images 30k paths
Source Domain Aerial Images / Roads ~ T50% 850 cach (15k, 15K)
Target Domain
Paths: Roads to Brightfield Train 3 stacks 15k paths
Brightfield / Neural axons ~ 800x750x80 each (7.5k, 7.5k)
Test 3 stacks 15k paths
’ =~ 700x900x 100 each (7.5k, 7.5k)

TABLE 1

DESCRIPTION OF THE SEGMENTATION AND PATH CLASSIFICATION EXPERIMENTS USED FOR EVALUATION.

For mitochondria segmentation, the source domain is
a fully-labeled EM stack from the Striatum region of
853x506x496 voxels with 39 labeled mitochondria. The target
domain consists of two stacks acquired from the Hippocampus,
one a training stack of size 1024x653x165 voxels and the
other a test stack of size 1024x883x165 voxels, with 10 and
42 labeled mitochondria in each respectively. The target test
volume is fully-labeled, while the training one is partially
annotated, similar to a real scenario.

For synapse segmentation, the source domain is a stack
acquired from the Cerebellum of size 1027x987x219 voxels

with 11 labeled synapses, and the target domain is an EM stack
from the Somatosensory Cortex region, which was divided
in training and testing stacks, each of size 750x564x750 and
655x429x250, with 10 and 28 labeled synapses respectively.

2) Path Classification: Tracing arbors of curvilinear struc-
tures is a well studied problem that finds applications in a
broad range of fields from neuroscience to photogrammetry.
In earlier work [41] we showed the advantage of using a
path classifier and a mixed integer programming formulation
to automatically trace such structures. Within this framework,
machine learning is used to predict, based on image evidence,
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if a tubular path between two points in the image belongs
to a curvilinear structure or not. We constructed descriptors
named Histogram of Gradient Deviations (HGD) designed to
capture several characteristics of tubular structures in images.
From the HGDs generated from the training images, 300 of
them are randomly picked as codewords of a visual dictionary.
For each given path of arbitrary length, the feature vector
is generated by finding an embedding of its HGDs in the
dictionary. In addition to the 300 HGDs embedding, the feature
vector also contains the maximum curvature along the path,
which provides information about its geometry.

This approach can be used for both 2D images and 3D
image stacks, since feature vectors have a fixed size, regardless
of the dimensionality of the input image. This allows us, in
theory at least, to apply a classifier trained on 2D images to 3D
volumes. The latter would be highly beneficial, since labeling
2D images is much easier than annotating 3D stacks. However,
differences in appearance and geometry of the structures may
adversely affect classifier accuracy when 2D-trained ones are
applied to 3D stacks, which motivates domain adaptation.

We choose images from two publicly available datasets [41]
to form two separate target domains. The first one consists of
3D image stacks of Olfactory Projection Fibers (OPF) from
the DIADEM challenge[42]], as depicted by Fig. [T[f). The
second one is made of Brightfield microscopy stacks, such as
those depicted by Fig.[I[g). The latter generates a significantly
harder problem, due to the irregular staining of the dendrites
and axons, which produces structured noise [41]].

As source domain we explore two possible choices, one
that relies on 3D imagery and the other on 2D imagery, even
though the target domain is 3D. The former is closer to the
target domain but the latter makes sense from an operational
point of view because it is far easier to extract large amounts
of ground truth data semi-automatically from 2D images than
from 3D ones. To highlight the power of our approach, we
use 2D aerial road images as our source domain, whose
appearance is significantly different from that of the dendrites
and axons in the target domain.

B. Experimental Setup

As in [[17]], we group voxels into supervoxels to reduce train-
ing and testing time for mitochondria and synapse segmenta-
tion, which yields 15k positive and 275k negative supervoxel
samples in the source domain of the Mitochondria dataset and
7k positive and 645k negative samples in the source domain
of the synapse dataset. This renders 12k and 510k negative
training samples in the target domain of the Mitochondria and
synapse datasets respectively.

To simulate a real scenario, we create 10 different transfer
learning problems using the samples from either one mito-
chondria or synapse at a time as positives, which translates
into approximately 300 and 800 positive training supervoxels
per mitochondria or synapse, respectively. We use the de-
fault parameters provided in the publicly-available code of
[L7](K = 2000). We evaluate segmentation performance using
the Jaccard Index, as in [[17], computed as the number of true
positives over the sum of true positives, false negatives and
false positives.

For path classification, 2500 positive and negative samples
are extracted from each image through random sampling, as
in [41]. This results in balanced sets of 30k samples for
training in the roads dataset, and 20k for training and 20k for
testing for OPF, and 15k in each for Brightfield. When the last
two are used as the source domain, training and testing sets are
merged together, yielding 40k and 30k samples respectively.
To simulate the lack of training data, we randomly pick an
equal number of positive and negative samples for training
from the target domain.

The HGD codewords are extracted from the source domain
dataset, and used for both domains to generate consistent fea-
ture vectors. We employ gradient boosted trees, which in our
experiments outperformed boosted stumps and kernel SVMs.
For all the boosting-based baselines we set the maximum tree
depth to L = 3, equivalent to a maximum of 8 leaves, and
shrinkage v = 0.1, as in [9]. The number of boosting iterations
is set to K = 500. For these datasets we report the test error
computed as the percentage of mis-classified examples.

For all datasets we evaluate our approach with and without
class balancing. With class balancing we set ¢; = N% to give
both tasks equal weight, while without class balancing we set
c¢; = 1 for each task.

C. Baselines

On each dataset, we compare our approach against the
following baselines: training with reference or target domain
data only (shown as SD only and TD only), training a single
classifier with both target and source domain data (Pooling),
and with the multi-task approach of [8]] (labeled Chapelle
et al.). On the path classification datasets we evaluate our
approach using regression-tree weak learners and therefore
also compare to the tree-based adaptation (Trada) method of
[[L8] on these datasets. We evaluate performance with varying
amounts of supervision in the target domain, and also show the
performance of a classifier trained with all the available labeled
data, shown as Full TD, which represents fully supervised
performance on this domain and is useful in gauging the
relative performance improvement of each method. In a sense
this represents the gold-standard that the best transfer learning
technique could be expected to achieve.

We also compare to linear Canonical Correlation Analysis
(CCA) and Kernel CCA (KCCA) [L1] for learning a shared
latent space on the path classification dataset, and use a
Radial Basis kernel function for KCCA, which is a commonly
used kernel. Its bandwidth is set to the mean distance across
the training observations. Following [28], [30] we establish
correspondence between domains using their binary category
labels. The data size and dimensionality of the Mitochondria
and synapse datasets is prohibitive for these methods, and
instead we compare to Mean-Variance Normalization (MVN)
and Histogram Matching (HM) that are common normaliza-
tions one might apply to compensate for acquisition artifacts.
MVN normalizes each input 3D intensity patch to have a unit
variance and zero-mean, useful for compensating for linear
brightness and contrast changes in the image. HM applies a
non-linear transformation and normalizes the intensity values



IEEE TRANSACTIONS ON MEDICAL IMAGING

0.66

0.64

0.62

Jaccard Index

0.60 +-f- A =

Pooling + MVN
Pooling + HM

—— Our approach
0.58 +-iooooo- == Qurs TaskBal

LY —— Chapelle et al. — TD only

== Pooling -- Rl TD
0.56 - - -
1 2 3 4

Labeled mitochondria

(a) Mitochondria Segmentation

Our approach Pooling + MVN :
0.60 [/ == Ours TaskBal — Pooling + HM
—— Chapelle et al. — TD only
0.55 - fe -= Full TD

Pooling - -

1 2 3 4
Labeled synapses

(b) Synapse Segmentation

Fig. 3. EM Segmentation: (a) mitochondria and (b) synapses. Jaccard index measure for our method and the baselines over 10 runs on the target domain, with
varying supervision. Simple Mean-Variance Normalization (MVN) and Histogram Matching (HM), although helpful, are unable to fully correct for differences
between acquisitions when only afforded few labeled data. In contrast, our method yields a higher performance without the need for such priors and is able
to faithfully leverage the source domain data to learn from relatively few examples in the target domain, outperforming the baseline methods. Best viewed in

color.

of one data volume such that the histogram of its intensities
matches the other.

D. Results: Mitochondria and Synapse Segmentation

The Jaccard Index on the test stacks of the EM segmentation
datasets for 10 different runs is shown in Fig. 3| for our
approach and the baseline methods, with varying amounts of
supervision in the target domain. The performance of SD-only
is not displayed since it performs poorly on both datasets and
yields a Jaccard Index below 50%.

The results for mitochondria segmentation are displayed in
Fig. 3(a). Our approach significantly outperforms Chapelle et
al. and the other baselines. The next most successful method is
pooling with histogram matching (HM). However, our method
yields even higher performance, its accuracy being close to
that of Full TD when using only one labeled target mitochon-
dria. When given more labeled data, both our approach and
HM yield higher performance than TD only and is even able
to use the source domain data to improve over Full TD.

Similarly, the results for synapse segmentation are shown in
Fig. B(b). Each labeled synapse contains only a few supervox-
els. Given such limited supervision, Chapelle et al. does not
improve upon TD-only performance. Instead, it overfits to the
source domain data. Similarly, MVN and HM normalization
are unable to account for the transformation between the
different data acquisitions. In contrast, our approach is able to
effectively leverage the source domain data to obtain a more
accurate segmentation even with only one labeled synapse in
the target domain. Provided four labeled synapses it becomes
difficult to improve over TD-only performance. However, as
annotation in 3D is costly this already represents a significant

labeling effort, and our approach still exhibits the best overall
performance.

Qualitative segmentation results obtained with a single
labeled mitochondria or synapse are also provided in Fig. [
Compared to the baselines, the segmentations generated by our
approach exhibit higher accuracy and most closely resemble
the ground truth. From a practical point of view, our approach
does not require parameter tuning and cross-validation is not
necessary. This can be a bottleneck in some scenarios where
large volumes of data are used for training. For this task,
training our method took less than an hour per run, while
Chapelle et al. took over 7 hours due to cross-validation.

E. Results: Path Classification

We first discuss using 3D imagery as both the source and
target domains and then 2D imagery as the source while the
target remains 3D.

a) 3D Neural Axons as the Source Domain: Fig. [
depicts our path classification results using the 3D microscopy
images from one microscopy imaging technology as the source
domain, and those of the other one as the target domain. As
the microscopy images from each dataset depict very different
imaging modalities (see Fig. [T), this poses a challenge for
transfer learning. The performance of SD-only and linear CCA
on these datasets is above 29% and 8% respectively, and as
such they are not displayed in the figure.

The results of Brightfield to OPF are shown in Fig. [
(top). With the exception of Trada and our approach, the
other baseline methods have difficulty improving over TD-
only performance, and in fact perform worse than TD-only,
especially when provided only a few labeled samples in the
target domain. In contrast, our approach achieves a consistent
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Fig. 4. Qualitative results for the segmentation datasets when using a single labeled mitochondria or synapse in the target domain. The segmentation masks
output by our approach and the baselines are shown in red for two example mitochondria and synapses. The ground-truth is also shown. Compared with
baselines the segmentations output by our approach exhibit a higher accuracy and most closely resemble the ground-truth. Best viewed in color.

improvement over TD-only that is seen to be most significant
when the labeled data in the target domain is scarce, which is
when domain adaptation is most needed, and it is even able
to improve over Full-TD. The performance of our approach
is matched by Trada on this dataset, which is also able to
achieve a significant improvement over TD-only and the other
baselines.

Fig. 3] (bottom) displays the results for OPF to Brightfield.
Our approach with task balancing achieves a significant im-
provement over TD-only when provided few target domain
training samples and outperforms the baselines. Task balancing
plays a more significant role for the Bightfield dataset that can
be attributed to the large appearance difference between them
and the rich visual cues that are present in Brightfield but
absent from OPF. Unlike Brightfield to OPF, Trada is unable
to match the performance of our approach when adapting OPF
to Brightfield, which is likely due to its reliance on a cross-
domain interpolation parameter that can be difficult to cross-
validate, which is not required with our approach.

Surprisingly, naive Pooling achieves the best performance
for OPF to Brightfield. Note, however, that while it does
exceptionally well on this dataset, its preference towards
Brightfield is also reflected when transferring from Brightfield

to OPF where it results in the worst performance that is
significantly worse than TD-only. In contrast, our approach
is able to consistently improve over TD-only performance and
the baselines and successfully leverage the source domain data
to reduce annotation effort across both datasets.

b) 2D Aerial Roads as the Source Domain: Using the
same 3D images as before as our target domain, we now
switch to aerial road images such as those in the third row
of Fig. [T] to provide our source domain. When compared to
the 3D microscopy images, the 2D road images exhibit a much
more different appearance to those of the target domain and
therefore present a greater challenge.

The results on the OPF dataset are shown in Fig. [f](top). Our
approach outperforms the baselines, especially when there are
few training samples in the target domain, and yields a similar
performance with and without task balancing. The next best
competitor is Trada, followed by Chapelle et al., although this
method exhibits a much higher variance than our approach
and both baselines perform poorly when only provided a few
labeled target examples. This is also the case for KCCA. The
results of linear CCA are not shown in the plots because it
yielded very low performance compared to the other baselines,
achieving a 14% error rate with 1k labeled examples and
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Path Classification, 3D imagery as source domain: Median, lower and upper quartiles of the test error as the number of training samples is varied.

Our approach is able to successfully leverage the source domain data to significantly reduce annotation effort and exhibits the best overall performance across

both datasets. Best viewed in color.

its performance significantly degrading with fewer training
samples. Similarly, SD only performance is 16%.

Our approach comes close to Full TD when using as few as
70 training samples, even though Full TD was trained with 20k
samples from the target domain. This highlights the ability of
our method to effectively leverage the large amounts of source-
domain data. As shown in Fig. [f] there is a clear tendency for
all methods to converge at the value of Full TD, although our
approach does so significantly faster. Moreover, the parameter
tuning required by Chapelle et al. and Trada is done through
cross-validation, which can perform poorly when only afforded
a few labeled samples in the target domain, and results in
longer training times. Chapelle et al. took 25 minutes to train,
while our approach only took between 2 and 15 minutes,
depending on the amount of labeled data.

The results on the Brightfield dataset are shown in Fig. [f]
(bottom). Both linear and kernel CCA perform poorly on this
dataset, and are therefore not shown in the plot. Similarly,
Chapelle et al. requires a fair amount of supervision in the
target domain before achieving an improvement over SD only
performance. Trada also performs poorly on this dataset. In
contrast, our approach obtains a significant improvement with
as little as 30 labeled target samples, outperforming the base-
line methods. For > 70 labeled target samples, although it still

performs better than the other methods, our approach without
task balancing performs worse than the 7D only baseline.
We believe this is because of task-specific attributes in the
Brightfield dataset that are not modeled with our approach.
This effect is diminished with task balancing, which assigns
more emphasis to the target training samples during learning.
Despite these differences, our approach is still able to more
effectively leverage the source domain data to reduce the
required amount of supervision in the target domain compared
to the baselines.

Qualitative results are displayed for both the OPF and
Brightfield datasets in Fig. [7] and [§] The false and missed
detections are shown for each of the baselines and our
approach. As false detections typically concentrate around
overlapping subpaths on these datasets, we display a color
coding that for each voxel reflects the number of false or
missed detections that include it. On OPF all approaches
result in only a few missed detections, however, our approach
achieves a significant decrease in false detections. Compared
with OPF, the Brightfield dataset contains more complicated
path structures. Our approach exhibits the best performance
among the baseline methods on this dataset, with the fewest
overall number of false and missed detections resulting in a
more accurate path reconstruction.
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Fig. 6. Path Classification, 2D imagery as source domain: Median, lower and upper quartiles of the test error as the number of training samples is varied.
For OPF, our approach nears Full TD performance with as few as 70 training samples in the target domain and significantly outperforms the baseline methods

for both experiments when afforded few training samples. Best viewed in color.

F. Partial Dependence Analysis

To analyze the behavior of the classifiers learned with our
approach, we use Partial Dependence Plots (PDPs) [9] to
observe the classifier score as a function of the value of
one specific feature, averaging out the effect of the other
features. If x = (z[1],...,z[M])" and features are indexed
with P = {1,2,..., M}, denote the scoring function as
f(x) = f(z[n],x.), where x. contains all features but the
n'™ one. The partial dependence of f(x) with respect to the
n'™ feature is then computed as

Fu0) = 77 30 fhx0). ©
XEX
where X is the set of available training data.

We choose A to be features with high relative importance [9]
for the path classification and mitochondria segmentation
datasets, and then plot the PDPs for the baselines SD only, TD
only, Full TD, and our approach in Fig. 0] When comparing
two classifiers, what matters is their behavior as a function of
the feature value, i.e., the shape of their response, while the
overall scaling is classifier-dependent.

For the OPF dataset, we plot the partial dependence of the
feature that encodes the maximum curvature along the path.

From Figs. [D[a,b) it is observed that the classifier prefers paths
with a low curvature, which is a sensible choice, since the
shape of tubular structures is typically smooth. For the mito-
chondria dataset the partial dependence of one of the structure
tensor eigenvalues is displayed, which has a high value when
inside a mitochondria, also reflected in Figs. Ekc,d).

In Fig. 9 the PDPs of the learned classifiers are displayed
with varying amounts of supervision in the target domain.
Figures Ofa,c) depict the errors that can result from overfitting
when afforded only few target domain training samples (7D
only), such as missing important features (Fig.[9(a)), indicated
by its constant PDP, or learning an incorrect pattern (Fig. [9(c)).
In contrast, our approach is able to leverage the source domain
data to discover relevant features and prevent overfitting.
Another interesting observation is the shift between the curves
for Full TD and SD only, which reflects acquisition differences
that are compensated by our approach.

Finally, Figs. O(b,d) show the same plots when afforded a
considerable amount of training data in the target domain. In
this case, the TD only classifier exhibits a more similar perfor-
mance to Full TD and is able to learn a more representative
pattern. Although our approach also improves, its PDPs are
fairly consistent across different amounts of supervision and
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Fig. 7. Qualitative results for the OPF path classification dataset. The 3D visualizations show the amount of false positive and false negative paths predicted
by each approach at every location in the stack along with the ground-truth. The color coding displays the number of false or missed detections passing
through each location. While all approaches result in only a few missed detections, compared with the baseline methods our approach produces significantly

fewer false detections. Best viewed in color.

it is able to learn a representative pattern even with limited data from either domain alone and outperformed recent multi-

supervision in the target domain.

V. CONCLUSION

In this paper we presented an approach for performing non-
linear domain adaptation with boosting. Our method learns
a task-independent decision boundary in a common feature
space, obtained via a non-linear mapping of the features in
each task. This contrasts with recent approaches that learn
task-specific boundaries and is better suited for problems in
domain adaptation where each task is of the same decision
problem, but whose features have undergone an unknown
transformation. In this setting, we illustrated how the boosting-
trick can be used to define task-specific feature mappings and
effectively model non-linearity, offering distinct advantages
over kernel-based approaches both in accuracy and efficiency.
Our method relies on mid-level features and its effectiveness
depends on the extent to which these features can be shared
across the target and source domains.

We evaluated our approach on four challenging bio-medical
datasets where it achieved a significant gain over using labeled

task learning methods.
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