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Abstract

We introduce a fast iterative shrinkage algorithm for patch-smoothness regularization of inverse 

problems in medical imaging. This approach is enabled by the reformulation of current non-local 

regularization schemes as an alternating algorithm to minimize a global criterion. The proposed 

algorithm alternates between evaluating the denoised inter-patch differences by shrinkage and 

computing an image that is consistent with the denoised inter-patch differences and measured data. 

We derive analytical shrinkage rules for several penalties that are relevant in non-local 

regularization. The redundancy in patch comparisons used to evaluate the shrinkage steps are 

exploited using convolution operations. The resulting algorithm is observed to be considerably 

faster than current alternating non-local algorithms. The proposed scheme is applicable to a large 

class of inverse problems including deblurring, denoising, and Fourier inversion. The comparisons 

of the proposed scheme with state-of-the-art regularization schemes in the context of recovering 

images from undersampled Fourier measurements demonstrate a considerable reduction in alias 

artifacts and preservation of edges.

Index Terms
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I. Introduction

The recovery of images from noisy measurements acquired using an ill-posed measurement 

scheme is a central problem in many medical imaging modalities such as magnetic 

resonance imaging (MRI), positron emission tomography (PET), and computed tomography 

(CT) [1]. Several regularized optimization schemes were introduced to make the recovery of 

images well-posed [2], [3]. We focus on patch based regularization in this paper, which is 

motivated by non-local algorithms. Non-local means (NLM) denoising algorithms recover 
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each pixel as a weighted linear combination of all pixels in the noisy image; the inter-pixel 

weights were estimated as the similarity between patch neighborhoods [4], [5], [6]. This 

algorithm was extended to deblurring problems [7], [8], [9] by posing the recovery as an 

optimization scheme. However, this algorithm is not readily applicable to MRI recovery 

from undersampled data since the weights estimated from aliased images preserve alias 

patterns. Some authors have iterated between denoising and weight estimation steps [10]. 

However, this scheme had limited success in heavily undersampled Fourier inversion 

problems. This alternating NLM scheme has been recently shown to be a majorize-minimize 

algorithm to solve for a penalized optimization problem, where the penalty term is the sum 

of unweighted robust distances between image patches [11], [12], [13]. While convex 

distance metrics such as ℓ1 distances may be used, non-convex metrics that correspond to the 

classical NLM choices are seen to provide significantly improved image quality [11]. The 

availability of the global cost function enabled homotopy continuation strategies to 

encourage the convergence to global minima, when non-convex metrics are used [11]. The 

main challenge associated with the implementation in [11] is the high computational 

complexity of the alternating minimization algorithm.

The main focus of this paper is to introduce an iterative nonlocal shrinkage (NLS) algorithm, 

which directly minimizes the robust non-local criterion in [11]. This algorithm alternates 

between (a) evaluating the denoised inter-patch differences by shrinkage, and (b) computing 

an image that is consistent (in least-square sense) with the denoised inter-patch differences 

and measured data. This approach is based on additive half quadratic majorization of the 

patch based penalty term [14], [15], [16], [17]. Unlike the majorization used in our previous 

work [11], the weights of the quadratic terms are identical for all patch pairs, but now 

involve new auxiliary variables that may be interpreted as the denoised inter-patch 

differences. We derive analytical shrinkage expressions for approximate versions of a range 

of distance functions that are relevant for non-local regularization; this generalizes the 

shrinkage formulae derived by Chartrand in the context of ℓp penalties [18]. The proposed 

approximations are the same as the Huber-like corner-rounded penalties [19], [20], [21], 

[22]. However, the key difference with our approach is that the corner-rounded 

approximations emerge as convex relaxations, which shows that this approximation is 

indeed the best possible one for the original distance function that allows a valid quadratic 

majorization. Note that each step of the iterative shrinkage algorithm is fundamentally 

different from classical non-local schemes that solve an weighted quadratic optimization at 

each step [4], [5], [6], [7], [8], [9]. The direct evaluation of the patch shrinkages are 

computationally expensive. We propose to exploit the redundancies in the shrinkages at 

adjacent pixels using separable convolution operations, thereby considerably reducing 

computational complexity. Computing the image that is consistent with the measured data 

and the denoised inter patch differences is a quadratic subproblem. We re-express the 

penalty involving the sum of patch differences as one involving sum of pixel differences, 

which enables us to solve for the quadratic sub-problem analytically.

We validate the proposed scheme in the context of recovering MR images from 

undersampled measurements. This is an active research area with several applications [23], 

[24], [25] and several algorithms [2], [3]. In this context, Akcakaya et al., proposed to form 
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clusters of patches, which are denoised using hard-thresholding in appropriate transform 

domain; these denoised patches are later averaged to provide the recovery [25]. This 

approach implicitly uses different basis sets for different clusters and hence is conceptually 

similar to [26] and recent methods that exploit low-rank structure of patch clusters [27], 

[28]. While these methods are very powerful, they are also considerably more complex than 

the proposed scheme. In addition, since the above alternating schemes lack a global energy 

function, their convergence properties cannot be commented upon. Wong et al., uses the 

similarity of nearby pixels using homotopic ℓ0 minimization [29], which is also related to 

non-local means regularization used in [30]. The proposed optimization strategy also has 

similarities to the recent approach for regularized reconstruction based on nonlocal operators 

[31].

The rest of this paper is organized as follows. We briefly describe the background in Section 

II. The proposed iterative non-local shrinkage algorithm is detailed in Section III, while the 

details of the implementation are outlined in Section IV. Section V demonstrates the utility 

of the algorithm in the context of recovering MR images from undersampled Fourier 

measurements.

II. Background

A. Problem Formulation

We consider the recovery of a complex image f : Ω → ℂ from its measurements b. Here, Ω 
⊂ ℤ2 is the spatial support of the complex image. We model the acquisition scheme by the 

linear degradation operator A:

For example, A ∈ ℂM×N corresponds to a convolution in the deconvolution setting, a Fourier 

matrix in the case of Fourier inversion, or identity matrix in the case of denoising. Here, f ∈ 
ℂN is a vector obtained by the concatenating the rows in a 2-D image f(x) and b ∈ ℂM is the 

vector of measurements. We assume n to be Gaussian distributed white noise process of a 

specified standard deviation σ.

B. Unified Non-Local Regularization

The iterative algorithm that alternates between classical non-local image recovery [32] and 

the re-estimation of weights was shown [11] to be a majorize-minimize (MM) algorithm:

(1)

where ||Af − b||2 is the data fidelity term, and the regularization functional (f) is specified 

by:
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(2)

Here φ is an appropriately chosen potential function and Px(f) is a patch extraction operator 

which extracts an image patch centered at the spatial location x from the image f; i.e. Px(f) 
can be written as f(x + p), where p ∈ ℬ which denotes the indices in the patch. For example, 

if we choose a square patch of size (2N + 1), the set ℬ = [−N, ..., N] × [−N, ..., N]. Similarly, 

 are the indices of the search neighborhood; the patch Px(f) is compared to all the patches 

whose centers are specified by x + . For example, if we choose a square shaped 

neighborhood of size 2M + 1, the set  = [−M, ..., M] × [−M, ..., M]. The shape of the 

patches and the search neighborhood may be easily changed by re-defining the sets  and 

ℬ.

In this paper, we focus on potential functions of the form

(3)

where ϕ : ℝ+ → ℝ+ is an appropriately chosen distance metric and ||g||2 = Σp∈ℬ|g(p)|2.

C. Solution Using Iterative Reweighted Algorithm

We showed in [11] that (1) can be solved using a majorize-minimize algorithm, where the 

regularization term is majorized by the weighted sum of patch differences:

(4)

The above relation is essentially the classical multiplicative half-quadratic majorization [15], 

[16], [33] of the penalty in (1). The weights wn(x, x + p) in (4) are specified by:

(5)

Here, fn is an image vector at the nth iteration. Each iteration of the MM algorithm involves 

the minimization of the criterion

(6)
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Note from (4) that n is a weighted linear combination of patch differences, where the 

weights wn(x, x + p) are spatially varying. This makes it difficult to develop a closed form 

expression to solve (6). As discussed above, one of the main challenges of the algorithm is 

its high computational complexity. Specifically, the conjugate gradients algorithm to solve 

(6) converges slowly, especially as the weights increase.

III. Proposed Algorithm

A. Majorization of the Penalty Term

In this work, we will consider the additive half-quadratic majorization [14], [17], [33] of the 

potential function φ, specified by

(7)

This additive half-quadratic majorization scheme was originally introduced for edge 

preserving gradient regularization; using this scheme has not been reported in patch 

regularization to the best of our knowledge. With additional simplifications below, using this 

scheme results in a fast algorithm. The function ψ in (7) depends on φ and β, while s is an 

auxiliary variable. Since φ is the minimum of , we will also solve for s along 

with t, as shown in Section III-B. Note that unlike (4), the quadratic term on the right hand 

side of (7) is weighted by the scalar β/2, which is the same for all spatial locations. The 

spatial invariance of the weights enables us to analytically solve a key subproblem as shown 

in Section III-C, which is not possible with (4). Using (7), we express the original problem 

in (1) as:

(8)

Note that the solution involves the minimization with respect to both f and the variables 

{sx,q}. We use an alternating minimization algorithm, where we alternate between two steps. 

In the first step, we minimize (8) with respect to {sx,q}, assuming f to be fixed. In the second 

step, we solve for f, assuming {sx,q} to be fixed. We show in Section III-B and Section III-C 

that these steps can be solved analytically. The efficient implementation of these 

subproblems is the main reason why the proposed algorithm is faster than the iterative 

reweighted implementation. Similar speed-ups were reported with using the half-quadratic 

regularization scheme in the context of other regularization penalties [14], [17], [33].

B. The s Sub-Problem: solve for sx,q, assuming f fixed

We focus on minimizing (8) with respect to the auxiliary variables {sx,q}, assuming f to be a 

constant in this subsection. In this case, determining each of the auxiliary variables sx,q 

corresponding to different values of x and q can be treated independently:
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We will show in the subsection III-D (see (21)) that with a convex hull approximation of the 

function β|t|2/2 − φ(t), we can analytically determine sx,q as a shrinkage for all penalties of 

interest:

(9)

where ν : ℝ+ → ℝ+ is a function that depends on the distance metric ϕ. Note that the 

structure of the algorithm is exactly the same for different choices of distance function; only 

the analytical expressions for the shrinkage steps will change depending on the specific 

choice. We will determine the shrinkage rules corresponding to the useful penalties in 

Section III-D.

C. The f Sub-Problem: solve for f, assuming sx,q fixed

In this subsection, we focus on minimizing (8) with respect to f, assuming the auxiliary 

variables {sx,q} to be fixed. We show that this quadratic sub-problem can be solved 

analytically in the Fourier domain for several measurement operators.

Minimizing (8) with respect to f, assuming {sx,q} fixed, simplifies to:

(10)

The above quadratic penalty may be solved using the conjugate gradients algorithm. 

However, we will now simplify it to an expression that can be solved analytically, which is 

considerably more efficient. The quadratic penalty term involves differences between 

multiple patches in the image, each of which is a linear combination of quadratic differences 

between image pixels. The differences between two specific pixels are thus involved in 

different patch differences. We show in Appendix A that the pixel differences from several 

patches can be combined to obtain the following pixel-based penalty:

(11)

Here, Dq is the finite difference operator

(12)
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The images hq(x), q ∈ , are obtained from the patch shrinkages in Section III-B as:

(13)

Here, ● denotes the entrywise multiplication of the vectors, and vq is obtained by summing 

the shrinkage weights of nearby patch pairs

(14)

We solve (11) in the Fourier domain for measurement operators A that are diagonalizable in 

the Fourier domain, as shown section IV.

D. Determination of Shrinkage Rules

The existence of an analytical solution to (6) is key to the fast implementation of the 

alternating minimization scheme. In this subsection, we determine analytical shrinkage rules 

for a larger class of potential functions. The main idea is to use properties of convex 

conjugate functions to derive the dual function ψ(s) in (7), which is required for the solution 

of (6). However, this approach requires certain convexity requirements which are not met by 

many potential functions of practical interest. Therefore, we propose a procedure for 

approximating potential functions that yields an analytical shrinkage rule. This quality of 

this approximation is controlled by a parameter β, becoming exact as β → ∞.

We rewrite (7) as:

where ℜ (x) is the real part of x. The above equation is further rearranged as:

(15)

From the theory in [34], the above relation is satisfied when r(t) is a convex function, in 

which case g = r*, the Legendre-Fenchel dual (or convex conjugate) of r:

(16)
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However, the function r is not convex for most penalties φ that we are interested in, 

especially for small values of β. When r is not convex, we propose to approximate r by a 

convex function r̂ so that relation (15) is satisfied. We choose r̂ such that the epigraph of r̂ is 

the convex hull of the epigraph of r; r ̂ is thus the closest convex function to r (see Fig. 2.b). 

For φ functions of the form (3), we have r(t) = q(||t||), where the function q : ℝ+ → ℝ+ is 

specified by q(t) = t2/2 − ϕ(t)/β. In all the cases we consider in this paper (see Appendix B), 

we can obtain the convex hull approximation of r as

(17)

where c is an appropriately chosen constant to ensure continuity of r̂; see Fig. (2 b) for an 

example.

The convex hull approximation of r(t) is equivalent to approximating the original penalty 

φ(t) as:

see Fig. (2 c). For the potentials considered in this paper, this “Huber-like” approximation:

(18)

amounts to approximating the cusp of the original potential function at the origin by a 

quadratic function. Note that L = L(β) → 0 as β → ∞, when the approximation of φ by φ̂ is 

exact. In particular we have φ̂ → φ uniformly as β → ∞; see Fig. (2 d). This approximation 

enables us to derive the analytical solution for (6), which is termed as a shrinkage rule.

The shrinkage rule in (6) involves computing s̄ specified by:

which is often called the proximal mapping of ψ. The above equation can be simplified as
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(19)

Differentiating the right hand side of (19) with respect to s and setting it to zero, we obtain t 
− ∂r̂*(s̄) ∋ 0, or equivalently,

Since the subgradients of Legendre-Fenchel duals satisfy (∂r̂*)−1(t) = (∂r̂)(t), we have

(20)

Considering the expression for the convex hull approximation of r ̂ in (17), we have:

Setting q(t) = t2/2−ϕ(t)/β in the above equation, we obtain the shrinkage rule as:

(21)

where (·)+ := max{·, 0}. Here, ν (||t||) is a scalar between 0 and 1, which when multiplied by 

t will yield the shrinkage of t. Setting t = Px(f) − Px+q(f) in the above equation, we obtain 

the shrinkage rules to be used in (9). Note that the above approach can be adapted to most 

penalties. We determine the shrinkage rules and the associated ν functions for common 

penalty functions φ in non-local regularization in Appendix B. Figure (1) shows the penalty 

functions for different metrics and the corresponding shrinkage weights. We observe that the 

derived shrinkage rule for the sx,q sub-problem is only exact for the convex hull 

approximation r̂ in (17). However, note the Huber-like approximations of the penalties 

corresponding to r̂ specified by (18) approach the original penalty as β → ∞.
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IV. Implementation

We now focus on the implementation of the sub-problems. Specifically, we show that all of 

the above steps can be solved analytically for many penalties and measurement operators A 
that are diagonalizable by the Fourier domain (e.g. Fourier sampling, deblurring). This 

enables us to realize a computationally efficient algorithm. We also introduce a continuation 

scheme to improve the convergence of the algorithm.

A. Analytical Solution of (10) in the Fourier Domain

The Euler-Lagrange equation for (11) is given by:

(22)

Here BH denotes the Hermitian transpose of matrix B. We now aim to solve for f, assuming 

hq; q ∈  in the left hand side of (22) to be pre-determined from the previous iterate fn−1. 

Thus, this step involves the solution to a linear system of equations. Motivated by analytical 

solutions to similar problems in the context of total variation minimization [35], we propose 

to solve for (22) in the Fourier domain. Specifically, the measurement operator A is 

diagonalizable in the Fourier domain in many inverse problems of interest (e.g. Fourier 

sampling, deblurring). In these cases, we may write AHA as a pointwise multiplication in the 

Fourier domain. For instance, in the particular case when A is a Cartesian Fourier 

undersampling operator, we may write

(23)

where ℱ discrete Fourier transform and a is a vector of ones and zeros corresponding to the 

Fourier sample locations. It is well-known that the operators  are circulant under 

periodic boundary conditions on f (see [35] for example) and hence are diagonalizable in the 

Fourier domain as

(24)

where |dq|2 is the pointwise modulus squared of the Fourier multiplier dq corresponding to 

Dq. Hence, taking the DFT of both sides of (22) we have
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where b0 = ℱ (AHb) ∈ ℂM is a zero-padded version of the Fourier samples b ∈ ℂN. Solving 

for f gives

(25)

where the division occurs entrywise. Note that we have omitted the iteration step n from the 

above equation. Strictly speaking, it is an update for f̂, assuming hq to be determined from 

fn−1.

In inverse problems such as non-Cartesian MRI and parallel MRI, where the measurement 

operator A is not diagonalizable in the Fourier domain, we solve (22) efficiently using 

conjugate gradient (CG) algorithm [36]. A few CG steps at each iteration are often sufficient 

for good convergence since the algorithm is initialized by the previous iterate.

B. Efficient Evaluation of Shrinkage Weights

We now focus on the efficient evaluation of vq(x); ∀ q ∈  in (14). Note that uq(x) involves 

the comparison of the patches Px(f) and Px+q(f); since these quantities have to be computed 

for all spatial locations x and different shifts q, the direct evaluation of (14) is 

computationally expensive. We propose to exploit the redundancies between vq(x) to 

considerably accelerate their computation. From (14), we have

(26)

Here η is a moving average filter with the size of the patch. The above equation implies that 

computing uq(x); ∀x can be obtained efficiently by simple pointwise operations and a 

computationally efficient convolution operation. Combining the above result with (14), we 

obtain

(27)

We realize the convolutions |Dqf|2*η and uq *η using separable moving average convolution 

operations. This approach has some similarities to [37], where moving average filters were 

used to speed up the non-local means algorithm.

Mohsin et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Continuation Strategy to Improve Convergence

The quality of the majorization in (7) depends on the parameter β. It is known that high 

values of β results in poor convergence. However, since we require the convex-hull 

approximation of the original penalty (see Section III-D) for the majorization, the solution of 

the proposed scheme corresponds to that of the original problem only when β → ∞. Hence 

we use a continuation strategy to improve the convergence rate, where β is initialized with a 

small value and is increased gradually to a high value [11]. As discussed in [11], we use 

homotopy continuation on the penalties to encourage convergence to global minima. For 

example, with truncated penalties we start with a large threshold T and gradually decrease it 

until it attains a small value. In all the experiments, we initialize β to 1e-2 and set βincfactor = 

2 while we set Tdecfactor = 1.1. The pseudo-code of the algorithm is shown below.

Algorithm IV.1

NonLocal Shrinkage(A, b, λ)

Input : b = k-space measurements

β = βinit; T = Tinit;

while i < # Outer Iterations

do

while j < # Inner Iterations

do

Shrinkage: Compute vq using (27)

Compute hq using (13)

Update f using (25)

β ← β * βincfactor

T ← T * Tdecfactor

return (f)

We observe that the proposed algorithm is similar in structure to our previous algorithm 

[11], shown below.

Algorithm IV.2

Reweighted MM (A, b, λ, σ)

Input : b = k-space measurements

T = Tinit;

while i < # Outer Iterations

do

while j < # Inner Iterations

do

Update wx,y using (16) in [11]

Compute γx,y using (20) in [11]

Update f by solving (26) in [11]

T ← T * Tdecfactor

return (f)
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Note from the pseudo-code that the non-local shrinkage algorithm requires two moving-

average convolution operations per q value to evaluate (27). For a 3 × 3 neighborhood, this 

translates to 16 moving convolution operations. In addition, evaluating f according to (25) 

requires one FFT and one IFFT. We typically need 10 – 20 inner iterations and about 30 – 40 

outer iterations for the best convergence and recovery.

All the experiments were performed in MATLAB 2012 on a Linux Intel Xeon workstation 

machine with four cores, 3.2 GHz CPU and 32 GB RAM.

V. Results

We focus on the application of this scheme for the recovery of MR images from 

undersampled measurements. All the datasets used in this paper were acquired on the 

Siemens 3T Tim Trio scanner at the University of Iowa. The datasets were collected under a 

protocol approved by the Institutional Review Board (IRB) at the University of Iowa and an 

informed consent was obtained from the subjects prior to the scan.

A. Convergence Rate

We first compare the proposed scheme with our previous iterative reweighted non-local 

algorithm [11]. We considered the recovery of an MR brain image used in Fig. 4 from its 

retrospectively undersampled Fourier measurements using a variable density random 

sampling pattern (see Fig. 4.(e) for an example). The regularization parameters of both 

algorithms were set to λ = 10−4; this parameter was chosen to obtain the best possible 

reconstructions. The number of inner iterations and outer iterations in both the algorithms 

were set to 5 and 45, respectively. The maximum number of CG iterations to solve each 

quadratic subproblem in IRW scheme was set to 10. The tolerance values for all loops in 

both algorithms were set to 1e-8.

The convergence plots of the two algorithms as functions of computation time and number 

of iterations are shown in Fig. 3. We observe that both algorithms converge to almost the 

same final cost. However, the non-local shrinkage (NLS) algorithm is around ten times faster 

than the iterative reweighted (IRW) scheme in terms of computation time; the NLS scheme 

took around 17 seconds, while the IRW required 172 seconds to converge. All the weight 

updates in IRW together took a total of 9.4 seconds, while the shrinkage steps in NLS took a 

total of 12.0 seconds. The main difference in complexity between the algorithms can be 

attributed to the analytical solution of f in the NLS scheme, which took only 0.4 seconds for 

all 225 inner iterations. At the same time, solving the quadratic subproblems in IRW using 

CG took around 163 seconds for all 225 inner iterations. We observe that the condition 

number of the quadratic subproblem in iterative reweighting [11] grows with iterations, 

resulting in slow convergence of the CG algorithms especially in later iterations. The 

speedup offered by using an additive half-quadratic majorization specified by (7) is 

consistent with using this method in non-patch regularization schemes [33].

B. Impact of the Distance Metric

The proposed scheme can be adapted to most non-local distance metrics by simply changing 

the shrinkage rule. The shrinkage rules for different non-local penalties are shown in Fig. 1. 
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In Table I we compare the different metrics in the context of recovering three MR images 

from five fold randomly undersampled data. Here we quantify the reconstruction quality by 

the signal-to-noise ratio (SNR), defined as

where Γorig is the original image, Γrec is the recovered image, and ||·||F is the Frobenius 

norm. The parameters of all the algorithms are optimized to provide the best possible SNR. 

The first column corresponds to the convex ℓ1 differences between patches. The second and 

third columns correspond to alternating H1 and NLTV penalties [11], respectively.

All of the penalties saturate with inter-patch distances except the ℓ1 distance function. This 

explains the poor performance of the convex ℓ1 penalty compared to the non-convex 

counterparts. Unlike local total variation, which only compares a particular pixel with a few 

other pixels, several pixel comparisons are involved in non-local regularization. Saturating 

priors are needed to avoid the averaging of dissimilar patches, which may result in blurring. 

Since the saturating ℓp metric provides the best overall reconstructions, we use this prior for 

remaining comparisons.

C. Comparisons With State-of-the-Art Algorithms

We compare the proposed scheme with local total variation regularization (TV) and the 

dictionary learning MRI (DLMRI) scheme [26] using retrospectively undersampled MRI 

data. Specifically, the Fourier samples of the images on the specified sampling mask are 

used for reconstruction using different algorithms. These reconstructions are compared to 

the original image. We relied on the MATLAB implementation of DLMRI available from 

the authors webpage, which was adapted to account for complex MR images. The 

regularization parameters of all the algorithms have been optimized to yield the best SNR. 

The comparison of the above methods in the context of random sampling with 5 fold 

undersampled data in the absence of noise is shown in Fig. 4. This fully sampled 128×128 

MR brain image was acquired using a Turbo spin echo (TSE) sequence, FOV=22x22 cm2, 

slice thickness=5.0 mm. The under sampling pattern in (e) was generated using a Monte-

Carlo algorithm [2], which may be realized in 3D imaging by choosing the readout to be 

orthogonal to the image plane. We observe that the proposed non-local algorithm provides 

better preservation of edge details. The quantitative comparisons of different methods on the 

retrospective under sampling of more MR images in the absence of noise and five fold 

random undersampling are reported in Table II. We observe that NLS provides a consistent 

1–4 dB improvement over other methods.

D. Performance with noise

We study the performance of the proposed algorithm in the context of recovering MR 

images from their retrospectively undersampled measurements using different sampling 

trajectories in the presence of noise. The reconstructions of 512×512 MR head complex 

image from its three-fold Cartesian retrospectively undersampled Fourier data, corrupted 
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with zero mean complex Gaussian noise are shown in Fig. 5. The SNR of the noisy 

measurements was 25.0 dB. This is a really challenging case since the 1-D downsampling 

pattern is considerably less efficient than 2-D random sampling. We observe that the non-

local algorithm provides better reconstructions than the other schemes. Specifically, the TV 

scheme results in patchy artifacts and are over-smoothed. The DLMRI results in blurring 

and loss of details. By contrast to the classical algorithms, the degradation in performance of 

the non-local algorithm is comparatively small. The quantitative comparisons of the 

algorithms on this setting using different MR images are shown in the top section of Table 

III.

We also consider the recovery of five various MR images from their pseudo-radial samples 

acquired with 70 spokes/frame, which approximately corresponds to an acceleration factor 

of 4.2. The radial samples are approximated by the nearest Cartesian samples. The 

quantitative results in this setting for those MR images are shown in the bottom section of 

Table III. The Fourier measurements are corrupted with zero mean complex Gaussian noise 

of a specific variance. The SNR of the corresponding k-space measurements is reported in 

the second column. All methods are observed to result in loss of subtle image features since 

the acceleration factor and the noise level are high. But we also observe that the NLS 

scheme provides better recovery than the competing methods. The SNR improvement 

offered by NLS over the other methods in this experiment is not as high as in the previous 

cases, mainly due to the considerable noise in the data and the high acceleration. All of the 

above experiments were conducted at high acceleration factors to demonstrate the 

performance improvement offered by the proposed scheme. We show in Fig. 6 the recovery 

of three MR images from Fourier samples corresponding to low accelerations, contaminated 

with zero mean complex Gaussian noise. These experiments show that the NLS scheme can 

be used to obtain good quality reconstructions at moderate acceleration factors and noise 

levels.

E. Validation using non-Cartesian MRI data

We consider the recovery of multichannel multi-shot spiral MRI data using the proposed 

scheme and TV regularization in this subsection. These datasets were acquired using a spin-

echo variable density multi shot spiral acquisition with 22 interleaves, 192×192 matrix and a 

12 channel head array. The fully sampled dataset is recovered from all 22 interleaves and 

four of the important coils using total variation regularization. Specifically, each of the 

channels were reconstructed independently from the measured k-space data and the coil 

sensitivities were estimated from them. These coil sensitivities were used to recover the 

images from undersampled data. The forward and backward models are implemented using 

the non-uniform fast Fourier transform (NUFFT) [38], [39]. Since the forward model is a 

non-Cartesian Fourier transform, we are no longer able to use the analytical solution (25). 

We instead use the conjugate gradient algorithm (CG) to solve (22). We set the maximum 

number of CG iterations to 20 and the the previous iterate was set as the the initial guess. We 

observe that very few CG iterations (average of 3–4) are needed in each inner iteration, 

thanks to the good conditioning of (22), especially at later iterations.
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The undersampled data was recovered from the measured k-space data corresponding to a 

random subset of 7 interleaves of the above four channels. We recovered the images using 

the different algorithms. The forward model in this case is the non-Cartesian Fourier 

transform of the coil sensitivity weighted images, using the coil sensitivities estimated from 

fully sampled data1. We use the CG algorithm with the same settings as above to solve (22). 

We did not use any pre-conditioners in the present study; we expect to further reduce the 

computational complexity in the future using efficient preconditioners. We only compare our 

recovery against TV as it was difficult to modify the DLMRI scheme to the non-Cartesian 

setting. We show the acquisition from two subjects in Fig. 7. The trajectories corresponding 

to the datasets are shown in the first column. The data from the second subject (bottom slice) 

had considerable off-resonance losses since the slice was close to the frontal sinuses and the 

ear regions. In addition, it also suffered from inter-shot motion that resulted in 

inconsistencies between the interleaves. The comparisons clearly show the benefit of the 

proposed scheme in a practical setting. Specifically, the NLS reconstructions preserve fine 

details better than TV regularization.

VI. Conclusion

We introduced a fast iterative non-local shrinkage algorithm to recover MR image data from 

undersampled Fourier measurements. This approach is enabled by the reformulation of 

current non-local schemes as an iterative re-weighting algorithm to minimize a global 

criterion [11]. The proposed algorithm alternates between a non-local shrinkage step and a 

quadratic subproblem, which can be solved analytically and efficiently. We derived 

analytical shrinkage rules for several penalties that are relevant in non-local regularization. 

We accelerated the non-local shrinkage step, whose direct evaluation involves expensive 

non-local patch comparisons, by exploiting the redundancy between the terms at adjacent 

pixels. The resulting algorithm is observed to be considerably faster than our previous 

implementation. The comparison of different penalties demonstrated the benefit in using 

distance functions that saturate with distant patches. The comparisons of the proposed 

scheme with state of the art algorithms show a considerable reduction in alias artifacts and 

better preservation of edges.
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Appendix A: Simplification of Eq (10)

Using the formula for the shrinkage from (9), specified by

we obtain
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(28)

Expanding the above expression:

(29)

We use a change of variables x = x + p to obtain:

(30)

In the above equations, c = Σx;q∈ ;p∈ℬ|sx−p,q(p)|2 and d = Σx;q∈ |hq(x)|2. Since the 

solution to (10) does not depend on the constants, we ignore these terms. Thus, (29) can be 

rewritten using (30) as

Here, qf(x) = f(x + q) − f(x) is the finite difference operator. We observe that the 

expression for hq(x)

(31)

can be further simplified. From (9), we have the patch s specified as

Here, uq(x) = ν(||Pxf − Px+qf||) is the factor between 0 and 1, which is multiplied by the 

patch to get the shrinked patch. Hence,
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Thus, we have

(32)

Substituting in (31), we get

(33)

Appendix B: Shrinkage rules for useful non-local distance functions

1) Thresholded ℓp; p ≤ 1 metric

We now consider the saturating ℓp metric, specified by

(34)

Computing the shrinkage rule for this mapping according to (21), we obtain

(35)

Setting T = ∞ we get the shrinkage rule for the unthresholded ℓp metric as

(36)

which is consistent with [18].

2) Penalty corresponding to alternating H1 non-local scheme

We now consider the H1 metric, specified by
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(37)

From (21) we obtain

(38)

3) Penalty corresponding to Peyre’s non-local scheme

We now consider the penalty corresponding to Peyre’s alternating scheme [11], [40]:

(39)

From (21) we obtain

(40)

4) Penalty corresponding to alternating non-local TV scheme

The penalty function for the alternating non-local TV scheme is specified by [11], [41]:

(41)

From (21) we obtain

(42)
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Fig. 1. 
Distances functions ϕ(t) that are relevant in non-local regularization (first row) and the 

associated shrinkage rules t · ν (|t|) (second row); see Appendix B for the corresponding 

formulas that relies on a convex hull approximation (see Fig. 2) of the original penalty. Here 

we illustrate the shrinkage rules in 1-D for the parameter choices β = 2, p = 0.5, T = 1, and σ 
= 0.5. The approach introduced in the paper enables evaluating the shrinkage rules for a 

much larger class of penalties, generalizing the results in [18] for ℓp penalties shown in the 

first column.
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Fig. 2. 
Approximation of the potential function: (a) shows the original potential function φ(t) in 1-

D, which is the truncated ℓp; p = 0.5 penalty, T = 1. (b) indicates the corresponding 

 function with β = 2, shown in black. Note that this function is non-convex. 

Hence, we approximate this function by r̂ (t) shown in blue, which is the best convex 

approximation of r(t). The corresponding modified potential function is shown in blue in (c). 

(d) indicates the approximations for different values of β. Note that the approximations 

converge uniformly to φ. (e) shows the corresponding shrinkage rules. The potential 

functions and shrinkage rules for different penalties are shown in Fig. 1.
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Fig. 3. 
Comparison of the convergence rate of the iterative reweighted (IRW) algorithm and the 

proposed iterative non-local shrinkage (NLS) algorithm. The plots indicate the evolution of 

the cost function in (1) as functions of (a) the CPU time and (b) number of inner iterations in 

NLS and CG steps in IRW. Both NLS and IRW algorithms converged in around 225 inner 

iterations. However, the IRW scheme needed around 9 CG steps/inner iteration on average, 

requiring a total of 2200 (see Algorithms IV.1 and IV.2). Since each inner iteration in NLS is 

considerably faster than the corresponding one in [11], we obtain a speedup of 

approximately ten fold.
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Fig. 4. 
Comparison of the algorithms in the absence of noise. We consider the recovery of a 

128×128 MR brain image from 5 fold undersampled Fourier samples, acquired using a 

random sampling pattern shown in (e) using non-local shrinkage scheme (NLS), DLMRI 

and local TV. The reconstructions are shown in (b)-(d). The corresponding error images, 

scaled by a factor of 5 for better visualization, are shown in the bottom row. The 

reconstructions show that the NLS scheme is capable of better preserving the edges and 

details, resulting in less blurred reconstructions. Note that this example was used as an 

illustration; the proposed 2-D under sampling pattern on the dataset acquired using a 3-D 

sequence is not very realistic. We also used a high acceleration factor to demonstrate 

differences between the methods; thus the resulting images may not be of diagnostic quality.
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Fig. 5. 
Comparison of the algorithms in the presence of noise. We consider the recovery of a 

512×512 MR head complex image from three-fold undersampled k-space data, acquired 

using a Cartesian sampling pattern contaminated by zero mean complex Gaussian such that 

the SNR value after adding the noise is 25.0 dB. The top row shows the original and 

reconstructed images using non-local shrinkage scheme (NLS), DLMRI and local TV. The 

reconstructions are shown in (b)-(d). The corresponding error images as well as the sampling 

pattern are shown in the bottom row. This is a challenging case due to the high 1-D 

undersampling factors and noise. We observe that the NLS scheme provides better 

reconstructions with minimal aliasing artifacts. Note that this example was used as an 

illustration; the proposed 2-D under sampling pattern on the dataset acquired using a 3-D 

spin-echo sequence is not very realistic. Note that we used a high acceleration factor to 

demonstrate differences between the methods. The resulting images may not be of 

diagnostic quality.
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Fig. 6. 
Comparison of three different MR images using NLS scheme in the presence of noise. The 

Fourier samples are contaminated by zero mean complex Gaussian noise such that the SNR 

of the data corresponding to the head, brain2 and calf images are 32.3, 24.7 and 27.6 dB, 

respectively. The top row shows the recovery from 2 fold acceleration using the Cartesian 

sampling pattern, while the middle one shows the recovery from 100 radial spokes (≈3 fold 

acceleration). The bottom row shows the recovery from 3 fold acceleration using random 

pattern. We observe that the NLS scheme is capable of preserving the key image details.
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Fig. 7. 
Comparison of MR brain images using NLS and TV algorithms from undersampled 

multichannel multi-shot spiral data. The fully sampled data was acquired using a multishot 

spiral sequence with 22 interleaves acquired using 12 channels. All the interleaves were used 

to recover the fully sampled datasets, while only 7 randomly chosen interleaves were used to 

recover the undersampled datasets. The retained interleaves are shown in the first column. 

We only used the data corresponding to four important coils for the recovery. The two rows 

corresponds to two slices in the acquisition. The recovery of the lower slice was 

considerably challenging due to field inhomogeneity losses and subtle physiological motion 

between interleaves; this explains the poor recovery of the datasets. The two rows show the 

spiral trajectory, original and reconstructed images. Both the proposed and TV regularized 

reconstructions are seen to have lower SNR, mainly due to decreased number of 

measurements. However, we observe that the proposed scheme provides sharper 

reconstructions.
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TABLE II

(SNR in dB) Quantitative comparison of the proposed iterative non-local shrinkage (NLS) algorithm using the 

saturating ℓp; p = 0.5 penalty with dictionary learning MRI (DLMRI) [26] and local total variation 

regularization (TV) schemes in the absence of noise. We considered five-fold random undersampling.

Image DLMRI TV NLS

Brain 16.6 19.3 23.4

Brain2 17.5 21.0 22.9

Thigh 16.3 22.0 24.0

Calf 19.1 21.2 22.5

Head 18.6 19.6 19.9
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TABLE III

Quantitative comparison of the algorithms in the presence of noise. The top part shows the SNR of the 

reconstructions obtained from 3 fold Cartesian undersampled data. The bottom part shows the SNR of the 

reconstructions from radial undersampled data with 70 spokes. Both experiments are contaminated by zero 

mean complex Gaussian noise such that the SNR of the noisy images are reported in the table. The 

quantitative results show that the proposed iterative NLS scheme provides consistently better reconstructions 

for the above cases.

Image k-space SNR DLMRI TV NLS

Brain 12.9 13.9 15.0 16.8

Brain2 18.7 15.9 16.1 18.5

Thigh 23.7 12.6 18.7 21.7

Calf 21.6 15.9 18.5 20.6

Head 25.0 14.1 18.1 20.3

Brain 11.6 14.6 17.6 17.3

Brain2 17.4 17.0 17.7 18.0

Thigh 22.4 13.8 17.2 20.0

Calf 20.3 9.3 16.7 19.0

Head 23.4 17.9 18.1 18.2
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