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Abstract

Worldwide, many hundreds of thousands of stents are implanted each year to revascularize 

occlusions in coronary arteries. Intravascular optical coherence tomography (OCT) is an important 

emerging imaging technique, which has the resolution and contrast necessary to quantitatively 

analyze stent deployment and tissue coverage following stent implantation. Automation is needed, 

as current, it takes up to 16 hours to manually analyze hundreds of images and thousands of stent 

struts from a single pullback. For automated strut detection, we used image formation physics and 

machine learning via a Bayesian network, and 3-D knowledge of stent structure via graph search. 

Graph search was done on en face projections using minimum spanning tree algorithms. Depths of 

all struts in a pullback were simultaneously determined using graph cut. To assess the method, we 

employed the largest validation data set used so far, involving more than 8,000 clinical images 

from 103 pullbacks from 72 patients. Automated strut detection achieved a 0.91±0.04 recall, and 
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0.84±0.08 precision. Performance was robust in images of varying quality. This method can 

improve the workflow for analysis of stent clinical trial data, and can potentially be used in the 

clinic to facilitate real-time stent analysis and visualization, aiding stent implantation.

Index Terms

Bayesian methods; graph search; optical coherence tomography; stent

I. INTRODUCTION

Every year, hundreds of thousands of patients with coronary artery diseases in the US are 

treated with intravascular stents. Improper deployment of stents and resulting tissue 

responses (e.g. delayed heating) are associated with stent thrombosis, which is a life-

threatening complication [1]. Intravascular optical coherence tomography (OCT) [2] is a 

catheter-based optical imaging technique that can provide 3-D images of coronary arteries 

with very high resolution (10–20μm). OCT has demonstrated significant advantages in strut 

coverage analysts due to better resolution and contrast compared to the alternative 

technology, intravascular ultrasound (IVUS) [3], which has a resolution about 100–200 μm. 

For clinical intravascular OCT imaging, one pullback typically contains hundreds of cross-

sectional images. Metallic stents strongly reflect tight and manifest as bright reflections 

coupled with dark shadows in OCT images (Fig. 1). This signature allows for accurate stent 

strut1 assessment. They may also exhibit other signatures in cases of very thick neointima 

coverage [4]. Stent analysis in OCT images is extremely time-consumming. To compute 

quantitative metrics, such as stent area and strut coverage, analysts must manually mark 

every strut in individual frames (Fig. 1). Given that a single pullback contains hundreds or 

even thousands of stent struts, it usually takes up to 16 hours for an expert analyst to 

manually analyze all the struts from all the frames based on our experience (the analysis 

time may differ depending on the complexity of analysis and experience of analysts). 

Automated detection of stents could greatly alleviate this burden on analysts and reduce 

inter-observer variability. This will benefit offline analysts of large clinical trials of new stent 

designs and facilitate live-time feedback during stent deployment for potential support of 

treatment decisions.

Several studies on metallic stent detection in OCT images have been recently reported [4–

13]. While differing in specific methods, studies [5–8,11] have employed single A-line 

analysts or 2-D edge detections to capture the signatures of individual struts (i.e. bright 

reflections and shadows). Later studies have used feature extraction and classification 

techniques to facilitate stent detection. Tsantis et al [9] applied probabilistic neural networks 

to detect stent struts based on a variety of strut features extracted using continuous wavelet 

filters. However, as this study used images acquired from femoral arteries, the performance 

of the method in clinical intracoronary OCT imagers is unknown. A later study by 

Mandelias et al [12] extended the wavelet based detection method and achieved higher 

1In the literature, each Intersection of a stent wire with an image is described as a “strut.” To limit confusion, we continue this 
convention. We refer to stent wire or mesh for the larger construct.
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accuracy and shorter processing time. However, the validation data size is small (4 

pullbacks). Lu et al [10] applied bagging decision trees as the classifier on an initial screen 

of candidate struts, and achieved promising results in a moderately sized validation set. Such 

classification-based methods can take advantage of human expert knowledge, and can easily 

combine multiple features for decision-making, and are therefore potentially more robust. 

Xu et al. [4] focused on a restricted category of cases where stent struts lacked the typical 

bright spot and shadow appearance, but instead appeared as elongated ridges due to very 

thick tissue coverage. Therefore, a 2-D ridge detector was proposed [4]. All of these studies 

have used local image features of individual “struts” (see footnote 1) for detection, without 

consideration to continuity of stent wires or the 3-D cylindrical shape of stents. Validation 

studies of most of these methods have been typically conducted employing less than 20 

pullbacks. Although promising results have been achieved in the limited data sets selected in 

these studies, the generality of these methods to large clinical data sets have not been 

demonstrated.

Stents typically have regularized structures (Fig. 1) and knowledge of their 3-D structure can 

potentially aid stent analysis, especially in instances of stent struts with unclear signatures 

due to imaging physics or artifacts (Fig. 1). Although there have been no direct 3-D stent 

detection methods proposed for intravascular OCT, methods to reconstruct 3-D stents and to 

quantify the stent cell size were proposed by Gurmeric et al [6] and Wang et al [13]. There 

have been studies making use of 3-D image data for stent detection and analysis outside the 

OCT regime. The number of studies is very limited, mainly due to the inability of other 

imaging modalities to capture coronary stents in sufficient detail. For example, Klein et al. 

[14] proposed a method for automatic segmentation of stents in Computed Tomography 

(CT) images for endovascular aortic replacement, structures much larger than coronary 

stents. In this method, Dijkstra’s shortest path algorithm [15] was used to link automatically 

generated seed points on the stent graft. However, as the seed points were connected in an 

uncontrolled manner, many false edges could be generated, and ad hoc heuristics were added 

to remove these false edges.

In this study, we propose a new method for stent detection in OCT images. We focus on 

metallic stents with a shadow signature in OCT images. Methods for detecting stents without 

such a signature are beyond the scope of this study and can be found elsewhere [4, 12]. Our 

goal is to create a method which will perform robustly with images encountered in the 

clinical environment. To achieve robustness, we used some approaches novel to stent 

analysis. First, we used a Bayesian network based upon physical principles of OCT imaging 

and computed a probability of stent strut appearance in an A-line. Second, we exploited 

stent wire continuity from adjacent frames and proposed a novel method based on graph 

algorithms to detect the stent strut locations in an en face view. Finally, we considered the 

physical stent model and localized the depths of all the stent struts in a pullback 

simultaneously using a graph cut algorithm. In the next section, we describe the algorithms 

in detail. Then, we describe the validation experiments, and analyze results of the 

comparison with human experts.
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II. ALGORITHMS

The major steps of our method are illustrated in Fig. 2. First, each A-line is assigned a 

probability for strut presence using a Bayesian approach. The strut depth is roughly 

estimated for probabilistic inference of strut presence. In the second stage. strut A-line 

positions are reinforced using 3-D stent mesh information. Third, the exact depth locations 

of all struts in a pullback are simultaneously determined, making use of 3-D information. In 

the following sections, we introduce the details of each stage of the method.

A. Image Preprocessing

All OCT images used in this study were acquired by commercial Fourier Domain OCT 

systems (C7-XR™ OCT Intravascular Imaging System, St. Jude Medical Inc., St. Paul, 

Minnesota). This OCT system has an axial resolution of ~15μm and a transversal resolution 

of ~30μm. The scan characteristics of the system are: 50,000 lines/s, 504 lines/frame, 

yielding 100 fps and 20 mm/s pullback speed yielding a 200 μm frame interval.

Intravascular OCT images are naturally acquired in polar coordinates. We use r and θ to 

represent the axial (depth) and angular coordinate of each A-line respectively. The OCT raw 

data were logarithmically compressed and normalized to the range of 0–1 and operated upon 

in polar coordinates (θ, r). Calibration was performed by adjusting the z-offset according to 

a priori knowledge of the catheter size [2]. The luminal boundary of the vessel, and guide 

wire artifacts were robustly identified using a dynamic programming algorithm described 

previously [16, 17]. The luminal boundary information is used m subsequent stent detection.

B. Probabilistic Detection of Strut Positions Using a Bayesian Network

The first stage is to detect A-lines in angle θ containing stent struts. After this stage, each A-

line is given a probability of strut presence, and this probabilistic output is utilized in the 

next stage of the algorithm. As metallic stent struts strongly reflect light, each strut casts a 

dark shadow in the (θ, r) image (Fig. 3). We project the 2-D polar coordinate image into one 

dimension (Fig. 3(b)) by averaging intensity values along each A-line between the lumen 

and a depth of 1.5 mm, the nominal imaging depth in OCT. Strut locations correspond to 

local minima in this curve. Several previous studies also utilized projected A-lines for strut 

detection [6, 7, 18], but the specific methods are different from the probabilistic method 

described below.

We consider physical principles in the detection of struts in the 1-D projection curve. Only 

some local minima are caused by struts. Others are from artifacts or tissue intensity 

differences between adjacent A-lines. We define the relative difference between adjacent 

peak and valley points to be shadow contrast (SC). Based upon physics and observation, we 

determine that the magnitude of SC depends on the distance from the catheter to the lumen 

wall (represented by dist) and by the thickness of the tissue covering the strut (represented 

by depth). When the lumen boundary is far from the catheter (high dist), signal intensity 

drops as the beam is out of focus. For deeply embedded struts (high depth), there is more 

signal accumulated from tissue superficial to the strut. In both cases, SC will be smaller.
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We can model these cause-effect relationships using a Bayesian network [19–21] as shown 

in Fig. 3(d). It encodes the causal dependencies between variables, and more importantly, 

compactly represents the full joint probability distribution defined by all the variables. For 

example, in Fig. 3(d), the arrows link the causes (also parents) dist and depth to the effect 

(also child) SC, and this is consistent with our discussions above. The node SC also encodes 

the conditional probability P(SC\dist, depth). For baseline cases where the OCT is 

performed immediately after stent implantation, there will be no tissue covering the struts, 

so the network can be simplified by not considering the strut depth. The time of stent 

implantation is recorded in the database and is readily available. This information could be 

used to select the Bayesian network structure.

Formally, a Bayesian network is a directed acyclic graph (DAG) in which each node X has a 

conditional probability distribution P(X\Parents(X)) that quantifies the effect of the parents 

on the node. An important feature of a Bayesian network is that each variable is independent 

of its nondescendants given its parents. Given some observed variables and known 

conditional probabilities, we can find the posterior probabilities of the unknown variables 

using probability theory.

In the stent detection problem defined in Fig. 3, our task is to query the probability of strut 

presence among all the peaks given our observations. We can directly observe the values of 

SC and dist. We can also estimate the probability of strut presence, P(strut), and P(SC\dist, 
depth) from manually analyzed training data. As SC, dist and depth are continuous variables, 

we can discretize them into bins to generate the conditional probability tables (for depth we 

include an additional value undefined to make it compatible with presence of no strut). Note 

that the strut depth is a latent variable because struts are not yet detected. According to 

probability theory, we can directly query the probability of strut presence P(strut\SC, dist) 
given values of SC and dist, by marginally summing over all the possible depths a strut 

could occupy:

P(strut |SC, dist) =
∑

depth
P(SC, dist, depth, strut)

∑
strut

∑
depth

P(SC, dist, depth, strut)
(1)

where strut is a binary variable present or not present. However, we have found that such an 

approach is noisy for strut not-present and ambiguous strut positions. On the other hand, the 

strut depth is well-defined in high confidence strut A-lines with a reflection-shadow 

appearance. Since adjacent struts are likely to be embedded at similar depths below the 

tissue (Figs. 1, 3), we can use high confidence strut depths to estimate the depths in 

surrounding locations. Based on these considerations, we decided to adopt the following 

algorithm in which we first get a quick estimate of strut depth and then improve estimates of 

the probability of strut presence and strut depth in subsequent steps.
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Algorithm ESTIMATE-STRUT-PRESENCE

Step 1: Roughly estimate the strut depth bin for each of the peaks in the 1-D projection (i.e. 

suspected struts) using maximum likelihood estimation (MLE):

depthMLE = arg max
depth

P(SC |dist, depth) (2)

Step 2: Identify high confidence struts by estimating P(strut\SC, dist) and selecting only the 

peaks that are associated with high probability (e.g. P=0.7. We have found that the threshold 

value of 0.6–0.8 has little effect on the final output of the algorithm. But a further aggressive 

value 0.8–1 or <0.6 may generate significant errors) of strut presence. Notice that we can 

now treat strut depth as a deterministic variable by using the estimated depth bin from Step 

1. Equation (1) can now be evaluated using the equations below.

P(strut |SC, dist) =
P(SC, dist, depthMLE, strut)

∑
strut

P(SC, dist, depthMLE, strut)

=
P(SC |dist, depthMLE)P(dist)P(depthMLE |strut)P(strut)

∑
strut

P(SC |dist, depthMLE)P(dist)P(depthMLE |strut)P(strut)

=
P(SC |dist, depthMLE)P(depthMLE |strut)P(strut)

∑
strut

P(SC |dist, depthMLE)P(depthMLE |strut)P(strut)

(3)

Step 3: Determine strut depths of high-confidence struts identified in Step 2, and use these 

high-confidence depth locations to interpolate strut depths for other suspected struts in the 1-

D projection curve. The refined strut depth is determined by searching the A-line within the 

depth bin found in Step 1 for the point r* that optimizes an objective function associated 

with strut features. For a given point r we use a linear objective function that models the strut 

presence by combining the features of bright strut reflection, low intensity shadow and high 

gradient at the strut-shadow transition

f r = Sr + μIr + λMr (4)

where Sr is the slope of the A-line segment Lr following r to greater depths in the tissue. Lr 

is selected to be 70μm long to cover the transition between the bloom and the shadow. This 

bright-to-dark signature is the convolution of the point spread function of the laser spectrum 

and the edge of the strut surface and is relatively consistent. Ir is the intensity at r, Mr is the 

mean intensity of the A-line segment (500 μm long) after Lr representing the intensity of the 

shadow. Variables μ and λ are weights determined using methods described in Section III C. 

Choosing a longer or shorter segment of shadow to estimate its mean intensity may also be 

valid but the corresponding optimal values of μ and λ may be different. It should be noted 

that Eq. (4) also applies to struts with only a shadow signature (no bright reflection) due to 
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the term Sr and Mr. From the determined high confidence struts, a virtual stent contour is 

generated by interpolation (interpolation uses the same method as in stent area quantification 

and will be discussed in detail in Section II E). The depths of all other suspected struts are 

simply the intersection between the virtual stent contour and the strut A-lines. For those 

images where there are no high-confidence struts, Steps 3 and 4 are not executed and the 

result from (3) will be directly used.

Step 4: Determine the final estimated probability P(strut\SC, dist) using (3) with the updated 

depth information found in Step 3 for all suspected struts.

In summary, for a given new local minimum from the 1-D A-line projections, we obtain SC 
and dist directly and estimate depth from (2) based on pre-learned probabilities P(SC\dist, 
depth) from training data. We then update the estimate of strut depth in Steps 2 and 3 by 

combining information from within the A-line and from adjacent struts. Finally, we 

determine the final probability of strut presence in the A-line using (3) and the updated 

depth. This is similar to the expectation-maximization algorithm [22] but with the 

incorporation of application-specific knowledge. Thus at the end of this stage of the 

algorithm, we have identified all A-lines in the pullback that apparently contain stent struts 

and a probability is given to each identified strut location.

C. En face reinforcement of strut locations

In this stage of the algorithm, stent wire continuity is used to reinforce possible stent strut 

positions obtained from the probabilistic network in the first stage, and to capture some 

ambiguous struts that would be missed using only single frame processing. The reinforced 

strut A-lines from the output of this step will be used as the input to the next stage of the 

algorithm in Section II D. Our approach uses all the 1-D projections computed as above, 

over all of the frames in the stented region of the pullback. The result is a 2-D en face image 

as shown in Fig. 4, displayed as a function of pullback distance and θ, giving an image as 

though the vessel was cut open longitudinally, flattened, and projected to the viewer. It 

should be noted that the en face projection view has a distorted geometry because the stent 

mesh further away from the catheter has a larger circumferential dimension per unit angle. 

Moreover, longitudinal motion can also be observed in Fig. 4 in that the stent cell becomes 

larger if the relative pullback speed is slower (e.g. due to non-uniform pullback or cardiac 

motion). However, it is clear from Fig. 4 that the global structure of the stent mesh is well 

preserved showing well-organized and repeated units. The key idea is to segment the stent 

mesh in this view. The high probability struts determined from Section II B are utilized as 

seed points for stent mesh segmentation as illustrated in detail later. This approach 

incorporates 3-D information of stent mesh structure, and it utilizes such information 

efficiently, i.e., instead of processing the whole 3-D image stack, we only need to process a 

single en face projection image to determine strut locations in the entire pullback.

A potential problem with this approach is that, although the number of most commonly used 

stent types in US clinics is limited, there are actually more than 100 different stent designs 

(Fig. 1) in the current global market. There will certainly be more in the future. The resulting 

appearance of stent mesh in the en face projection view may have a plethora of possible 
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patterns depending on the stent design (e.g. Fig. 1). Therefore, a stent segmentation method 

may not generalize well if it makes too strong an assumption about the mesh shape of a 

stent. An attractive strategy is to use a “model-free” method that works well regardless of 

what type of stent is implanted. Here, we propose such a method based on the minimum 

spanning tree (MST) technique from graph theory.

Consider an undirected graph G = (V, E) with vertices (nodes) V and edges E. We construct 

such a graph with each vertex consisting of a pixel in the en face projection image, and with 

each edge defined by a connection between two pixels, as obtained in an 8-neighbour 

system. With edge weights equal to the average intensity of the two pixels in the en face 
projection image, a connected subgraph with low total edge weights will tend to trace out the 

dark stent wires. In graph theory, MST is a subgraph that connects every vertex with a total 

weight minimizing all possible spanning trees. Suppose we have found some seed points 

along the stent mesh, and we want to connect them, a MST can generate a unique path 

between seed points and this path is very likely to follow the stent mesh where intensity is 

low. From the probabilistic output given in Section II B, we can easily generate seed points 

by applying a high confidence threshold. Here we use P>0.7. Hence, using MST, we can 

record the paths linking seed points, and combine all the paths to get the stent mesh.

However, MST alone does not generate a complete stent mesh because the stent mesh can 

have cycles, which are not possible with a MST. Therefore, we adopt a rescue procedure to 

make the resulting stent into a complete mesh. If two leaf nodes (i.e. nodes with no children) 

of the path recorded with MST are circumferentially adjacent and connected in another non-

shortest path, we connect them using Dijkstra’s shortest path algorithm [15] in which the 

low intensity stent mesh is again very likely to be covered. We have found that a reasonable 

heuristic to select the circumferentially adjacent region for two leaf nodes is to check 

whether they are within a 35-degree (circumferentially) by 3-frame (longitudinally) 

rectangular region.

Formally, we define S as the set of seed points, edge weight w(u,v) as the average intensity 

of u and v, ∏[v] as the parent of v in the tree, key[v] as the minimum weight of any edge 

connecting v to a vertex in the tree, Q as a min-priority queue to store the unvisited vertices, 

r as any seed point chosen to be the starting point, P to store the path we found, L[s] to 

indicate whether the seed point is a leaf (L[s]=1). We use the following algorithm modified 

from Prim’s MST algorithm [23]:

Algorithm MST-STENT

1 Initialize: ∏[v] ← 0, key[v] ← ∞ : ∀v ∈ V, Q ← V(G), P ← empty, L[s] ← 1 : ∀s ∈S, key[r] ← 0

2 while Q is not empty

3  Extract u from Q

4  for each v in Q adjacent to u

5   if w(u,v) < key[v], ∏[v] ← u, key[v] ← w(u,v)

6    if v ∈ S

7     Back track v until reach another seed point s′, add the path in P

8     L[s′] ← 0
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9 for all the leaves found m MST

10   if there is no path in P within the circumferentially adjacent region between two leaf nodes

11    Link them using Dykstra’s shortest path algorithm and add the path in P

12 return P

Line 2–5 are a straightforward implementation of Prim’s algorithm. Briefly, all the unvisited 

vertices are stored in a min-priority queue with respect to their key values. During each loop, 

the tree grows by adding the edge with the minimum weight connecting the existing tree to 

an unvisited vertex and the path is stored. Line 6–8 connects the currently visited seed point 

to a previously found seed point according to the stored path. In line 7, s’ always exists 

because Prim’s algorithm maintains a single tree. We start from one of the seed points, the 

root. In the worst case, s’ will be the root. When the major loop (lines 2–8) is completed, 

there will be a MST and an intermediate stent mesh stored in P connecting all of the seed 

points. The loop 9–11 implements the rescue operation whereby we fill in the missing wires 

in the stent mesh.

In practice, the intermediate stent mesh path might have traversed artifactual regions where 

the cost just happens to be low. This can usually be avoided by segmenting the artifactual 

regions and assigning zero cost to those regions before running the MST-STENT algorithm 

and removing the regions in the segmented stent mesh. Most commonly, this problem arises 

at vessel side branches (Fig. 4), which tend to be dark, bulky regions in the en face 
projection image. We exclude side branches before running MST-STENT using the 

following simple method. We threshold the en face projection image with a cut-off value 

given from the mean intensity of regions occupied by seed points. A region is identified as a 

side branch if its area is larger than a pre-defined threshold (here we use 20 pixels). A more 

principled method will be investigated in the future. Another common low intensity artifact 

is the guide wire-blocked region (Fig. 4). However, this is segmented during preprocessing 

and can be excluded from the stent mesh.

En face stent mesh detection is a high-level tool to augment the output of the probabilistic 

stage of the algorithm. Specifically, an initial screening of stent locations is performed by 

including all candidate strut locations with at least a low confidence probability (P>0.3). We 

then check whether these struts are part of the stent mesh found in MST-STENT. If so, we 

keep them; otherwise, we drop them. Combing this extra 3-D information for stent detection 

is potentially more robust than single frame processing.

Another benefit of en face stent mesh detection is for 3-D visualization. As the entire stent 

mesh can be detected, en face processing can potentially generate better 3-D visualization 

than using only the sparse stent struts detected in single frames. For the purpose of 

visualization, we simply keep all the detected strut positions on the stent mesh in the en face 
projection view.

D. Simultaneous Depth Localization of All Struts

So far, we have identified A-lines containing stent struts. The next step is to determine the 

precise depth location of the struts in those A-lines. The key difference between the method 
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presented here and previous methods is that we localize the depths of all struts 

simultaneously using a graph search technique, whereas previous methods detect depths 

one-by-one. Therefore, we again benefit from 3-D spatial information, including struts from 

neighboring frames. Consider that a stent is a tubular structure, which is expanded at 

implantation. Unless there is a rupture, a very rare event, the implanted stent will maintain 

its tubular shape with some deformations caused by resistance from the vessel. Choosing the 

centroid of the lumen as the reference point, distances to struts are not likely to vary 

dramatically between adjacent struts. This enforces an important hard constraint on 

deformation:

|d j − dadj(j) | < T (5)

where dj is the distance between a strut j to the lumen centroid, and adj(j) is the set of 

adjacent struts to strut j in 3-D space. Here, 3-D adjacent struts include the ones in the same 

frame and across neighboring frames. Moreover, as OCT is scanned during a pullback in a 

helical pattern, the last A-line of the current frame is also adjacent to the first A-line in the 

next frame. T is the deformation constraint. If we construct a graph with each node formed 

by a pixel in the A-lines containing struts (termed strut line), and associate each node with 

the objective function fr given in (4), the globally optimized depths for all struts corresponds 

to an optimal surface under the hard deformation constraint m the 3-D OCT pullback (Fig. 

5).

The optimal surface can be efficiently found using a specially constructed graph proposed by 

Li et al [24]. The basic idea of the method is to transform the optimal surface search 

problem into an equivalent minimum closure search problem (where closure indicates that 

successors of any node are still in the set), which can be solved using graph cut algorithms 

[24–27].

We transfer the problem into a minimum closure problem with the following operations: 1) 

In each A-line containing a strut, we change the cost of each node to the difference between 

the node and the node immediately below. Here the lower nodes are the pixels farther away 

from the lumen. 2) For each node, make an edge to the node immediately lower than the 

current node; further, make an edge to the farthest lower node in 3-D adjacent strut lines it 

could reach under the deformation constraint. These edges are assigned infinite weights and 

are used as “shape priors” or “hard constraints.” In particular, the intra-strut-line edges will 

ensure that a feasible surface will intersect each A-line exactly once. The inter-strut line 

edges ensure that distances of adjacent struts to the lumen centroid should not differ more 

than T. 3) Make the lowest layer nodes strongly connected (every node is reachable from 

other nodes). Under these conditions, the optimal surface corresponds to the optimal closure 

in the graph [24].

We next solve the optimal closure problem using graph cut algorithms according to Picard 

[28]. Searching for the minimum cut is well studied and there are several efficient 

algorithms available [29, 30]. In this study, we used the maximum flow algorithm developed 

by Boykov and Kolmogorov [26].

Wang et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. Quantification of Clinically Relevant Metrics

After identifying stent strut locations in 3D, we can make various clinically relevant 

measurements (Fig. 6), such as stent area (the area enclosed by the stent struts in a 2D 

image), malapposition area (area in a 2-D image enclosed by the lumen boundary and 

malapposed struts), neointima area (the area enclosed by the lumen boundary and the stent 

struts in follow-up cases where there is tissue coverage), and strut-level measurements 
(individual strut coverage thickness, malapposition distance, etc.). For a more complete list 

of possible quantitative metrics that can be derived from the image, please refer to Tearney 

et al [31]. Once all the stent struts and the luminal boundary of the vessel are detected, any 

quantitative metrics defined above can be computed. Specifically, all area measurements rely 

on obtaining a virtual stent contour from detected struts. We adopt a two-step interpolation 

scheme to determine the stent contour. First, from detected stent struts, we generate evenly-

spaced virtual, “interpolated” points between them. These virtual points are placed at a depth 

from the luminal boundary which is linearly interpolated in the (r, θ) view from depths of 

adjoining struts. This process fills gaps between sparse struts. If the number of struts in the 

current frame is too small, there will likely be large interpolation errors. In such cases, we 

combine strut locations from adjacent ±1 frames for interpolation. Second, we generate the 

complete stent contour from both real and virtual stent struts using cubic spline interpolation 

with respect to the catheter center. This two-step interpolation approach is very similar to 

how human experts perform the task manually. Although we have described the situation at 

follow-up where there are mostly covered struts, the above process also works for those 

instances where there are malapposed struts (and therefore negative depths).

III. EXPERIMENTAL METHODS

A. Validation Data

The image sets used for the validation studies were collected from the database of the 

Cardiovascular Imaging Core Laboratory, University Hospitals Case Medical Center 

(Cleveland, OH). These images were collected by commercial Fourier-domam OCT systems 

(C7XR™, St. Jude Medical Inc., St. Paul, Minnesota), and have been previously analyzed by 

multiple expert analysts using commercial OCT workstations (St. Jude Medical Inc.) for 

other purposes. The statistics describing the validation data are listed m Table 1.

There are in total more than 8000 manually analyzed images from 103 pullbacks from 72 

patients. The data are from 3 stent types. The data range from baseline to follow-up cases at 

different time points (note that the true number of images containing stent struts from the 

103 pullbacks is more than 10,000, but because of time constraints, not every image was 

analyzed by human experts). In order to represent the widest possible range of cases that 

may be encountered in a clinical setting, no images were excluded from the data set for any 

reason. In particular, in each pullback, every image that had been analyzed by human experts 

was included in the validation. Therefore, images with different intensity, contrast, collected 

by different machines and with different artifacts commonly seen in clinical imaging, were 

included in this large validation set.
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B. Gold standard

For our purposes, there are two limitations of strut detection by human expert analysts (Fig. 

7). First, analysts marked the front edge, instead of the center, of the strut bloom for 

analysis. From the perspective of OCT image formation, we know that the actual strut front 

surface is the center of the point spread function, and should be near the center of the bloom. 

(To account for this, analysts routinely add a constant offset for strut-level analyses). 

Nevertheless, the mark that we obtain from manually analyzed images is placed on the front 

of the bloom. Because of this, to determine whether an automatically detected strut and a 

manually detected strut coincide, we require the distance between centroids of the strut 

markings to be within a distance tolerance along the A-line. Using the same 342 struts of 2 

pullbacks randomly selected from the validation data analyzed by two analysts with one 

marking the strut bloom center, and one marking the bloom front edge, we determined the 

distance to be 108 μm, within which the two analysts reached an agreement of 99% in 

detecting all the struts. Second, analysts did not mark every strut in a frame (Fig. 7) (this is 

true for almost all cases). In fact, they only marked struts having both a bright reflection and 

a dark shadow. This criterion was established so as to minimize inter-observer variations in 

strut-level analysis. However, it is quite common to find image evidence of struts without 

bright reflections due to an obliquely incident illumination angle. Because these are indeed 

true stent struts and are necessary for accurate stent area quantification, our algorithm was 

designed to include them. As a result, our automatic method finds many actual struts not 

identified as bright struts by analysts, resulting in an overestimation of false positives. As a 

consequence of the bias in the gold standard, the actual precision of our algorithm should be 

better than that reported.

C. Training and Evaluation Studies

To evaluate automated stent strut detection, we compared results to gold standard detection 

and collected true positives (TP), false positives (FP), and false negatives (FN). True 

negatives (TN) are not informative as one might consider almost all non-strut pixels in the 

image as TN. As metrics of the accuracy of the automated detection system, recall 

(sensitivity) and precision are computed as follows:

Recall = TP/(TP + FN) Precision = TP/(TP + FP)

First, we evaluated the effect of the size of the training data set on the Bayesian 

classification stage of the algorithm. Using a subset of randomly selected 10 pullbacks (978 

images) from the validation data, we tracked the performance of the method by varying the 

training data size from 1, 3, 5, 10, 15, 20, 30, 40, to 50 pullbacks. To isolate analysis of this 

step, we did not include the en face processing for this experiment, but instead simply 

classified the strut locations using the Bayes decision rule (P>0.5).

Second, we assessed the accuracy of the en face stent mesh segmentation. For this purpose, 

we compared the automatic segmentation to the manually segmented stent wires by a human 

expert in the en face view in a subset of 18 pullbacks (2251 images, ~12,000 struts) using 

Dice’s coefficient [32]. To demonstrate that the algorithm is applicable to different stent 

designs, we included two different, yet representative types of stents. The first type is Xience 
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V stent (n=15), which is the most commonly used stent type both in the U.S. and around the 

world. It has longitudinal bridges linking adjacent circumferential wires (Fig. 1 (b)). The 

second type is Nobori stent (n=3), in which adjacent circumferential wires are directly 

connected at junctions. Most of the stents used nowadays have similar shapes to these.

We then evaluated the major parameters equipped in the algorithm. The major free 

parameters are the weighting constants μ and λ used in the objective function (4), and the 

deformation constraint T in (5). Since (4) is a linear function, the parameters are estimated 

using a linear classifier such as single-layer perceptron [33] from the training data. For this 

task, the classification is between strut pixels and non-strut pixels in the same A-line. We 

determined μ=−0.4 and λ=0.3. T was determined by selecting the threshold within which 

99% of the analyst-marked struts from the training data satisfy the constraint. This value was 

found to be 0.3 mm.

With the optimized parameters, we assessed the perfonnance of the entire algorithm to detect 

strut locations using all the human analyzed validation data. Results are also presented 

stratified by degree of neointima coverage. In all cases, the data used for training were 

different from the data used for validation.

Finally, we compared quantitative stent areas derived from automatically detected struts by 

our algorithm to those from manual analysis using the commercial software. Both 

correlation and Bland-Altman plots [34] were used to assess agreement. We did not evaluate 

other area measurements because the ground truth numbers of these measurements were not 

recorded in the datasets due to the limitation of the commercial software. We do not report 

strut level measurements because of limitations of manual strut markings discussed in 

Section III B.

IV. RESULTS

A. Bayesian Classification Affected by the Training Data Size

Fig. 8 shows the performance of the method for detecting struts as a function of training data 

size. Even with a small number of pullbacks (e.g. 5 or 10), the number of struts is quite 

large, and the performance approaches that obtained with many more training data. At about 

20 pullbacks, the performance of the method reaches a stable plateau. For the following 

studies, we used 20 pullbacks as the training data size.

B. En face Stent Mesh Segmentation

Fig. 9 illustrates examples of stent mesh segmentation in two stents with different designs. 

In both cases, MST-STENT performs well with an overall accuracy of DSC=0.87±0.04 

(Dice’s coefficient). But it achieved a higher accuracy with Nobori stents (DSC=0.92±0.06) 

than with Xience V stents (DSC=0.86±0.02). An example of the stent mesh search is 

illustrated in supplementary video 1.

C. Validation of Stent Strut Detection in a Large Clinical Data Set

Fig. 10 shows strut detection statistics stratified by neointima coverage thickness. The 

algorithm achieved higher recall in struts with no or thin coverage, as compared to struts 
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with thick coverage. Malapposed struts can be detected with a high recall 0.90±0.14), 

although with a reduced precision (0.75±0.19). Reduced precision for malapplosed struts 

corresponds to false positives from residual blood or struts which were just not marked by 

experts. The precision of the algorithm in cases with >0.3mm tissue coverage is high despite 

its lower recall, and this is mainly because the detected false positives were also fewer. 

Overall, our method demonstrated 0.91±0.04 recall, and 0.84±0.08 precision. We again note 

that the actual performance is better than these numbers as experts did not always mark 

struts which were not bright (Fig. 7).

Fig. 11 demonstrates the robust performance of the presented method in images of vaiying 

quality and in the presence of various artifacts. Fig. 11 (a–d) show struts with different 

thickness of tissue coverage (including negative coverage, i.e. malaposition). Fig. 11 (e) 

shows an image acquired by an eccentrically positioned catheter, and the signatures of struts 

between 2 to 4 o’clock are very weak. But the algorithm was still able to detect them. Fig. 

11 (f) illustrates that the method can correctly detect the struts in images with very low 

contrast, which are quite common clinically and are usually due to residual luminal blood or 

blood inside the catheter. Fig. 11 (g) shows that echo artifacts (bright multiple reflections in 

A-lines) do not affect the detection of the actual struts. Fig. 11 (h) illustrates an example 

where two stents were implanted overlapping in the same artery, which again can be handled 

well by the method. Fig. 12 shows some examples where the algorithm failed. The algorithm 

may mistakenly classify certain artifacts that generate strut-like shadows as struts (Fig. 12 

(a)). The algorithm may miss struts with very thick coverage where almost no shadows are 

present (Fig. 12 (b)). These errors were initially generated from the Bayesian inference 

model and were tolerated by the subsequent steps of the algorithm. A common circumstance 

for disagreements between the algorithm and analysts is in the case of branching junctions 

of stents, where the struts bifurcate and the algorithm detected one strut where two were 

actually present very close together (Fig. 12 (c)). However, this disagreement does not 

significantly affect quantitative metrics derived later.

Automatically derived stent areas correlate well (r=0.988) with areas determined by analysts 

(Fig. 13). A Bland-Altman plot indicates a bias with analysts giving smaller areas than the 

automated method. We believe that stent area is underestimated in the manual analysis 

because the stent contour was reconstructed from the front edge of the bloom without 

correction. The algorithm generated greater errors for those stents with larger areas as the 

struts were away from the catheter and were out of focus and were more difficult to detect.

D. 3-D Visualization

For visualization, all the struts of a pullback were marked by an experienced analyst 

manually and confirmed by a second observer. A 3-D reconstruction was created using 

software Amira (Visualization Sciences Group, Burlington, MA). Compared to manual 

detection (Fig. 14 (a)), the automated method, especially en face processing, generated a 

more complete stent mesh for visualization (Fig. 14 (b)). The corresponding fly-through 

view (Fig. 14 (c)) shows malapposed struts.
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E. Computation Time

Using a program written in mixed languages of MATLAB and C++, processing time for a 

single pullback with 150 frames on a duo-core 3.0GHz CPU is around 2 minutes. Additional 

speed optimization is possible. The approach is sufficiently fast that it can be considered 

feasible for live-time, clinical use.

V. DISCUSSION

In this paper, we presented a novel method for automated detection of stent struts in 

intravascular OCT pullbacks. Our approach uses both Bayesian network and graph search 

techniques, and has been proven to be effective and robust by analyzing a large data set 

collected in clinical environments.

We incorporated the knowledge of OCT image formation to represent the structure of the 

Bayesian network for stent strut detection. Because the network structure is consistent with 

human logic and captures the intrinsic causal relationships between variables, it is associated 

with lower risks of overtraining or poor generality. Additionally, the Bayesian network 

explicitly characterizes the probability of strut presence, and this provides greater flexibility 

and adaptability than binary classifiers.

We also proposed a novel approach for stent detection by processing an en face projection 

image synthesized from the entire OCT sequence. This approach is dramatically different 

from all previous studies [4–13] where stent detection is performed in a frame-by-frame 

manner. Using 3-D mesh shape for stent strut detection is a difficult problem because of the 

diverse range of stent designs that are implanted in patients. The proposed method based 

upon minimum spanning tree is the first real attempt to use the continuity of stent wires in 3-

D to aid strut detection. Results are encouraging. The method assumes little knowledge 

about the design of a particular type of stent, and searches for the optimal stent mesh purely 

based on image data. This offers great generality and convenience for practical usage 

because analysts can blindly apply the algorithm without the need to specify the stent type 

for each pullback.

There are two additional advantages of performing stent mesh segmentation in the en face 
view. First, it can improve 3-D visualization of the entire stent as shown in Fig. 14 (b). 3-D 

visualization of stents can provide important morphological information for clinical 

diagnosis, such as malapposition and stent fracture [35, 36]. Longitudinal vessel features are 

significantly under-sampled by current commercial OCT systems (200 μm between frames 

for the C7-XR™, St. Jude Medical Inc.) as compared to the axial and transverse resolutions 

15–μm, with the pixel size smaller than the optical resolution). If only clear struts are 

detected in 2-D frames, there are gaps and the 3-D reconstruction suffers. En face processing 

can help pick up many ambiguous struts that are unclear in single frames, but are indeed real 

struts by combining neighboring slice information (Fig. 1). Although these ambiguous struts 

are usually not included for quantification, they are beneficial for 3-D visualization. The 

second advantage is that manual post-correction of a wrongly segmented wire in the en face 
projection view can be more efficient than in individual frames. Analysts can use an 

algorithm such as live-wire or intelligent scissors [37] to add or delete some wires. This is 
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equivalent to the analyst correcting stent struts in several frames at once. In comparison, 

single-frame based methods require the operators to manually correct every wrongly 

determined strut, which is time intensive.

It should be noted that the en face stent segmentation method is robust against motion 

artifacts (Fig. 4). Specifically, the stent mesh may look less uniform due to geometric 

distortions along the circumferential direction because the stent mesh father away from the 

catheter has a larger circumferential dimension per unit angle, and due to non-uniform 

pullback or cardiac motion in the longitudinal direction. However, as the MST-STENT 

algorithm does not directly use the shape information of the stent and as long as the stent 

mesh is connected in the en face view, the perfonnance of the algorithm is less likely to be 

affected. In addition, the motion artifacts have little impact on the measured strut parameters 

because the quantification is performed in the cross-sectional view in Cartesian coordinates.

In addition to using graph search to detect those A-lines containing struts, we used graph 

search to determine the depth location of struts. This incorporates the roughly cylindrical 

shape of the stent in global processing. These high-level approaches allow cross-sectional 

frames with very sparse struts (usually at junctions) to be localized accurately.

We have not directly compared the presented method with previous studies because there is 

no standard intravascular OCT image database so far that can be used for comparison. The 

authors of the various studies selected their own images for validation purposes. However, it 

is worthy of note that the sizes of validation data sets employed in all previous studies are 

nearly an order of magnitude smaller than that used in the current study.

We have not separately evaluated the performance of lumen segmentation in this study, 

which could also affect the stent detection accuracy. The lumen segmentation method [16, 

17] is in general very robust in images of varying quality and has been used in an earlier 

report for stent detection [10].

This study has some limitations. First, as discussed in Section III B, the gold standard is 

biased to exclude some difficult to observe struts. The algorithm tends to detect more stent 

struts than analysts, leading to misleading FP detections and an underestimation of detection 

performance. In addition, assessed algorithm performance could be degraded because of 

noisy training data. That is, multiple analysts were used, each with their own thresholds for 

strut detection. Nevertheless, the effect should be limited, as we found reasonable (95%) 

inter-observer agreement (unpublished data with 6 cases, 3 observers). For the training data 

used to train the Bayesian network, a slight axial shift (marking the bloom front edge vs. 

center) does not affect strut A-line classification because the entire A-line is labeled as either 

strut or non-strut. Although we cannot exclude the possibility that the marked bloom front 

edge may generate wrong conditional probability values for certain boundary depth and 

distance values, given the extremely large training data (20 cases, >1800 images, >14,000 

struts), such noise will be washed out in the final conditional probability table. Second, the 

current Bayesian network model neglects the effect of differences in the background signal 

from tissue surrounding a strut on the resulting shadow contrast. Adding this factor would 

complicate the inference model, but perhaps yield improvements. Third, the proposed 
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method works best with metallic stents exhibiting shadows, and does not detect all struts 

when there is thick neointima coverage and reduced shadows. As a result, recall is somewhat 

degraded with thicker neointima (Fig. 10). With the success of modern drug eluting stent 

designs [38], thick coverage is less of an issue. In fact, fewer than 5% of struts were thickly 

covered m our database. In the event of a study having particularly thick neointima 

coverage, manual review and editing could be warranted. Fourth, we do not consider non-

metallic, bioresorbable stents. Nevertheless, we believe that our 3-D graph search and 

machine learning methods would provide tools for solving the difficult challenge of 

detecting bioresorbable stent struts.

VI. CONCLUSIONS

In conclusion, we have demonstrated a novel 3-D method for automated stent strut detection 

in intravascular OCT. Our method combines human expert knowledge and high level 

information for stent strut detection, and has achieved robust performance m >8000 clinical 

images from 103 pullbacks. The algorithm has the potential to vastly reduce the manual 

stent analysis needed for both clinical and research purposes.
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Fig. 1. 
Top: Some popular stent designs showing different, but regularized structures. Bottom: Two 

adjacent frames from an OCT pullback showing stent struts with bright reflections followed 

by dark shadows. In frame i, the oval arrows at 4–5 o’clock point to ambiguous struts. It is 

clear that the ambiguous structures in frame i are leading edges of clearly identified struts in 

frame i+1 marked with arrows, demonstrating the value of using 3-D information to identify 

stent struts.
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Fig. 2. 
Overview of the automated stent detection method.
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Fig. 3. 
The Bayesian network for inference of strut presence. (a) Original OCT image in polar 

coordinates. The green contour indicates the detected lumen boundary of the vessel. (b) By 

calculating the mean intensity of the A-line within a fixed depth from the lumen boundary, 

the 2-D image is projected into a 1-D curve. Struts generate local minima and have large 

shadow contrasts, SC. (c) The probability of strut presence of each A-line generated by the 

Bayesian network in (d). (d) The Bayesian network representation based on principles of 

OCT image formation. Known variables are marked in blue.
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Fig. 4. 
Top: Individual frames in polar coordinates from the stented portion of a pullback. Bottom: 

Synthesized en face projection image showing the structure of the stent.
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Fig. 5. 
Transforming the all-strut depth determination into a graph search problem. Representative 

image frames from an OCT pullback showing a stent implanted in a coronary artery with 

new tissue growth, displayed in cartesian (left) and polar (right) coordinates. Left: To 

maintain the tubular structure, the distances from adjacent struts (blue dots) to the lumen 

centroid are kept within a certain constraint. Right: With the deformation constraint, the 

optimal depths (blue line) for all the struts form the globally optimal surface in the graph 

constructed using only the pixels in the strut lines.
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Fig. 6. 
Generation of stent contours (black) based on interpolation for quantification of clinically 

relevant metrics. Lumen contours are shown in green. (a) Stents with neointima. (b) 

Malapposition.
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Fig. 7. 
Human analyzed data used as the gold standard for validation. Manually marked struts are 

indicated by blue dots in the image. Only stent struts with bright bloom were analyzed by 

human analysts in order to minimize inter-observer variability in strut-level analysis. For 

example, the yellow circled struts were not analyzed by human analysts. Inset: Human 

analysts marked the front edge, instead of the center of bloom for analysis.
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Fig. 8. 
The effect of the size of the training data set on the performance of Bayesian classification. 

The testing data are a subset of randomly selected 10 pullbacks from the entire validation 

data set.
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Fig. 9. 
En face stent segmentation results for two representative types of stents. Top: Xience V 

stent. Bottom: Nobori stent. Dice’s coefficient values for the two stents are 0.86±0.02 and 

0.92±0.06, respectively.
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Fig. 10. 
Performance of the stent strut detection in 8332 clinical images from 103 pullbacks. As the 

gold standard is “biased” that not every strut was analyzed manually (Section III B), the 

actual precision of the method is expected to be significantly underestimated. (a) and (b): 

Recall and precision for struts with different thickness of neointima coverage, respectively. 

These metrics are derived on a frame-by-frame basis. Tissue coverage is determined by the 

average thickness of all struts in a frame. The numbers under the bars indicate the number of 

images in each category. (c) Overall performance using all the images. Here the metrics are 

derived on a pullback-by-pullback basis.

Wang et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Examples of automated stent strut detection in cases with different amounts of neointima 

coverage, images of varying quality and in the presence of various artifacts. Automatically 

segmented luminal boundaries were marked in green. Stent struts were marked in blue.
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Fig. 12. 
Examples of cases where the algorithm failed. (a) False positives could be generated when 

artifacts cast shadows (yellow arrows). (b) Struts with very thick coverage and almost no 

shadows may not be detected by the automated algorithm (yellow arrows). (c): Near a stent 

strut branching (yellow arrow), the algorithm detected only one strut whereas there were 

actually two. A false positive was also detected by the algorithm (red arrow).
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Fig. 13. 
Left: Correlation of the stent area measurements based on stent strut detection by the 

automated algorithm and by human analysts. Right: Bland-Altman plot. Automatically 

derived stent areas correlate well with areas determined by analysts but show a bias because 

we used the front edge of the bloom in manual analysis without correction.
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Fig. 14. 
3-D reconstructions of an implanted stent from an intracoronary OCT pullback. The vessel 

was volume-rendered in orange, and the segmented stent was rendered in silver white. The 

voxels inside the lumen boundary were not rendered. (a) Stent rendering using only 

manually-marked struts in 2-D cross-sectional frames. All possible struts were segmented by 

an analyst, and confirmed by a second observer. This “perfect” manual segmentation is too 

sparse to make a complete stent mesh in 3D. For better visualization, only half the vessel is 

shown. (b) Using en face projection processing, and mapping back to 2-D frames, the 3-D 

stent is very well visualized. (c) Fly-though view shows malapposed struts (green arrows). 

The dark band along the vessel is the region blocked by the guide wire.
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Table 1

Statistics of the validation data used in the study

Number of pullbacks 103

Number of patients 72

Number of images 8332*

Number of stent struts 71881*

Percentage of malapposed struts 5.7%

Percentage of struts with 0–0.1mm tissue coverage 78.1%

Percentage of struts with 0.1–0.2mm tissue coverage 12.2%

Percentage of struts with >0.2mm tissue coverage 4.0%

*
The number of images and struts are those analyzed by human expert analysts. The total numbers present in the pullbacks are much more.
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