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Abstract

The ensemble average diffusion propagator (EAP) obtained from diffusion MRI (dMRI) data 

captures important structural properties of the underlying tissue. As such, it is imperative to derive 

an accurate estimate of the EAP from the acquired diffusion data. In this work, we propose a novel 

method for estimating the EAP by representing the diffusion signal as a linear combination of 

directional radial basis functions scattered in q-space. In particular, we focus on a special case of 

anisotropic Gaussian basis functions and derive analytical expressions for the diffusion orientation 

distribution function (ODF), the return-to-origin probability (RTOP), and mean-squared-

displacement (MSD). A significant advantage of the proposed method is that the second and the 

fourth order moment tensors of the EAP can be computed explicitly. This allows for computing 

several novel scalar indices (from the moment tensors) such as mean-fourth-order-displacement 

(MFD) and generalized kurtosis (GK) – which is a generalization of the mean kurtosis measure 

used in diffusion kurtosis imaging. Additionally, we also propose novel scalar indices computed 

from the signal in q-space, called the q-space mean-squared-displacement (QMSD) and the q-

space mean-fourth-order-displacement (QMFD), which are sensitive to short diffusion time scales. 

We validate our method extensively on data obtained from a physical phantom with known 

crossing angle as well as on in-vivo human brain data. Our experiments demonstrate the 

robustness of our method for different combinations of b-values and number of gradient 

directions.

I. Introduction

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is increasingly used to study the 

neural architecture and connectivity of the brain. It has proven important in clinical settings 

for investigating many brain disorders such as Alzheimer’s disease, schizophrenia, mild 

traumatic brain injury etc. [1], [2], [3]. The ensemble average diffusion propagator (EAP), 

which describes the average displacement of spins within a voxel during the sampling 

period, provides important structural information of the underlying tissue. Thus, it is 

important to derive a reliable method to estimate the propagator from noisy measurements.

In the narrow pulse setting (for single pulse field gradient experiment), the EAP, denoted by 

P(r), is related to the normalized diffusion signal E(q) ≜ S(q)/S(0) measured in the q-space 

via the Fourier transform:
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(1)

as given in [4], where r is the displacement vector, and S(q) is the diffusion signal measured 

at q-space point q. The vector q in the q-space is an experimentally controlled parameter 

with q = (2π)−1γδG where, γ is the gyromagnetic ratio and δ is the duration of the diffusion 

sensitizing gradients whose magnitude and orientation are determined by the vector G. 

Alternatively, E can be written as a function of b-value and a unit vector u ∈ , such that 

E(b, u) : ℝ+ ×  → [0, 1], where b = γ2δ2(Δ − δ/3)||G||2 s/mm2 with Δ being the mixing time 

(i.e., the time between two diffusion-encoding gradients). The fundamental relation given in 

Eq. (1) implies that P(r) is uniquely determined by E(q) which is measured directly in 

experiments. Thus, the propagator estimation problem reduces to one of estimating a 

continuous function E(q) based on scattered measurements acquired in the q-space.

A classical method in dMRI is Diffusion Tensor Imaging (DTI) [5], which assumes that E(q) 

is a Gaussian function centered at the origin (q = 0). However, this over-simplified 

assumption has limitations in voxels where there is complex fiber architecture (crossing and 

kissing fiber bundles). To resolve this issue, High Angular Resolution Diffusion Imaging 

(HARDI) technique is nowadays becoming standard, which involves acquiring diffusion 

signal on a single q-shell in several gradient directions [6]. This protocol, in conjunction 

with various estimation methods [7], [8], [9], [10], is capable of resolving complex angular 

structures. However, it does not provide information about the signal decay along radial 

directions (with increasing q-value) which is desirable in studying subtle anomalies of white 

matter [11], [12].

The q-space imaging theory was first introduced by Paul Callaghan, see [13]. In practice, a 

imaging technique named Diffusion Spectrum Imaging (DSI) was recently introduced in 

[14], which involves acquiring measurements over a dense Cartesian grid of points in the q-

space, followed by application of discrete Fourier transform to obtain an estimate of the 

EAP. However, a large number of measurements and a long acquisition time makes it 

impractical to use DSI in clinical settings. To address this issue, many imaging methods 

have been proposed, which reduce the number of measurements by using suitable signal 

models or by representing the signal using a series of functions in q-space [15], [16], [17], 

[18], [19]. For example, the Bessel Fourier basis [20], the Spherical Polar Fourier (SPF) 

basis [21], [22] and the spherical ridgelet basis [23] extend the spherical representation of 

the signal on a single shell to multiple shells with a continuous radial term. On the other 

hand, MAP-MRI [24] represents the diffusion signal using a combination of Hermite 

polynomials. Another related work is that of [25], where a linear combination of isotropic 

Sinc functions scattered in q-space, were used to represent the diffusion signal in q-space. 

This method is similar in spirit to our work, however the radial basis functions used are 

substantially different between the two methods. Further, we present several closed form 

analytical expressions for higher order moments of the EAP using the proposed method, 

whereas such expressions have not been derived for the Sinc basis functions.

In this work, we use directional radial basis functions for representing the diffusion signal 

and computing the corresponding EAP. In particular, the diffusion signal is expressed as a 
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linear combination of anisotropic Gaussian basis functions centered at several locations in 

the q-space. This is in contrast to other mixture models, which typically center the basis 

functions at the origin in q-space, e.g. [9]. Since the Fourier transform of a Gaussian is 

another Gaussian, one obtains simple analytical expressions for the EAP, and other 

quantities derived from the EAP, such as, the orientation distribution function (ODF) and the 

return-to-the-origin probability (RTOP). Moreover, a significant advantage of the proposed 

method is that the second order and fourth order moment tensors of the EAP can be 

computed explicitly, from which we can compute scalar indices such as mean-squared-

displacement (MSD), mean-fourth-order-displacement (MFD), generalized kurtosis (GK) 

and many others. These measures capture higher order statistics of the diffusion propagator 

(and the q-space signal), which are particularly sensitive to the hindered and restricted 

components of the diffusion process. We extensively validate our method on a physical 

phantom data set with known fiber crossing and on an in-vivo human brain data set. 

Experiments on in-vivo human brain data demonstrate the different properties captured by 

our novel scalar indices, which could potentially be helpful in investigating subtle 

abnormalities in the brain tissue. Additionally, we also demonstrate the robustness of our 

technique to faithfully recover these diffusion measures from a sparse set of measurement, 

thus allowing for reducing the scan time.

II. Theory

A. Radial basis functions

A radial basis function (RBF) φ(x) with x ∈ ℝd is a real-valued function whose value at x 
depends only on its distance to the origin. In the case of Euclidean distance, φ(x) can be 

written as ϕ(||x||). RBF’s are typically used for functional approximations of the form

(2)

where the function to be approximated, s(x), is represented as a sum of N radial basis 

functions each associated with a different center cn and a weighting coefficient wn. A 

fundamental theorem derived in [26] shows that, if the function ϕ is continuous and bounded 

such that ∫ℝd ϕ(x) ≠ 0, then the function s(x) written in the form of (2) is dense in Lp(ℝd) 

(which is the set of pth power integrable functions). In other words, for a sufficiently large 

number N and suitably chosen centers cn’s, the radial basis functions can be used to 

approximate any well-behaved function up to any degree of precision. Hence, RBF’s are 

widely used in many modern applications to approximate multivariate functions [27], [28].

A type of commonly used radial basis function is a Gaussian: ϕ(x) = exp(−σ||x||2) where, the 

normalization term is omitted since it can be absorbed into the weights, and ||x|| denotes the 

Euclidian distance from x to the origin. In many situations, the so-called Mahalanobis 

distance is used instead of the Euclidean distance [29]. In general, a Mahalanobis distance 

between two points x, y ∈ ℝd is defined by appositive definite matrix Σ, and is given by: 

. Hence, the corresponding radial basis function 

 is a (scaled) multivariate Gaussian.
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B. Application in dMRI

We adapt the methodology of RBF’s to represent the dMRI signal continuously in the q-

space. Let {q̂1, …, q̂N} be N fixed points (chosen a-priori) that are densely scattered in q-

space which are also the centers of RBF’s. We represent the normalized diffusion signal 

using

(3)

with ϕn(q − q̂n) = exp(−(q−q̂n)TDn(q − q̂n)) and q̂0 = 0. This representation can also be 

thought of as a generalization of a scheme that involves placing all the basis functions at the 

origin. However, using a non-centered set of Gaussians allows for better modeling the 

signal decay at high q-value. Further, the theory of radial basis functions provides theoretical 

guarantees on the ability of such a framework to be able to represent any function with high 

accuracy [28].

The tensor D0 is computed as in standard DTI [5] and the tensors Dn’s with n ≥1 are 

assumed to have a cylindrical shape, which have the same set of eigenvectors as D0 and with 

eigenvalues σ0, σ1, σ2 such that σ1 = σ2. This anisotropic shape of Dn is motivated from the 

fact that the signal E(q) decays faster along the direction indicated by the principle 

eigenvector of D0. While the eigenvectors of Dn could, theoretically, be set to random 

orientations, however, utilizing the orientation of D0 could aid in better estimation of the 

signal decay. We should note that, even though the orientation of Dn is fixed to that of D0, 

yet, by an appropriate choice of the weights wn, one can represent any type of anisotropic 

function to a very high degree of accuracy [27]. Moreover, using the eigenvectors of D0 for 

Dn also leads to simpler expressions for several scalar statistics as shown in Appendix C-A. 

We note that without the first term w0ϕ0(q), Eq. (3) is a standard radial basis function 

approximation problem. This extra term at the origin provides better fit for measurements 

from gray matter and CSF areas where signal decays almost isotropically along all 

directions.

Since the dMRI measurements are assumed to have antipodal symmetry i.e., E(q) = E(−q), 

we impose equal weights for Gaussian functions placed at antipodal pairs of points:

(4)

The weights wn’s are typically computed such that the mean squared error between E(q) and 

the measurements is minimized. Given these weights, the estimated signal can be 

interpolated continuously in the q-space. An advantage of using Gaussian basis functions for 

representing the measured signal is that its Fourier transform, namely the EAP, can be 

computed analytically.
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C. Estimation of EAP and ODF

Since the reconstructed signal E(q) is a linear combination of Gaussian functions, its Fourier 

transform is given by a linear combination of the Fourier transforms of the individual basis 

functions. Hence, the estimated EAP, P(r), is of the form

(5)

with Φn = (ϕn(q − qn) + ϕn(q + qn)), where  denotes the Fourier transform. In particular, 

the Fourier transform of the Gaussian function ϕn(q) is given by

A translation of a basis function leads to a phase shift of its Fourier transform, i.e. (ϕn(q + 

q̂n)) = exp(i2πq̂n · r) (ϕn(q)). Hence,

(6)

Though each individual Φn(r) has exponentially decayed oscillation, a combination of many 

basis functions may provide a positive diffusion propagator (at least within a large range of 

r) with suitable constraints for the diffusion signal, see Section VI for more detail.

In dMRI, the orientational feature of the underlying tissue can be visualized by using the 

diffusion orientation distribution function (ODF), which is the marginal of the propagator 

P(r) on the unit sphere. More specifically, the (solid angle version) ODF, denoted by Ψ(u), 

is computed from the EAP by evaluating the integral

where u is a unit vector and r is the radial co-ordinate [14]. From the propagator P(r), Ψ(u) 

can be computed analytically as , with 

which is given by

(7)

We provide more details for Ψn in Appendix A.

One significant advantage of the proposed method is that the moments of the EAP can be 

computed explicitly. These moments provide statistics that describe important features of 

the underlying tissue. Thus, they can be potentially used in investigating tissue 
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abnormalities. Let  denote the displacement vector and γ ≜ r⊗r ∈ ℝ9, 

where ⊗ denotes the Kronecker product. Then the covariance matrix of r is defined as

(8)

which is a 3 × 3 positive definite matrix whose eigenvectors determine the principal 

diffusion directions. The diagonal entries of R are the mean-squared displacements along the 

x, y and z directions, respectively. Moreover, the fourth order diffusion tensor is given by

Explicit expressions for R and M are given in Appendix B.

III. Scalar indices derived from the EAP

In this section, we discuss some quantitative scalar indices that could be used to describe 

various features of the underlying diffusion process. We also provide closed form 

expressions for these indices.

A. Mean-squared-displacement (MSD) and mean-fourth-order-displacement (MFD)

The mean-squared-displacement (MSD) is proportional to the average amount of diffusion 

that occurs during the diffusion experiment. It can be computed from the following 

expression:

The last equality follows from (8) and the fact that ||r||2 = trace(rrT), where trace(·) denotes 

the trace operator. Similarly, the mean-fourth-order-displacement (MFD), which is defined 

as

can be computed from the fourth order moment tensor M. This measure is more sensitive to 

the “tail” of the diffusion propagator, and hence it can capture contributions from the 

hindered components of the diffusion propagator.

B. Hindered and restricted diffusivity

In standard DTI, the diffusion of water molecules is modeled by a Gaussian propagator G(r) 

with a covariance matrix . However, the diffusion in human brain tissue is 

typically restricted or hindered, making the diffusion propagator non-Gaussian [30], [31]. 

The amount of hindered and restricted diffusivity can be captured by computing the 

discrepancy between the estimated propagator P(r) and the Gaussian propagator G(r). For 

this purpose, we compute an angular metric between P(r) and G(r) as in [24].
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1) Non-Gaussianity (NG)—Consider two propagators P(r) and Q(r) with their inner 

product defined as 〈P(r), Q(r)〉 = ∫ℝ3 P(r)Q(r)dr. Suppose P(r) and Q(r) are expressed in the 

form of (5) with the weighting coefficients given by wn and vn for n = 0, …, N, respectively. 

Then the inner product can be written as  where

with the second equality obtained from Parseval’s theorem and the inner product between 

two basis functions ϕm(q − q̂m)

(9)

Similar to the method used in [24], the angular metric between the two propagators is 

defined as

In terms of the representation coefficients in the basis functions, the angular metric is given 

by the expression

(10)

Consequently, a dissimilarity measure can be defined as  which takes 

value between 0 and 1. In practice, one may want to scale the value of the dissimilarity 

measures in order to obtain better contrast. For this purpose, we used the same family of 

functions as in [24] which is given by σ(t, ε) = t3ε/(1−3tε + 3t2ε) where t is the value to be 

scaled, e.g. t = sin θPQ, and the parameter ε > 0. The non-Gaussianity (NG) of the diffusion 

of water molecules is reflected by the dissimilarity between the estimated EAP P(r) and the 

Gaussian propagator G(r). To this end, the value of cos θPG is given by
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We define the non-Gaussianity (NG) as

and throughout this paper we use ε = 0.4 as in [24].

2) Difference in covariances—As a distance measure between the diffusion 

propagators, NG reflects the difference in all the moments of the estimated EAP and a 

Gaussian propagator. Since the higher order moments of the EAP are determined by the 

higher order derivatives of the diffusion signal near the origin, they are usually more 

sensitive to measurement noise. Consequently, a distance measure between only the second 

order moments R and Rg may be used to measure the hindered or the restricted diffusion 

though it only partially reflects the difference between the propagators. In the following, we 

present two methods for comparing the second order moments.

Let r̂ denote the displacement of molecules that is distributed according to a zero-mean 

Gaussian function G(r̂). If the propagator is non-Gaussian, each displacement vector r̂ is 

associated with a difference in displacement r̃ such that the true displacement r̂ + r̃ actually 

has a covariance matrix R (as opposed to Rg). There are many ways to account for the 

difference in displacement, which could lead to the covariance matrix R. One choice is 

based on the theory of optimal mass transport, and is also closely related to the Wasserstein 

metric for comparing probability measures [32]. This measure, which we define as a 

measure of Difference in Covariances is given by:

such that the covariance matrix of r̂ +r̃ is R. DC has a closed form expression in terms of R 

and Rg, (see e.g. [33], [34]) and is given by:

DC measures the difference in the second moment of the diffusion propagator which 

partially reflects the hindrance or restriction on the diffusing molecules.

Alternatively, a symmetric comparison of the relative difference between R and Rg can be 

computed using . Based on the inequality  with x > 0, it 

can be easily shown that this distance measure is nonnegative and it equals to zeros if and 

only if R = Rg. In practice, we expect that both this distance measure and DC have similar 

contrast between tissues, however the relative distance may be more sensitive to noise due to 

the matrix inversion. To this end, we only consider DC in the experiments of the paper.

3) Generalized Kurtosis (GK)—A multivariate generalization of kurtosis was studied in 

[35] and is given by
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where R is the moment tensor (covariance matrix) of the diffusion propagator P(r). It can be 

easily shown that, if P(r) is a Gaussian distribution function, then GK = 15. Thus, GK > 15 

implies that P(r) has a fatter tail than a Gaussian and is called super-Gaussian. On the other 

hand, sub-Gaussian diffusion leads to GK < 15. In our framework, GK can be easily 

computed from: GK = yTMy where y ∈ ℝ9 is obtained by packing all the columns of R−1 

into a vector. Thus, this measure has a specific range of scalar values that can be used to 

interpret the type of the diffusion propagator (Gaussian, sub-Gaussian, super-Gaussian), 

unlike the “mean kurtosis” measure typically used in the literature [36].

Since MSD and MFD are the second and the fourth order moments of the ℓ2-norm ||r|| of the 

displacement, respectively, an alternative way of generalizing the mean kurtosis is to 

compare MFD and (MSD)2. The this end, we define the Generalized Kurtosis of the Norm 

(GKN) of displacement as

If P(r) is Gaussian, GKN measures the anisotropy of the diffusion process. In particular, it 

can be shown that GKN = 5/3, if P(r) is isotropic Gaussian, and it equals to 3 for a 

completely anisotropic Gaussian. If P(r) is not a Gaussian, then the fatter tail of P(r) leads to 

higher values for GKN.

Since both GK and GKN reflect the kurtosis of the computed propagator, we expect them to 

have similar contrast between different tissue types. We also note that though the definition 

of GK is practically less attractive, as it is usually more sensitive to the measurement noise 

because it needs the computation of a matrix inversion. A quick comparison between these 

moment based measures and the one obtained by computing the difference between the 

entire propagators (NG), is that, the measures such as GK and GKN have specific numerical 

ranges that make it intuitive to understand the physical meaning behind the estimated 

numbers.

Similar to the scalar statistics derived for the EAP, explicit expressions for the moments of 

q-space signal also provides several important indices that characterize different properties 

of the underlying tissue. In Appendix C, we provide explicit expressions for the return-to-

origin probability (RTOP), the return-to-the-axis probability (RTAP), the return-to-the-plane 

probability (RTPP), the q-space mean-squared displacement (QMSD) and the q-space mean-

fourth-order-displacement (QMFD).
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IV. Estimation method

The first step in the estimation procedure is to fix the parameters of the radial basis 

functions. In this work, the radial basis functions are parameterized by the tensors Dn’s and 

the centers q̂n’s. As was explained earlier, the tensors Dn’s (at each voxel) have the same 

eigenvectors as that of D0, which in turn is estimated using a standard tensor fitting 

technique as in DTI. Note that, the eigenvalues for Dn are different from that of D0 and are 

fixed a-priori. On the other hand, the centers q̂n’s, for n=1, …, N, are chosen as a set of 

dense points in q-space (for all voxels). In the examples of this paper, we chose N = 162 and 

the centers are distributed on two b-shells along 81 gradients. A detailed description for 

choosing these parameters is presented in Section V-B. We note that once the basis 

functions have been defined, the EAP, the ODF and the moments are all a function of the 

weights wn. Thus the performance of the proposed method heavily relies on the strategy 

used in estimating these coefficients. In this section, we discuss different methods for 

computing the coefficients wn’s.

Given K measurements of E(q) at {q1, …, qK}, we denote e ∈ ℝK×1 as the vector of 

measurements, i.e. ek = E(qk) for k = 1, …, K. From the Gaussian basis functions, one 

constructs a K × (N + 1) dimensional matrix A with

for n = 0, …, N. We denote by w, a vector of size N +1 whose entries are the coefficients wn 

(to be estimated). Typically, the vector w can be estimated such that the mean squared error 

between Aw and e is minimized.

Since the linear system Aw = e may be underdetermined in cases when only a small number 

of measurements are available, a simple method is to estimate w as a solution of the 

Tikhonov regularization problem

with λ ≥ 0 being the weighting coefficient. This optimization problem has a closed form 

solution given by wℓ2 = (ATA + λI)−1ATe.

More recently, the ℓ1 regularization method has been shown to be useful in solving linear 

inverse problems especially when the vector w is assumed to be sparse. In this case, w is 

estimated as the solution of the optimization problem:

This minimization approach, however, does not take into account the decay of the diffusion 

signal with increasing q-value. Several authors have reported that the observed signal with 

increasing b-values shows a multi-exponential type of decay (or a power-law decay) [30], 

[31], [37]. Hence, we assume that the diffusion measurements are monotonically decreasing 
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with increasing b-values. Moreover, the diffusion signal should be positive and the value of 

the measurement (normalized) at the origin is known to be one. Thus, one can numerically 

enforce these constraints while estimating the weight vector w by solving the following 

optimization problem:

(11)

The matrix B is of the form  with each column of B1 being ϕn evaluated at a 

given set of locations for q and each column of B2 being the difference between the ϕn’s 

along a given set of gradient directions at several b-value shells. Specifically, we choose a 

set of points on X shells with b-values b = b1, …, bX and b1 ≤ b2 ≤ … ≤ bX. On each b-value 

shell, we use Y points along the directions u1, …, uY. Hence, the total number of points is 

XY. We denote these points as qx,y for x = 1, …, X and y = 1, …, Y. The matrix B1 has size 

XY × (N + 1) and each column of B1 is the value of the basis function at the chosen set of XY 

points. In particular, the (xy, n)th element of B1 is given by

for x = 1, …, X, y = 1, …, Y and n = 1, …, N + 1. The matrix B2 has size (X − 1)Y × (N + 1) 

and the xy × n the entry of B2 is given by

for x = 1, …, X−1, y = 1, …, Y and n = 1, …, N + 1. Each entry in the vector c is the value of 

basis function at the origin, i.e. cn+1 = 2ϕn(q̂n). We note that these constraints are always 

feasible and a trivially feasible element is given by w = [1, 0, …, 0]T.

V. Experiments

We tested our method on a data set acquired from a spherical physical phantom as shown in 

Figure 1a with a crossing angle of 45 degree. The phantom was developed along the same 

lines as described in [38]. Grooves of size 1 × 0.7 cm2 were filed with polyfil fibers of 

diameter 15 μm. The fibers were dipped in NaCl solution during the winding process to 

potentially remove air between fibers. After the winding, the phantom was immediately 

placed into a bin and its position was fixed by casting it into agarose gel.

The data sets were acquired on a 3T Siemens scanner with voxel size of 2 × 2 × 7 mm3. We 

acquired 10 separate scans of the phantom with 5 different b-values with b = {1000, 2000, 

3000, 4000, 5000} s/mm2 and each b-value shell consisted of 81 gradient directions. The 10 

scans were averaged to obtain the “gold-standard” data. The experimental parameters for b = 

5000 s/mm2 were as follows: ||G|| = 20.79 mT/m, TE/TR = 141/3400 ms and δ ≈ Δ = 62 ms. 

The FOV was 118 × 54 and in-plane GRAPPA acceleration factor of 2 was used during 
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image acquisition. The color coded FA and the B0 images of the data set are shown in Figure 

1b and 1c, respectively.

The test data set was based on one slice of the physical phantom and was acquired as 

follows: For each of the following number of gradient directions K = {16, 20, 24, 30, 36, 42, 

60, 81}, we acquired the diffusion measurement over 2 b-shells corresponding to b = {1000, 

3000}s/mm2 and b = {1000, 2000}s/mm2, respectively. Further, 5 repetitions were acquired 

for each of these data samples to test the effect of noise on signal reconstruction quality. For 

data sets with the same number of gradient directions, we compute the signal-to-noise ratio 

(SNR) for signal Sr(q) at the rth voxel at q as  where STD denotes the 

standard deviation. The average SNR over all gradient directions and over all data sets is 

considered the SNR in the corresponding voxel. Table I shows the average SNR in different 

voxels with different b-values.

A. Comparison metrics

We demonstrate the performance of our method on different number of measurements as 

well as on different b-values using the following comparison metrics.

a) Normalized mean-squared error (NMSE) in signal reconstruction—Let êx 

denote the reconstructed signal at location x that is estimated at the same points in q-space 

as the “gold-standard” signal ex,gold. The normalized mean squared error (NMSE) in signal 

reconstruction was computed using

where Ω denotes the set of all voxel locations and |Ω| is the total number of voxels. Thus, 

lower NMSE implies that the reconstructed signal is close to the “gold-standard” signal.

b) Estimated angle (EA)—The orientation of the fibers at each voxel location is 

indicated by the peaks of the estimated ODF. These peaks are often used in tractography 

methods to determine the connectivity of the brain. Thus, accurate estimation of the ODF 

peaks is important in studying white matter fiber bundles. For the case of the phantom data 

set, the fiber crossing was at a known angle of 45°. The estimated angle (EA) was computed 

at each of the voxels where a crossing of two fibers was detected.

The estimated angle between the two principal diffusion directions (in case of crossing) was 

computed as the average estimated angle (EA) given by

where ux,1 and ux,2 denote the direction of the two peaks at location x and Ω2 denotes the set 

of locations that have two peaks.
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c) Percentage of false peaks (PFP)—The estimated angle was computed only at those 

locations where two peaks were detected. However, in many cases, the recovered signal may 

miss or overestimate the number of peaks. Thus, the percentage of false peaks (PFP) is used 

to evaluate the accuracy of peak detection with respect to the gold standard. Based on the 

results from gold-standard data set, two sets of voxels were selected such that Ωgold,1 

contained only those voxels with one peak, while Ωgold,2 contained all voxels with two 

crossing fibers. For each set, the percentage of false peaks (PFP) was computed using:

where nx denotes the number of peaks detected at location x and  is a binary function 

whose value is 1 if nx = i and 0 otherwise.

d) NMSE in estimation of scalar statistics—Let Px(0) denote the estimated return-to-

origin probability (RTOP) and Pgold,x(0) be the estimated RTOP for the gold-standard data, 

both computed using the same method (ℓ1 regularized, 3D-SHORE etc.). The normalized 

mean-squared error in the estimation of RTOP is computed using

The normalized-mean-squared-errors for RTAP, RTPP, MSD, MFD, MMSDE, NG, DC, 

GK, GKN, QMSD and QMFD were defined in a similar fashion.

B. Implementation details

We used these metrics to quantify the reconstruction quality of the data using the anisotropic 

Gaussian basis functions. All the three methods discussed in the previous section, i.e. the ℓ1 

regularized, ℓ2 regularized and ℓ2 regularized with constraints, were used to estimate the 

representation vector w. The centers q̂n of Gaussian basis function were uniformly 

distributed on two b-value shells with b = {2000, 4000} along 81 gradient directions on the 

hemisphere. Thus, N = 162 and the total number of columns of the basis matrix A was 163. 

We note that the location of center points could vary for different acquisition schemes. 

Following the theory of radial basis functions [28], as long as the center points are densely 

placed in q-space and enough measurements are available, the fitted signal will be an 

accurate estimate of the true signal. In our experiments, we used the same set of q̂n’s in all 

the examples (for dense and sparsely sampled data, both in-vivo and phantom) to show the 

robustness of our choice of the center points. For the ℓ2 regularized methods, the parameter 

λ was chosen such that the condition number of ATA + λI is bounded by 107. This bound is 

chosen to be large enough so that λ is small and the estimated signal is mainly determined 

by the least-squares fitting term in the objective function. For the method using ℓ2 

regularization with constraints, the signal was constrained to be non-negative along 81 

gradient directions uniformly sampled on the hemisphere. Along each gradient direction, the 
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difference in the signal at the b-value shells {1000, 2000, …, 8000}s/mm2 were constrained 

to be non-negative. The eigenvalues for the Gaussian basis functions ϕn were set to σ0 = 

0.0011 mm2/s, σ1 = 0.0006 mm2/s for the ℓ2 and ℓ1 regularization methods, while for the 

constrained ℓ2 regularization method, the parameters were set to σ0 = 0.0015 mm2/s and σ1 = 

0.0008 mm2/s. These parameters were selected using an exhaustive search, so that the 

estimated angle with 30 gradient directions was as close as possible to the ground truth. We 

should however emphasize that, we used the same set of parameters for all sampling 

schemes and data sets, to demonstrate the robustness of the proposed method. Further, the 

training data set was different than the test data set used to obtain the optimal parameters 

(σ0, σ1).

We compared the proposed methods with the 3D-SHORE method of [19]. In this case, we 

constructed the basis matrix A according to the 3D-SHORE basis functions and estimated 

the coefficient vector using ℓ1 regularization [19], ℓ2 regularization [39], [19], ℓ2 

regularization with the constraints for monotonicity and positivity of the signal (for a fair 

comparison with our Gaussian basis function based method). The scale parameter of 3D-

SHORE basis and the regularization coefficients were chosen as described in [19].

C. Phantom results

Our main goal in studying phantom data is to quantitatively evaluate the performance of the 

different estimation methods. Moreover, by comparing the estimation results we can also 

determine the most economical sampling scheme for the proposed method. In particular, if 

the measurements are to be sampled on two b-value shells with b = {1000, 3000}, what is 

the trade off between the performance and the acquisition time? If the scan time allows to 

acquire only 60 measurements, should we use b-values with b = {1000, 2000} or use b = 

{1000, 3000} and 30 directions each? The extensive validation we perform in this work is 

an attempt to answer these questions using the proposed methods.

The estimation results on the “gold standard” data (where the actual angle is 45°) with 

different methods are summarized in Table II:

The estimated ODF’s with gold-standard data using the six methods are shown in Figure 7 

in Appendix D. All the six methods successfully detected the crossing fibers based on the 

gold-standard data set. In Figure 7d and Figure 7f, the top-left and bottom-right corners of 

the glyph’s are not displayed since the estimated ODF’s have negative values in these 

isotropic regions.

We first compared our results using the test data set with b = {1000, 3000} and the number 

of gradient directions K = {16, 20, 24, 30, 36, 42, 60, 81}. For visual inspections, Figure 8 in 

Appendix D shows the estimated ODF’s using one data set with 30 gradient directions on 

each shell (60 total measurements). In particular, the figures on the left panel are obtained 

using the proposed Gaussian basis methods and the results obtained using 3D-SHORE are 

shown on the right. For the gold-standard data set, as was shown in Figure 7, all the methods 

successfully identified the crossing fibers. However, with fewer number of samples, the 

performance of the 3D-SHORE basis methods deteriorated. Many voxels in the crossing 

region in Figure 8b, 8d and 8f did not detect the fiber crossing.
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1) Estimated angle—The orientation of the fibers is estimated via the peaks of the ODF. 

A maxima of the ODF is considered as a valid peak if its value is at-least 40% of the highest 

peak in that ODF. Considering the fact that the estimated ODF’s may have small spurious 

peaks (see Figure 7f and Figure 8e), this threshold of 40%, was chosen so that these artifacts 

do not lead to a significant number of incorrect detection in the 3D-SHORE method.

Numerically, the ODF is evaluated on a grid of 2562 points sampled on the sphere. If there 

are only two peaks detected, the directions corresponding to the peaks are used to compute 

the estimated angle in that voxel. The average estimated angles for the six methods are 

shown in Figure 2a. We note that if the number of gradient directions is larger than 30, the 

estimated angle using all the three Gaussian basis function based methods (red curves) are 

within 1.5° of the ground truth. Results also show that, the ℓ2 regularization method with 

3D-SHORE basis underestimated the angle with fewer number of samples. The angle 

obtained using ℓ1 3D-SHORE method is within 2° of the ground truth for K ≥ 30.

2) Percentage of false peaks—We note that the estimated angles were computed only 

at voxels in the region of crossing fibers where two peaks were detected in the ODF. To get 

a complete picture, it is important to compute the percentage of voxels with the correct 

number of peaks. We computed the percentage of false peaks (PFP) in the region with and 

without crossing fibers separately.

Figure 2b shows the percentage of false peaks in the region with two fiber crossings. We 

observe that among the proposed methods, ℓ2 Gaussian with constraints, has the lowest error 

rate which is around 4% with 30 gradient directions and is about 11% with 24 gradient 

directions. The two unconstrained methods using ℓ1 regularization and ℓ2 regularization for 

Gaussian basis functions have similar performances but slightly higher error than the 

constrained method. On the other hand, all the three methods using 3D-SHORE basis 

functions have much higher percentage of false peaks. Among those methods, the ℓ1 

regularization based method leads to better results than the other two. Note that, the 

proposed method performs significantly advantage in detecting the correct number of peaks 

than the 3D-SHORE method.

Figure 2c shows the percentage of false peaks in the region of one-fiber voxels. In this case, 

the ℓ1 and ℓ2 regularized Gaussian methods have slightly higher error (about 8%). The 

constrained ℓ2 Gaussian method however has better performance (about 6% false positives), 

similar to the 3D-SHORE basis methods.

3) Normalized-mean-squared-errors (NMSE)—Figure 9a in Appendix D shows the 

NMSE of the reconstructed signal with respect to the gold-standard data. The method using 

ℓ2 Gaussian with constraints has the lowest fitting error which is about 1.5% with 30 

gradient directions. The ℓ2 3D-SHORE with constraints has lower NMSE compared with the 

other two 3D-SHORE based methods. We note that the performances of both methods, 

Gaussian and 3D-SHORE have been improved by using the constraints. In order to compare 

the difference between the estimated signal obtained by Gaussian with constraints and 3D-

SHORE with constraints, Figure 3 shows the radial profile (signal as a function of b-value) 

of the estimated and the gold-standard signal. The first and second row of Figure 3 show the 
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signal in a single-fiber and two-fiber voxel, respectively. Each line in these figures 

corresponds to the signal along one gradient directions at different b-values. Clearly, all the 

signals are positive and monotonically decreasing along radial directions, though the signal 

may seem to be flat along some directions. We also note that the estimated signal obtained 

by ℓ2 Gaussian with constraints at high b-values, i.e. at b = 4000, 5000 s/mm2, is quite 

similar to gold standard, which is the main reason that the proposed method (Gaussian with 

constraints) has lower NMSE and better angular performance.

The NMSE of the return-to-the-orgin-probability (RTOP) is computed by comparing the 

estimated RTOP obtained using gold-standard data for each of the methods and the results 

are shown in Figure 9b. We note that ℓ2 Gaussian with constraints performs significantly 

better than other methods whose NMSE in RTOP is about 1.5%. The ℓ1 Gaussian and ℓ2 

Gaussian methods have similar performance with about 7% error for 30 directions. The 

NMSE in RTOP for the two ℓ2 regularized 3D-SHORE basis based methods are all above 

50% while for ℓ1 regularization it is 80%. This further demonstrates that the 3D-SHORE 

method does not model the high b-value signal correctly and greatly emphasizes the low b-

value data, resulting in poor estimate of RTOP. We should emphasize that, the “gold 

standard” data contains b-values up to 5000, whereas the the test data had b-values of only 

1000 and 3000. Thus, higher error in RTOP is due to the fact that the 3D-SHORE method 

does not extrapolate the data correctly in the high b-value regime.

Since the scalar indices RTAP, RTPP, MSD, MFD, NG, DC, GK, GKN, QMSD and QMFD 

do not have a closed form expression using the 3D-SHORE methods, we only computed the 

corresponding normalized-mean-squared-errors using the Gaussian basis function methods 

as shown in Figure 9c to 9l. The method using ℓ2 regularization and constraints has the 

lowest NMSE for RTAP, RTPP, MSD, MFD, NG, DC, QMSD and QMFD among the three 

methods. These three methods have similar values for NMSE in GK and GKN. We note that 

the NMSE in RTPP for ℓ1 Gaussian is larger than 100% while the NMSE of RTPP for ℓ2 

Gaussian with constraints is about 1%.

4) Performance using only lower b-value data—We also tested the performance of 

all the six methods on data sets with two lower b-value shells with b = {1000, 2000} and 

with the same number of gradient directions K = {16, 20, 24, 30, 36, 42, 60, 81}. The 

estimated angle and percentage of false peaks are shown in Figure 4. In particular, Figure 4b 

shows that the proposed methods using Gaussian basis functions performs better than the 

methods using 3D-SHORE basis in detecting multiple peaks. Comparing Figure 4b, 4c to 

Figure 2b and 2c, respectively, we note that the percentage of false peaks using b = {1000, 

2000} is higher than using b = {1000, 3000}.

The normalized-mean-squared-error of the reconstructed signal and RTOP for the six 

methods are shown in Figure 10a and 10b in Appendix D, respectively. The proposed 

Gaussian basis function based method using ℓ2 regularization and constraints still has the 

best performance. The NMSE of RTAP, RTPP, MSD, MFD, NG, DC, GK, GKN, QMSD 

and QMFD for the three methods using Gaussian basis functions are shown in Figure 10c to 

10l, respectively. These plots show similar relations among the three method as was shown 

in Figure 9. We summarize the normalized-mean-squared-errors using ℓ2 Gaussian with 
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constraints for 30 gradient directions on two b-value shells with b = {1000, 2000} and b = 

{1000, 3000} in the following table: We note that all the normalized-mean-squared errors 

obtained using measurements on b-values shell with b = {1000, 2000} are higher than the 

corresponding results based on b = {1000, 3000}. Hence, if the scan time only allows to 

acquire 60 measurements, for the proposed method, we recommend using measurements on 

b-value shells with b = {1000, 3000} and 30 directions each.

These comparisons using phantom data suggest that the ℓ2 Gaussian with constraints 

provides better performance than the other five alternatives. The comparisons also show that 

if the sampling time allows for 60 samples on b-value shells, a better choice is to sample the 

signal on the b-value shells of b = {1000, 3000}.

D. In vivo results

We tested our method on in-vivo human brain data with the following scan parameters on a 

3T Siemens scanner: spatial resolution of 2.5mm × 2.5mm × 2.5mm, b-values of {900, 2000, 

3600, 5600}s/mm2 with each b-value shell having 60 gradient directions. This data set was 

considered as the “gold-standard” data. The test data set was obtained by subsampling the 

gold-standard data on b-value shells with b = {900, 3600}s/mm2 along 30 or 60 gradient 

directions on each shell. The experimental parameters were as follows: 32-channel head 

coil, GRAPPA acceleration factor of 2, maximum gradient strength of ||G|| = 31.62 mT/m, 

TE/TR = 141/3400 ms and δ = 45 ms and Δ = 54 ms. We used all the six methods to estimate 

the ODF’s for the voxels shown in the rectangular region (white box) in Figure 5g. We used 

the same parameters for the Gaussian basis functions that were used for the phantom data 

set.

The estimated ODF’s with the gold-standard data set and using the ℓ2 Gaussian constraints, 

ℓ2 3D-SHORE constraints and ℓ1 3D-SHORE are shown in the left panel of Figure 5, while 

the right panel shows the corresponding results using the data set obtained on two b-value 

shells with b = {900, 3600} and 30 gradient directions (total of 60 measurements). In each 

of the ODF glyphs, the estimated return-to-the-origin probabilities of each methods are 

shown in the background. Visually, the estimated ODFs shown in Figure 5a and Figure 5b 

are very similar with each other. The ODF’s are almost isotropic in voxels where the RTOP 

is low (dark background). For the ODF’s highlighted in the rectanglular area, where three 

fiber crossing is detected in gold-standard data, we see that one of the fiber component is 

missing using the subsampled data; see 5b.

ODF profiles using 3D-SHORE is shown in Figure 5c and Figure 5d. Two of the voxels in 

the rectangle area of Figure 5d failed to detect some of the peaks. The ODF’s shown in 

Figure 5f are smoother and sharper than the ODF’s obtained by other methods. However, in 

the rectangular area of Figure 5c, three voxels failed to detect the correct number of peaks 

compared to gold standard data. The RTOP shown in Figure 5f are not consistent with the 

results shown in other figures due to poor extrapolation.

The comparison metrics for the test set with measurements on two b-value shells and 30 

gradient directions (per shell) are tabulated in Table IV. The NMSE of the reconstructed 

signal is slightly higher than the results shown in the phantom data set indicating that the 
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SNR for in vivo data set is possibly even lower than the phantom data (SNR = 9.5). Further, 

we did not have several acquisitions of the same individual, hence the gold standard data 

itself was quite noisy. The normalized-mean-squared-errors obtained by the ℓ2 Gaussian 

with constraints are consistently lower than the results using other methods. We note that 

due to low SNR and singularity in the denominator, the NMSE of DC for ℓ2 and ℓ1 Gaussian 

methods are higher than 100%.

We also computed the comparison metrics for the test set using measurement on two b-

values shells and 60 gradient directions (120 total measurements) as shown in Table V. We 

note that there is no significant improvement in the performance by doubling the number of 

samples.

We also computed the scalar indices for one coronal slice of the brain as shown in Figure 11 

in Appendix E using the gold-standard data set with the proposed Gaussian basis function 

based method with ℓ2 regularization and constraints. The return-to-the-origin-probability 

(RTOP) shown in Figure 11a highlights the white matter areas including the regions with 

crossing fibers. The return-to-the-axis probability (RTAP) is shown in Figure 11b which 

shows the contrast between single-fiber white matters and the regions with crossing fibers. 

The return-to-the-plane probability (RTPP) is shown in Figure 11c which shows lower 

values in single-fiber white matter region corresponding to high diffusion along the fiber 

direction. Figure 11d shows the fractional anisotropy (FA) that is obtained from DTI. Figure 

11e and Figure 11f are respectively the mean-squared-displacement (MSD) and mean-

fourth-order-displacement (MFD), both showing similar contrast between gray/white and 

CSF areas. The ratio MFD/MSD2 corresponds to the images shown in Figure 11j which is 

the generalized kurtosis of norm (GKN) estimated at each voxel.

The scalar indices that capture hindered diffusivity are shown in the third row of Figure 11. 

In particular, in Figure 11g, white matter areas which are more densely packed (e.g. corpus 

callosum, cortico-spinal tract) have higher non-Gaussianity (NG) than areas that have less 

densely packed fibers. Figure 11h also highlights the white matter areas but the contrast 

between white matter and gray matter areas is stronger than Figure 11g. Note that, areas of 

white matter that are affected by partial voluming due to adjoining gray matter or CSF areas 

also have lower DC.

Figure 11i shows the generalized kurtosis (GK). The values for gray matter and CSF areas 

are very close to 15 which indicate that the underlying diffusion process is similar to free 

Gaussian diffusion in these regions. The single-fiber white matter areas show higher GK 

than the crossing fiber areas. The GKN shown in Figure 11j also shows similar patterns as 

the generalized kurtosis. One important feature that these measures present is that, both GK 

and GKN are higher in densely packed white matter areas with predominantly single fiber 

bundles than in the crossing fiber areas, indicating that these measures provide different 

contrast than the standard mean kurtosis measure presented in [40]. Note that, the GKN 

values in the gray matter and CSF areas are very close to 5/3 which is the value 

corresponding to isotropic Gaussian.
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Figure 11k and Figure 11l are respectively the q-space mean-squared-displacement (QMSD) 

and q-space mean-fourth-order-displacement (QMFD). These two figures have similar 

contrast as the HD, although the underlying processes could be different (hindered vs 

restricted diffusion). Unlike MSD and MFD, these two images highlight the white-matter 

area while MSD and MFD are brighter in the CSF areas.

We also computed the same set of scalar indices using only measurements on two b-value 

shells with b = {900, 3600} and 30 gradient directions per shell as shown in Figure 12 in 

Appendix E, respectively. These figures are all very similar to the corresponding results that 

are obtained for the gold-standard data set, albeit with slight error in the estimation of higher 

order statistics (GK, GKN). However, the overall contrast between different white and gray 

matter regions is similar to that of the gold standard data.

VI. Discussion and conclusion

In this work, we presented a novel method to represent and analyze diffusion MRI data from 

low to high b-value data. A framework using directional radial basis functions was 

introduced to estimate the three-dimensional q-space signal and the diffusion propagator 

(EAP) in analytical forms. The properties of the proposed method can be summarized in the 

following aspects:

• If the goal of a neuroimaging study is to obtain subtle measures of diffusion to 

obtain accurate micro structural information about the tissue, 60 measurements are 

needed spread over at least two b-shells (b = 1000 and b = 3000). Note that, a high 

b-value of 3000 is required for accurate estimation of several diffusion measures. 

We also note that the proposed method can be applied to diffusion data sets that 

have different gradient directions on multiple b-shells.

• An important feature of the proposed method using Gaussian basis functions is that 

many high order statistics, such as the return-to-the-origin probability, mean-

squared-displacement, the second and the fourth order moment tensors of the 

propagator, can be computed in a stable and analytical manner. We also proposed 

several novel scalar indices that were derived from these higher order moment 

tensors, such as Generalized Kurtosis (GK) and the Generalized Kurtosis of the 

Norm (GKN) of the displacement. In particular, the GK considers the diffusion 

signal from the entire q-space (as opposed to the measure of kurtosis used in 

diffusion kurtosis imaging, which is only valid up to a maximum b-value of around 

2500). Additionally, we proposed two high order statistical quantities computed 

from the q-space data, which are more sensitive to restricted diffusion. Further, we 

provided analytical formulations for quantities such as return-to-axis and return-to-

plan probabilities.

• The proposed method allows analytical computation of the ODF and hence can be 

used within any tractography algorithm as well, but requires a slightly sophisticated 

acquisition scheme with multiple b-values. Thus, the proposed method is quite 

general and can be used in connectivity analysis as well as to study diffusion 

properties.
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We have showed using experiments on human in-vivo data that the proposed scalar indices 

reveal different features of the nervous tissue structure. We also have performed extensive 

validation of our method on a physical phantom data set and demonstrated the robust 

performance of using the proposed method (Gaussian basis with constraints) on sub-sampled 

data sets. Hence, the proposed method can be potentially used to analyze dMRI data in 

neuroscience studies. Next, we discuss the limitations and some possible issues for applying 

our method in clinical settings.

As was shown in equation (6), each individual basis function in the r-space is an 

exponentially decaying oscillatory function. Though a linear combination of a large set of 

basis functions may reduce the oscillations, the computed EAP may not be monotonically 

decreasing along radial directions. For example, Figure 6 shows the radial profile of the 

estimated propagator in a single-fiber voxel of the phantom data set using measurements on 

the b-shells on b = 1000, 2000 s/mm2 along 30 directions. We note that the propagator is not 

monotonically decreasing along some of the fast-decay directions. Since the propagator was 

not enforced to be positive, we have observed that the propagator may have negative values 

in some data sets. Though small negative values did not lead to any significant issues in our 

experiments, we note that it may be useful to enforce positive constraints for the EAP in a 

similar way as in [24] when applying the proposed method in clinical settings to study brain 

disorders. In this case, we expect a larger number of basis functions to be used which will 

certainly increase the computational burden significantly. With our current settings, the 

computational time for a whole-brain data set is about 6-7 hours using 8 processes.

Another concern for using the proposed method in clinical settings is the choice of the basis 

parameters. The set of the parameters used in this paper were learned from a physical 

phantom data set so that they provide close-to-optimum performances for many data sets. 

The same set of parameters were also used for in-vivo data set from a healthy adult human 

brain. We have seen that the estimation result is robust with changes in the parameters, i.e. 

small difference in the parameters will not lead to significant variations in the estimated 

results. However, these parameters may not be optimal for neonate or infant brains.

The code base for the proposed method can be downloaded via the link https://github.com/

LipengNing/RBF-Propagator. Some of the phantom data sets are also available at the 

website http://projects.iq.harvard.edu/sparcdmri/Challenge_Data.
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Appendix A. Derivations for the ODF

We provide the derivations of Ψn(u) in (7) that is used for computing ODF. First, we 

compute the integral  with a ≥ 0, from which we can obtain the 
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expression for Ψn for specific values of a and b. Since the integrand exp(−ax2) cos(bx)x2 is 

symmetric with respect to the origin, the above integral equals to the real part of

(12)

By Cauchy’s Integral Theorem, the integral of exp(−ax2 − ibx)x2 along a rectangle with 

vertices at −c, c,  equals to zero. Letting c → ∞, we see that (12) equals to

whose real part can be easily computed as

(13)

Then the expression of Ψn(u) in (7) can be obtained by multiplying  to (13) and 

substituting a, b with  and 2π(u · q̂n), respectively.

Appendix B. Second and fourth order moment tensors of EAP

A. Second order moment

Following (5), R has the expression  where Rn is computed from the 

function Φn and is given by

B. Fourth order moment

Using the proposed formulation, M can be estimated using  with Mn = 

∫ℝ3γγTΦn(r)dr. Each element of the matrix Mn is of the form  for i, j, k ∈ 

{1, 2, 3} where ri denotes the ith element of r. Due to symmetry in the indices, the 9 × 9 

matrix Mn only has 15 independent elements. A general expression for each element can be 

derived explicitly and is given by:
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where  and Dn,ij denotes the (i, j)th element of Dn. The matrices R and M provide 

higher order statistics of the diffusion propagator, from which, several useful scalar indices 

can be computed as described in the next section.

Appendix C. Statistics from Q-space

A. Return-to-the-origin probability (RTOP)

The net displacement of water molecules between the application of two diffusion 

sensitizing gradients is inversely proportional to the mean pore volume [24]. An estimate of 

this net displacement can be computed using the return-to-origin probability (RTOP), given 

by P(0), which is the integral of the normalized diffusion signal over the entire q-space, i.e. 

RTOP = ∫ℝ3 E(q)dq. Following (5) and (6), the closed form expressions of the estimated 

RTOP is simply given by

In coherently organized white-matter, the diffusion is maximally restricted in the plane 

defined by the two smaller eigenvalues of the diffusion tensor (plane orthogonal to the main 

eigenvector). Therefore, [24] suggests to estimate the return-to-the-axis probability given by 

RTAP = ∫ℝ2 E(q⊥)dq⊥, where q⊥ denotes a (RTAP) q-vector in the plane orthogonal to the 

principal diffusion direction. RTAP is the reciprocal of the mean cross-sectional area of the 

pore space. To derive the expression for RTAP using the proposed method, we let u1, u2, u3 

be the eigenvectors of the tensor D0, associated with the three eigenvalues (in descending 

order). We note that in the proposed method, u1, u2, u3 are also the eigenvectors for Dn for n 

≥ 1. Let σn1, σn2 and σn3 denote the three eigenvalues of Dn, such that σn1 ≥ σn2 ≥ σn3. 

Assuming u1 is the fiber orientation, the RTAP can computed using

Similarly, the return-to-the-plane probability (RTPP) can be computed through a one-

dimensional integral along the fiber orientation, i.e., RTPP = ∫ℝE(q//)dq//, where q// denotes 

the direction along the fiber axis. This measure is the inverse of the mean length of the 

cylinders. The expression for RTPP is given by
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It has been observed that the diffusion signal decay is biexponential in tissues with restricted 

compartments and small pore sizes [12]. Hence, the measurements in the high q-value 

regime are more sensitive to the restricted diffusion of water molecules. To this end, it is 

natural to derive the higher-order statistics of E(q), i.e ∫ℝ3||q||kE(q)dq for k > 0, in order to 

study the restricted diffusivity of the diffusion process. For k = 0, we obtain the return-to-

the-origin probability P(0). In the following, we introduce the second-order moment and the 

fourth-order moment tensors of the three-dimensional signal E(q) using the proposed 

method.

B. Q-space mean-squared-displacement (QMSD)

Since the propagator is the Fourier transform of the diffusion signal, the higher order 

moments of the signal are equal to the higher order derivatives of the propagator at the 

origin scaled by certain constants. Thus, it would be informative to compute the higher order 

moments of the signal in q-space. The second-order moment tensor of E(q) is defined as Rq 

≜ ∫ℛ2 qqT E(q)dq which is a 3 × 3 positive-semidefinite matrix. In the proposed method, Rq 

is estimated as

As an analogy to the mean-squared-displacement (MSD), we define the q-space mean-

squared-displacement (QMSD) as

The reciprocal of QMSD was referred to as the q-space inverse variance (QIV) in [41], [42]. 

For Gaussian propagators, Rg equals to the inverse of the covariance R of P(r). Hence, the 

inverse of QMSD has similar contrast as MSD in different tissue types. For non-Gaussian 

propagators, QMSD may have different contrast than MSD. Note that, other measures, such 

as anisotropy and norm of the matrix Rq can also be computed, to obtain more information 

about the covariance function of the signal in q-space.

C. Q-space mean-fourth-order-displacement (QMFD)

To introduce the fourth-order moment tensor, we define p = q ⊗ q ∈ ℝ9. Then the fourth-

order moment tensor of E(q) is defined as Mq ≜ ∫ ℝ3 ppT E(q)dq. In the proposed method, 

Mq is estimated as  with Mq,n = ∫ℝ3ppT[ϕn(q − q̂n) + ϕn(q + q̂n)]dq being 
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a symmetric matrix of size 9 × 9. Each element of the matrix Mq,n is of the form 

 for i, j, k ∈ {1, 2, 3} where qi denotes the ith 

element of q. Due to symmetry in the indices, the 9 × 9 matrix Mq,n only has 15 independent 

elements. The expression for  is given as

where q̂n,i denotes the ith entry of q̂n and  denotes the (i, j)th element of . Similar 

to mean-fourth-order-displacement (MFD), we define the q-space mean-fourth-order-

displacement (QMFD) as

We note that E(q) is not a probability density function since its integral is not equal to one. 

Hence, the range for scalar indices introduced in Section III-B are not applicable to E(q). 

Though we can still compute the scalar statistics in q-space using Rq and Mq, their values lie 

on the positive real line (without any bounds).

Both the measures introduced above, QMSD and QMFD, are more sensitive to slow 

diffusion compartments or restricted diffusion. This is in contrast to the measures derived 

from the diffusion propagator, which are more sensitive to hindered diffusion.

Appendix D. Experimental results using the phantom data sets

Figures 7 and 8 show the estimated ODF’s for the phantom data sets. Figures 9 to 10 show 

the normalized-mean-squared errors.

Appendix E. Scalar statistics for the in vivo data sets

Figures 11 to 12 show the estimated scalar statistics for the in vivo data sets.
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Fig. 1. 
(a) The spherical phantom used for data acquisition. (b) The colored FA image of the data 

set used in SPARC. (c) The baseline image of the data set.
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Fig. 2. 
Comparison metrics using measurements on b-value shells with b = {1000, 3000} and 

gradient directions per shell (x-axis): (a) Estimated angle vs. gradient directions, (b) 

Percentage of false peaks for two-peak voxels vs. gradient directions, (c) Percentage of false 

peaks for one-peak voxels vs. gradient directions.
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Fig. 3. 
The radial profile of the gold-standard signal, the estimated signals using ℓ2 Gaussian with 

constraints and the estimated signal using ℓ2 3D-SHORE with constraints, respectively. The 

estimated signal was based on measurements on b-shells with b = 1000, 3000 s/mm2 along 

30 gradient directions. Each line in the figures corresponds to the diffusion signal along one 

gradient direction at different b-values.
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Fig. 4. 
Comparison metrics with measurements on b-value shells with b = {1000, 2000}: (a) 

Estimated angle vs. gradient directions, (b) Percentage of false peaks for two-peak voxels 

vs. gradient directions, (c) Percentage of false peaks for one-peak voxels vs. gradient 

directions.
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Fig. 5. 
Estimated ODF for the rectangle region in the color FA image (g). Left panel and right panel 

show respectively the results obtained from gold-standard (GS) data sent and from 

measurements on two b-value shells with 30 gradient directions per shell (60 total).
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Fig. 6. 
The radial profile of the estimated EAP is a single-fiber voxel of the phantom data set.
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Fig. 7. 
Estimated ODF using “gold-standard” data: (a) Gaussian basis with ℓ2 regularization and 

constraints,(b) 3D-SHORE basis with ℓ2 regularization and constraints, (c) Gaussian basis 

with ℓ2 regularization, (d) 3D-SHORE basis with ℓ2 regularization, (e) Gaussian basis with 

ℓ1 regularization, (f) 3D-SHORE basis with ℓ1 regularization.
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Fig. 8. 
Estimated ODF from measurements on b-value shells with b = {1000, 3000} and with 30 

gradient directions each (total of 60 measurements) using: (a) Gaussian basis with ℓ2 

regularization and constraints, (b) 3D-SHORE basis with ℓ2 regularization and constraints, 

(c) Gaussian basis with ℓ2 regularization, (d) 3D-SHORE basis with ℓ2 regularization, (e) 

Gaussian basis with ℓ1 regularization, (f) 3D-SHORE basis with ℓ1 regularization

Ning et al. Page 34

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Normalized-mean-squared errors using measurements on b-value shells with b = {1000, 

3000} vs. different number of gradient directions.
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Fig. 10. 
Normalized-mean-squared errors using measurements on b-value shells with b = {1000, 

2000} vs. different number of gradient directions.
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Fig. 11. 
Estimated scalar indices for one coronal slice using the “gold-standard” data set: (a) return-

to-the-origin probability (RTOP), (b) return-to-the-axis probability (RTAP), (c) return-to-

the-plane probability (RTPP), (d) Fractional anisotropy (FA), (e) mean-squared-

displacement (MSD), (f) mean-fourth-order-displacement (MFD), (g) non-Gaussianity 

(NG), (h) difference in covariances (DC), (i) general kurtosis (GK), (j) generalized kurtosis 

of the norm (GKN) of displacement, (k) q-space mean-squared-displacement (QMSD), (l) q-

space mean-fourth-order-displacement (QMFD).
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Fig. 12. 
Estimated scalar indices for one coronal slice using measurements on b-value shells b = 

{900, 3600} and 30 directions: (a) return-to-the-origin probability (RTOP), (b) return-to-the-

axis probability (RTAP), (c) return-to-the-plane probability (RTPP), (d) Fractional 

anisotropy (FA), (e) mean-squared-displacement (MSD), (f) mean-fourth-order-

displacement (MFD), (g) non-Gaussianity (NG), (h) difference in covariances (DC), (i) 

general kurtosis (GK), (j) general kurtosis of the norm (GKN) of displacement, (k) q-space 

mean-squared-displacement (QMSD), (l) q-space mean-fourth-order-displacement (QMFD).
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