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Abstract

In magnetic resonance imaging-based electrical properties tomography (MREPT), tissue electrical 

properties (EPs) are derived from the spatial variation of the transmit RF field (B1
+). Here we 

derive theoretically the relationship between the signal-to-noise ratio (SNR) of the electrical 

properties obtained by MREPT and the SNR of the input B1
+ data, under the assumption that that 

latter is much greater than unity, and the noise in B1
+ at different voxels is statistically 

independent. It is shown that for a given B1
+ data, the SNR of both electrical conductivity and 

relative permittivity is proportional to the square of the linear dimension of the region of interest 

(ROI) over which the EPs are determined, and to the square root of the number of voxels in the 

ROI. The relationship also shows how the SNR varies with the main magnetic field (B0) strength. 

The predicted SNR is verified through numerical simulations on a cylindrical phantom with an 

analytically calculated B1
+ map, and is found to provide explanation of certain aspects of previous 

experimental results in literature. Our SNR formula can be used to estimate minimum input data 

SNR and ROI size required to obtain tissue EP maps of desired quality.
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Introduction

MR-based electrical properties tomography (MREPT), in its most widely used form, utilizes 

the Laplacian of the complex transmit RF field ( ) to estimate the electrical conductivity 

(σ) and relative permittivity (∈r) of tissue in a region of interest (ROI) with constant 

electrical properties (EPs) [1-4]. Inside biological tissue and at clinical MRI frequencies, the 

length scale of RF field variation, defined by its wavelength or the skin depth, is on the order 

of a centimeter to tens of centimeters. When the measured map of such field contains 

random noise varying over the length scale of a single voxel, high-pass filtering 

characteristic of Laplacian operation makes accurate determination of true RF field variation 

difficult. Therefore, signal averaging is often performed either over time to increase the raw 

data SNR, or over an ROI to spatially average the noise in the Laplacian as much as 

possible. Knowing the quantitative relationship between the SNR of EPs, raw data SNR, and 

the ROI size will help determine the experimental conditions necessary to achieve the 

quality of EP maps desired for a given application. For example, Hancu et al [5] have 

reported that the difference in relative permittivity between normal tissue and tumor in a 

mouse model was 27% at 1.5 T. In order to use MREPT for tumor discrimination, therefore, 
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SNR in permittivity greater than 4 is desired. At present, little is published on how this SNR 

requirement relates to the RF field map SNR. A main goal of this work is to investigate such 

relationship to inform experimental design regarding SNR and spatial resolution of MR 

signal acquisition in MREPT experiments.

With the assumption that the primary source of uncertainty in MREPT comes from the 

Laplacian calculation on a noisy field map (namely, ignoring systematic errors involved in a 

particular MREPT method), we derive a quantitative relationship between the uncertainties 

of the raw data and those of the resulting EPs. We start from general, qualitative 

considerations on what physical factors should affect the EP uncertainty, and how the latter 

should functionally depend on such factors. Then we take a concrete example of a spherical 

ROI and demonstrate derivation of a formula relating the input and the output uncertainties. 

We demonstrate numerical simulations based on an analytical RF solution in a cylindrical 

phantom with synthetic random noise to verify the derived formula. Implications of the 

results on the choice of the field strength in MREPT will be discussed.

Several previous works [6-8] have discussed random noise in MREPT. These works have 

empirically demonstrated how the SNR of the reconstructed EPs vary with the main field 

strength [7] and the reconstruction methods [6, 8], providing a good benchmark to test any 

comprehensive MREPT noise theory. We will compare the SNR behaviors reported in these 

works with the predictions of our theory.

Theory

1. General considerations and assumptions

EPT equation—Suppose that through appropriate methods and approximations we have 

obtained the complex  map in the tissue and we calculate the electrical properties using 

the known MREPT equations based on the homogeneous Helmholtz equation [1]:

(1)

(2)

Here ∈0, μ0 are the permittivity and permeability in vacuum, respectively. The MRI 

resonance frequency, ω = 2πf, is related to the main magnetic field B0 by ω = γB0, where γ = 

2π · 42.578 MHz/T is the gyromagnetic ratio of 1H in water. Here we assume that  is the 

input data from which EPs are calculated; however, the results obtained in the following are 

directly transferrable to cases in which quantities other than  are used in MREPT. For 

example, Eqs. (1,2) are applicable to each Cartesian component of , and the receiver 

sensitivity field [9]. Also, in the image-based method of [10],  replaces .

Because of the spatial derivative operation, Eqs. (1,2) need to be applied to a region 

containing multiple voxels. We will define such a set of voxels a region of interest (ROI); an 

ROI is a region in which a single ∈r and a single σ are determined from MREPT. Unless 
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otherwise noted, in this work we will assume that an ROI is three-dimensional. The ROI 

should be distinguished from a bigger region or an anatomy (e.g., brain) in which a map of 

EPs is calculated. In the latter case, we will assume that a map is obtained by sweeping the 

ROI inside the bigger, anatomical region.

Because Eqs. (1,2) are valid for spatially constant ∈r and σ, the following analysis is only 

strictly valid in a homogeneous region with constant EPs. If an ROI contains voxels with 

non-constant EPs, the resulting error in the reconstructed EPs can surpass the error due to 

the random noise considered in this work. This is particularly the case if the ROI crosses a 

tissue boundary. We emphasize that the theoretical validity of our SNR analysis below is 

limited to cases where the EPs vary sufficiently slowly in an ROI that the SNR of MREPT is 

limited by the random noise.

Linear Laplacian estimator—For a given ROI, Eq. (1) suggests that k2 be computed 

from the ratio between an estimator of the Laplacian of  and an estimator of  within 

the ROI, namely,

(3)

In this work, we consider a class of methods in which the Laplacian estimator takes a form 

of the inner product between  and a predefined kernel,

(4)

Here v = 1,2, ··· , Ntot is a voxel index in an ROI containing Ntot voxels and gv, called 

“Laplacian kernel”, is a set of real numbers that produce a Laplacian estimator of  when 

an inner product is taken with .

The estimator of  can be defined simply as

(5)

Although other definitions are possible, for example, a weighted average, our results are not 

sensitive to the exact definition of the  estimator. What is important is that the latter is a 

quantity independent of the voxel index v. Using Eqs. (4,5), Eq. (3) can be written as

(6)
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We note that estimating the Laplacian from a linear kernel includes many published methods 

of numerical Laplacian computation. For example, finite difference calculation [11], 

calculation using a special kernel of [12], and an integral method [6, 13] are all a form of 

linear Laplacian estimation with an appropriately defined kernel. Furthermore, a linear filter 

applied to the  map can be included in the definition of gv. On the other hand, we are not 

considering in this work methods involving non-linear filtering.

The electrical properties are obtained from Eqs. (2,6) as

(7)

(8)

Noise propagation—Uncertainties in ∈r and σ come from the noise in the  map. 

Qualitatively, if the  map has a certain SNR, its ROI average  has a higher SNR by 

a factor . As we generally consider ROI with Ntot > > 1, one can say that the 

denominator on the right hand side of Eqs. (7,8) can be determined with relatively high 

accuracy; uncertainties in ∈r and σ are therefore dominated by the uncertainty in the 

Laplacian estimator of . Our task in this and the following sections is to determine how 

this uncertainty relates to the SNR of . Since we are dealing with the SNR of complex 

quantities, below we detail our assumptions made on the  noise in order to prevent any 

confusion regarding its definition.

In most MREPT acquisitions, the magnitude and phase of  are separately acquired. In 

such a case, we may assume that the noise in  and the noise in  are statistically 

independent. We will further assume that the noise in  (magnitude or phase) at different 

voxels is independent from one another. Lastly we will assume that the magnitude and phase 

noise is characterized by voxel-independent standard deviation,  and , 

respectively. Note that here and in what follows Δ() represents statistical uncertainty over 

repeated trials, and not voxel-to-voxel variation in an ROI (because voxel-to-voxel variation 

includes true spatial variation of ). In order to express the uncertainties in ∈r and σ in 

terms of  and , we now proceed as the following.

First, we rewrite Eqs. (7,8) as
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(9)

(10)

This was done in two steps. (i) , a voxel-independent quantity, can be put inside the 

Laplacian estimator 〈 〉g. (ii) Since the kernel g is real, the operations of taking an inner 

product with g and taking the real (or imaginary) parts can be swapped in order.

Eqs. (9,10) show that the EPs are determined by the Laplacian estimator (〈 〉g) of the real 

and imaginary parts of the normalized  map, . Let us denote these quantities as

(11)

(12)

The uncertainties in ∈r and σ are now expressible as

(13)

(14)

In Appendix 1, we show that under realistic conditions, the uncertainties in br and bi 

themselves are related to the  noise by

(15)

(16)
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where  and  are the  map magnitude SNR and the phase SNR in the 

ROI, respectively. Our next task, therefore, is to determine how the uncertainties in br and bi 

propagate into the uncertainties in their Laplacian estimators,  and . This deals with 

the question of noise amplification by the Laplacian operation.

2. Uncertainty in the Laplacian of noisy data

2.1. Scaling relation

For notational simplicity let us denote either br or bi by a generic real-valued map b. b is 

defined in an ROI and has a (additive) random real noise at any given voxel in the ROI with 

standard deviation Δb. For a given realization of b, we evaluate its Laplacian estimator 

over the ROI. The estimator statistically varies and its standard deviation, , is what we 

seek.

Without knowledge of the specific Laplacian kernel g, we first attempt to come up with a 

general functional form of  expressed in terms of a few factors that are expected to 

affect . They are the input noise Δb, the number of voxels Ntot, and the size of the ROI. 

First, given that the Laplacian estimator is linear, its standard deviation should be 

proportional to the input standard deviation:  ∝ Δb. Second, other factors being equal, 

the statistical fluctuation of the Laplacian estimator is expected to decrease as the number of 

independent voxels increases. A reasonable guess for the scaling can be . 

Lastly, the physical unit (dimension) of  is the same as that of , and the latter, being 

a Laplacian of b, must possess a unit: (unit of b)/(length)2. One quantity in the problem that 

has the unit of length is the size of the ROI, which we will denote as L. Whereas the exact 

definition of L is not important for the discussion in this section, for specificity we define L 

as the diameter of the smallest sphere that contains the ROI. Without knowing what other 

length scales (such as ones defined by the input data b) may affect , we proceed to 

write  formally as

(17)

Thanks to having separated out L−2, we can say in the above equation that G is a 

dimensionless quantity. Eq. (17) can be viewed as the definition of G, as a factor that 

accounts for any remaining functional dependence of  after separating out . 

Its usefulness hinges on whether G still depends on L, Ntot, or the input data b. In the 

following section we will show that G is independent of b when the Laplacian kernel g is 

noise-optimized (defined below). The usefulness of Eq. (17) will be more apparent as we 

consider concrete examples.
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For now let us use Eq. (17) to replace  in Eq. (13), and  in Eq. (14). In doing so, 

we also replace the generic input noise Δb by the corresponding noise Δbr and Δbi from Eqs. 

(15,16).

(18)

(19)

The above equations point us to the desired relationship between the EP uncertainties and 

the raw data SNR and the ROI size. Now let us look in more details into computing G.

2.2. Minimum uncertainty Laplacian estimator

We start by the definition of the Laplacian estimator Eq. (4),

(20)

Here the bold face symbols indicate row vectors of the corresponding quantities defined on 

all voxels in the ROI: b = (b1, b2, ··· , bNtot), g = (g1, g2, ··· , gNtot).

When b has voxel-independent noise , the noise in Eq. (20) is given by

(21)

Here we used the general relationship,  for 

independent statistical variables X1 and X2. We find that the root sum-of-squares (rss) of the 

kernel gv equals the noise propagation factor between the input (b) and the output ( ) 

noise. Further calculation requires knowledge of the kernel gv. We proceed by looking for a 

Laplacian kernel gv that minimizes the rss value and therefore Eq. (21) for a given Δb. We 

call such a kernel as a “minimum uncertainty Laplacian kernel”. In order for gv to be a 

Laplacian kernel, it must satisfy the following conditions:

(i) If the input data b is a constant or linear, the inner product of b and g must 

vanish.

(ii) If the input data b is purely parabolic, its inner product with g must produce the 

exact Laplacian.

Therefore, we define the problem of finding gv as follows.

Find a real vector g = (g1, g2, ··· , gNtot) that minimizes the sum of squares
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(22)

subject to

(23)

(24)

Here the variables xv, yv, zv are the Cartesian coordinates of the vth voxel.

This can be converted into a problem of unconditional minimization using 10 Lagrange's 

multipliers corresponding to Eqs. (23,24). In Appendix 2, we show that the solution for gv is

(25)

from which the corresponding S is

(26)

In the above the matrix F has a dimension Ntot × 10 and is defined as

(27)

where the boldface symbols represent row vectors of length Ntot , 1 = (1, 1, ··· , 1), x = (x1, 

x2, ··· , xNtot), y = (y1, y2, ··· , yNtot), z = (z1, z2, ··· zNtot), etc.

Eq. (26) shows that the sum of squares of the optimized g is given by 4 times the sum of the 

nine elements in the 3 × 3 block in the lower right corner of the 10 × 10 matrix (FTF)−1. Its 

evaluation depends on the ROI. Comparing Eqs. (17,21,22,26), we find that the previously 

defined numerical factor G is in fact independent of the input data b.

2.3. Relationship with the Savitzky-Golay filter

Interestingly, the minimum uncertainty Laplacian kernel Eq. (25) is the same as the sum of 

the three second derivative filters obtained by the least-squares polynomial fitting, known as 

the Savitzky-Golay differentiation filters [14]. While the original method published [14] was 

for one-dimensional data only, it can be extended to 2D [15] and 3D [16]. In short, least-

squares fitting of noisy data, defined on a 3D grid, to a second order polynomial is an 

analytically solvable problem. If the data is rearranged in a row vector b, then the problem is 

to solve the linear equation Fc = bT in the least squares sense, where F of Eq. (27) defines 

the polynomials and c is the (column) vector of polynomial coefficients. The solution 

involves the pseudo-inverse matrix of F, c = (FTF)−1FTbT. The coefficient of each 
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polynomial term is, therefore, given by the dot product of b and each row of the matrix 

(FTF)−1FT. Since the latter is independent of the input data, it can be viewed as a linear filter 

or a kernel that produces the desired polynomial coefficient when projected to the input data. 

With our definition of F (Eq. 27), the last three rows of (FTF)−1FT correspond to the kernels 

for the coefficients of the terms x2, y2, z2, respectively. If we denote these kernels by 

, we can define a Savitzky-Golay Laplacian kernel gSG as

(28)

Comparing Eq. (25) and Eq. (28), it follows that

(29)

In our opinion, it is not obvious why the kernel gSG defined in Eq. (28) should also be the 

minimum uncertainty Laplacian kernel defined in the previous section. The Savitzky-Golay 

differentiation filters are a set of numbers which, when an inner product is taken with the 

input data, produce coefficients of polynomial terms that best fit the data, minimizing the 

mean square error between the data and the polynomial. On the other hand, the defining 

requirement of the minimum uncertainty Laplacian kernel is that the mean square of the 

kernel itself is minimized. To our understanding, Eq. (29) appears non-trivial.

2.4. Relationship with Laplacian estimation through quadratic fitting

From the definition of the Savitzky-Golay filter, Laplacian estimation using the kernel gSG is 

mathematically equivalent to calculating the Laplacian through quadratic least-squares 

fitting to the input data. The advantage of fitting over the finite-difference Laplacian 

calculation was demonstrated by Katscher et al. [17], where the authors locally fit a “3D 

parabola” to  phase data for breast conductivity mapping. Whereas ref. [17] focused on 

the advantages in terms of boundary artifact reduction, our work shows that in fact 3D least-

squares fitting is theoretically the best linear method to estimate the Laplacian in terms of 

suppressing noise amplification. We note that a variant to the method is to fit the  data 

along only the three Cartesian directions [18]. Whereas the latter may be computationally 

faster and may have similar artifact reduction advantages as described in [17], it is expected 

to be less accurate as voxels outside the three lines are not utilized.

The 3D quadratic fitting method can be generalized by including higher order terms, such as 

x3, in the fitting polynomial. Including higher order terms can better separate true second-

order spatial variation (Laplacian) from higher order ones when the ROI is large and the 

underlying (noise-free)  map varies rapidly in space. Such extension corresponds to 

including higher order terms in the definition of F in Eq. (27), and is computationally 

straightforward to implement. An interpretation of the resulting nth order Savitzky-Golay 

Laplacian kernel would be the following: the kernel estimates the Laplacian of noisy data 

with the minimum statistical uncertainty among all linear kernels that extract the Laplacian 

from an input data containing spatial variations of up to the nth order. We add that for a 
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small ROI in which  varies relatively slowly, a situation commonly encountered in 

MREPT, including higher order terms in Laplacian calculation is not expected to make 

much difference.

2.5. Solution in the continuous limit

Closed analytical expressions for the kernel gv and the factor G (Eq. 17) can be found in the 

continuous limit (Ntot/L → ∞) for simple ROI shapes. In this section we demonstrate results 

for a spherical ROI.

Assume an ROI defined by

(30)

where L = 2R is the diameter of the sphere. We assume that Ntot is so large that summation 

over the voxels in the ROI can be replaced by a continuous integral over the sphere, scaled 

by the voxel volume VROI/Ntot. For example, the (2,2) element of the matrix FTF is

(31)

Thanks to the symmetry of the ROI shape, most of the off-diagonal terms in the matrix are 

zero and FTF is block-diagonal. It turns out that the terms corresponding to 1, x2, y2, z2 do 

not mix with the other terms. As a result Eq. (25) can be simplified as

(32)

If we call the 4 by 4 matrix in the middle of the right hand side of the above equation as α−1, 

the elements of α can be calculated through definite integrals similar to Eq. (31):

(33)

(34)

(35)

Note that the first (1, 1) element of α is .

The inversion of α can be done explicitly,
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(36)

from which we get the desired kernel,

(37)

The sum of squares of the kernel is four times the sum of the nine elements of the 3 by 3 

block in the lower right corner of α−1 ,

(38)

where we used R = L/2.

Combining Eqs. (21, 22, 38), we conclude that for a spherical ROI of diameter L, the 

Laplacian uncertainty is

(39)

Comparing Eq. (39) with Eq. (17), we obtain G for a spherical ROI,

(40)

In the above derivation the shape of the ROI enters the process only during calculation of 

the matrix elements such as Eq. (31), and the process can easily be extended to general ROI 

shapes. Before turning to discrete grid examples (tot not being very large), we summarize in 

Table 1 and Fig. 1 results for a 2D circular ROI (defined by x2 + y2 ≤ (L/2)2) and a 1D linear 

ROI (defined by ). From these analytically solvable cases we observe the following:

(1) Eq. (17) provides a valid scaling relationship between , Ntot, and L 

regardless of the ROI's dimensionality.

(2) If we fix the voxel size in the ROI, the number of voxels scales as Ntot ∝ Ld, 

where d = 1,2,3 is the ROI's dimensionality. Then Eq. (17) implies that the 

Laplacian uncertainty scales with L as . Therefore the higher d, 

the more rapidly the Laplacian uncertainty decreases with growing ROI size. For 

d = 3, the scaling goes as L−3.5.
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(3) The minimum uncertainty Laplacian kernel is a smooth function of the 

coordinates which tends to be negative in the center and positive at the boundary 

of the ROI. This is reminiscent of a generic second derivative “kernel”, (1, −2 ,

1), and the original 1D Savitzky-Golay 2nd order differentiation filters [14].

2.6. Minimum uncertainty Laplacian kernel on a discrete lattice

The process of constructing the minimum uncertainty Laplacian kernel from a discrete ROI 

mask follows the general steps of constructing a Savitzky-Golay kernel through the least 

squares polynomial fitting.

(1) Assign Cartesian coordinates to each voxel in the mask. The origin of the 

coordinates can be assigned to a point in the approximate center of the ROI.

(2) Form a matrix F out of column vectors of unity (1), quadratic (x2, y2, z2), linear 

(x, y, z) and cross (xy, yz, zx) terms. For a symmetric ROI with mirror 

symmetries in all three directions (such as a sphere or a cuboid), both linear and 

cross terms can be omitted. This is because for such an ROI, the inner product of 

an even-parity term (unity and quadratic) and an odd-parity term (linear and 

cross) vanishes. This causes the matrix FTF to be block-diagonal to allow g to 

be calculated with a reduced matrix, as in Eq. (32). In this case F with a size Ntot 

× 4, constructed from only the constant and quadratic terms, will suffice. 

Otherwise, F will generally have a size Ntot × 10. Let's say the number of 

polynomial terms is Nterms.

(3) Calculate a Nterms × Ntot matrix A according to

(41)

Each row of A represents the Savitzky-Golay kernel for the coefficient of the 

corresponding polynomial term.

(4) The Laplacian kernel is given by twice the sum of the three rows of A that 

correspond to x2, y2, z2.

(5) Final answer is given by rearranging the Laplacian kernel into a grid matching 

the ROI's shape.

Figure 2 compares three Laplacian kernels constructed for the same ROI shown in Fig. 2(d). 

This ROI mask fits in a grid of size 7 × 7 × 5, and is taken from the Laplacian kernel used in 

van Lier et al [12]. Uniform voxel spacing (=1) is assumed. The three kernels shown are:

(a) Averaged nearest-neighbor kernel Knn—A nearest-neighbor Laplacian at a single 

voxel is defined by adding the six nearest neighbor voxels and subtracting six times the 

center voxel. If there are Nnn voxels in the ROI at which such Laplacian can be defined 

without crossing the ROI boundary, there can be constructed Nnn independent Laplacian 

kernels in the ROI. Adding them up and dividing by Nnn defines Knn.
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(b) van Lier's kernel KvL—The three kernels listed in [12] for the second derivatives in 

the three Cartesian directions were added up and scaled to satisfy Eqs. (23-24).

(c) Savitzky-Golay kernel KSG—This was obtained by the steps (1-5) described above 

applied to this particular ROI.

All three kernels are scaled so that they satisfy the requirements Eqs. (23-24). At the top of 

each figure, the rss value of the kernel and the number of non-zero voxels in the kernel are 

displayed. Figure 2 shows that KSG indeed has the smallest rss value. Knn has about 2.5 

times larger rss value, which translates into 2.5 times higher Laplacian noise amplification 

compared to KSG. The rss value and noise amplification of KvL are in between those of Knn 

and KSG.

A few notes are in order regarding Knn. Knn estimates the Laplacian inside an ROI by 

averaging the voxel-wise nearest neighbor Laplacians. Due to massive cancellation inside 

the ROI, such estimator becomes mathematically equivalent to summing the nearest 

neighbor first-order derivatives of the input data along the ROI's boundary. The third image 

of Fig. 2(a) graphically illustrates this point. In the continuous limit, this is expressed using 

the divergence theorem, , which forms the basis 

of the “integral method” [8, 13]. Therefore, Knn can be viewed as a kernel that represents a 

form of the integral method. For a given ROI, the integral method generally outperforms a 

single, unaveraged finite-difference Laplacian formula [8]. For example, if we construct a 

finite-difference Laplacian kernel from the six voxels on the far faces of the ROI and the 

central voxel, we can show that its rss value is 1.03, indeed larger than that of Knn. 

Qualitatively, Knn underperforms KvL and KSG because only voxels near the ROI boundary 

contribute to the computation. This leads to insufficient noise cancellation which results in a 

higher level of apparent noise amplification compared to more smoothly varying kernels 

such as KvL and KSG.

Now let us define L for this ROI as the diameter of the smallest sphere that fits around it, L = 

√67 = 8.185. The corresponding G factor for KSG is

(42)

Similarly, we get GvL = 290.2 and Gnn = 420.8. These numbers are significantly larger than 

the G factor (= 91.65) for a spherical ROI with the same L. The G factor is a function of 

both the ROI geometry and the exact Laplacian kernel used in that ROI. We have shown in 

sections 2.2 and 2.3 that for a given ROI, the Savitzky-Golay Laplacian kernel has the 

lowest G factor. Here we see that when the Savitzky-Golay Laplacian kernel is constructed 

in a spherical ROI and an ROI of Fig. 2(d), a sphere has a lower G factor.
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3. SNR of MREPT

3.1. Relative uncertainty and SNR in electrical properties for a spherical ROI

We now proceed to the main results of this work. For specificity, we assume a Savitzky-

Golay Laplacian kernel defined on a spherical ROI with diameter L. The results below can 

be applied to other ROIs and kernels by changing the factor 20√21 to the corresponding G 

factor. We divide Eqs. (18,19) by ∈r and σ, respectively, and use Eq. (2) to replace 

ω2∈r∈0μ0 by Re(k2) and ωσμ0 by . Substituting G = 20√21 (Eq. (40)) we get the 

following results.

(43)

(44)

Taking the reciprocal of the above and defining , , we get:

(45)

(46)

The SNR of EPs is proportional to the SNR of the  map, to the square root of the number 

of voxels (Ntot), to the square of the ROI size (L), and to the magnitude of real or imaginary 

part of k2. Given that the real and imaginary parts of k2 are proportional to 1/(wavelength)2 

and 1/(skin depth)2 in the tissue, respectively, one can say that the SNR of EP is inversely 

proportional to the square of the RF length scales (wavelength or skin depth) of the tissue. 

The numerical factor of 1/G/=1(20√21)=0.0109 is a substantial hit to the SNR. The scaling 

with (Ntot), L, wavelength, skin depth, MRI frequency (through k2), is the same for different 

ROI shapes and dimensions. Different shapes of the ROI will affect SNR through change of 

the G factor.

3.2 MRI field dependence

MRI field (B0) or frequency dependence of the relative uncertainty (SNR) in EPs comes 

from several sources: frequency dependence of RF length scales (wavelength and skin 

depth), raw data SNR, and accuracy of any approximations made to the MREPT equations. 

Eqs. (45,46) provide a way to predict how the SNR in EPs changes with B0 through changes 

in the RF length scales for a given raw data SNR. Note that the RF length scales depend on 

the EPs themselves, which also vary with the frequency.

Lee et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As an example, consider experimental conditions listed in Table 2. We assume a spherical 

ROI with diameter L = 2 cm. Table 3 shows the SNR in the EPs of the brain tissue (grey and 

white matter) according to Eqs. (45,46) under the conditions of Table 2. Three MRI fields, 

1.5, 3, 7 T were considered. EPs of the brain tissue were obtained from the 4-term Cole-Cole 

equation [19, 20].

Table 3 shows the advantage of higher MRI frequencies in achieving high SNR in MREPT. 

For relative permittivity, decrease in ∈r with frequency is outweighed by the quadratic 

factor ω2 to make Re(k2), and therefore the SNR∈r, grow rapidly with the MRI field strength. 

For conductivity, increase in both σ and ω with the field makes similarly distinct increase in 

SNR with the MRI field strength. These results are for a fixed raw data  SNR. 7T 

acquisition may provide even greater SNR benefit to MREPT due to higher raw image SNR.

When MREPT is used for additional tissue contrast, contrast-to-noise ratio is important to 

determine the merit of the method. In ref [5], permittivity contrast between normal tissue 

and tumor in a rat model increased significantly at lower frequencies. However, rapid 

decrease in Re(k2) at lower frequencies, and the resulting loss in SNR∈r, will likely make 

low-frequency permittivity contrast imaging using MREPT difficult.

4. Numerical experiment

4.1 Noise in EP maps and comparison of kernels

All numerical computation was done with Matlab (Mathworks, Natick, MA, USA). The 

simulation model (phantom) consisted of an infinitely long cylinder with three concentric 

cylindrical regions labeled I, II, III from the inside out. The outer radii of the regions were 4 

cm, 6 cm, and 10 cm. The following EPs were assigned to each region: (∈r, σ) = (80,2.0) for 

I, (∈r, σ) = (10,0.1) for II, and ((∈r, σ) = (80,0.8) for III, in which σ is in [S/m]. Regions I 

and II roughly mimic a high conductivity lesion (such as tumor) surrounded by fatty tissue. 

Closed-form analytical solution for the complex  map at 128 MHz was obtained 

following the method of [21] by solving the Maxwell's equations in an axisymmetric 

geometry with boundary matching.

The phantom was discretized in a grid with voxel size 2 × 2 × 2 mm3. The axis of the 

cylinder was defined as the z axis. Gaussian random noise was added to the magnitude and 

phase of , independently, at each voxel. The noise amplitudes were chosen such that 

 = 330 and  = 200 at the center of the cylinder's cross section (slice). EP 

maps on the slice were reconstructed from the synthesized  data. First, an ROI mask of 

Fig. 2(d) was centered on each voxel in the slice. The mask fit in a 7 × 7 × 5 grid, which 

corresponded to a volume of 1.4 × 1.4 × 1 cm3. If the ROI mask was fully contained within 

the outer boundary of the phantom,  values in the ROI were processed to calculate EP 

values according to Eqs. (7,8), and the latter were assigned to the ROI's center voxel. If the 

ROI mask was not fully contained within the phantom, EP values were not calculated for 

such voxels. The process was applied blindly across the inner boundaries of the phantom, 

with no attempt of region segmentation. Three Laplacian kernels defined in Section 2.6 (Fig. 
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2(a-c)), namely the averaged nearest neighbor (nn) kernel, van Lier's (vL) kernel, and the 

Savitzky-Golay (SG) kernel, were used for EP calculation and the results were compared.

Figure 3(a) shows the calculated EP maps in comparison with the true EP values of the 

model. Qualitatively, we observe the following:

(1) The SG kernel produces the lowest noise EP maps among the three kernels, 

whereas the vL kernel outperforms the nn kernel. This is consistent with the 

predictions of Section 2.6.

(2) For all three kernels, there are significant boundary artifacts near the two 

internal “tissue” boundary lines, creating two annular sets of pixels with invalid 

EP values; the width of the annulus is approximately the size of the ROI.

Figure 3(c) lists the pixel mean, standard deviation, and the SNR of the EP values on 

different regions of the phantom. In calculating the statistics, we excluded “boundary 

artifact” pixels for which the ROI centered on them crossed the tissue boundary. We find 

that the SNR in both ∈r and σ is generally higher in regions with higher values of EPs. For 

example, the region I, which has the highest conductivity, has the highest SNR in 

conductivity of all regions for any given Laplacian kernel. On the other hand, the middle (II) 

region, mimicking fatty tissue with low ∈r and σ, has the poorest SNR for both ∈r and σ. 

This trend is consistent with the theoretical dependence of the SNR on the RF length scales 

(e.g. Eqs. (45, 46)); the higher the EP values, the faster the RF field varies in space, which 

leads to higher EP SNR.

Note that earlier we emphasized the difference between the statistical noise in EPs at a given 

voxel over many realizations of , and voxel-to-voxel EP variation for a given realization 

of the  map. Whereas the former, which was used in the theory section, is different from 

the latter, which is shown in Fig. 3(a), the two measures are comparable when many voxels 

with statistically independent  noise are present in a homogeneous region. Therefore the 

observed agreement between the theoretical predictions and the numerical experiment is still 

relevant.

The left column of Fig. 3(b) shows the SNR of the magnitude and the phase of  at each 

pixel, as used in the numerical model. The random noise added to both the magnitude and 

the phase of  had each a constant statistical amplitude across the pixels. However, the 

magnitude of the true (i.e., before adding noise)  had spatial variation, which caused the 

spatial variation of . On the other hand, the phase SNR (Eq. (16)) is uniform across 

the phantom. One merit of our theory is the ability to quantitatively predict the EP SNR 

based on the  SNR. The right column of Fig. 3(b) shows the theoretical SNR of EPs at 

each pixel according to Eqs. (45,46), in which the factor 20√21 was replaced by the G factor 

(=123) of the SG kernel on the ROI used. Fig. 3(b) indicates that even for very high 

SNR used in this model, the predicted EP SNR is relatively low, in the range of 3 to 7 for 

the highest SNR region (I). The theoretical SNR is well reproduced by the results of the 

numerical experiment, as tabulated in Fig. 3(c).
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The numerical study of this section indicates that when a kernel has a relatively small size 

both in terms of the physical dimension (1.4 cm) and the number of voxels (7 or less along 

any Cartesian direction), a  map with very high SNR is required to achieve a useful SNR 

in EP mapping. For a given  map, the choice of the Laplacian kernel can significantly 

impact the noise of EP mapping.

4.2. ROI size dependence

Our theory predicts rapid increase of EP SNR with the ROI size. This is demonstrated in 

Fig. 4. Here the EPs of a numerical cylinder phantom were calculated with the Savitzky-

Golay Laplacian kernel defined on a series of ROIs approximating spheres with different 

diameters, L = 0.2 Nx= [cm], ranging from Nx=5 to 29 (L = 1.0 cm to 5.8 cm). The (∈r, σ) 

data were synthesized in the same way as in the previous section, except that the cylinder, 

with 20 cm diameter, was homogeneous with (∈r, σ)=(80, 0.8 S/m). Instead of looking at 

spatial variation of the reconstructed EPs, we tracked statistical variation of EPs in a given 

ROI (at the center of the cylinder) over many (1000) runs. The SNR of EPs was defined as 

the ratio between the standard deviation over the 1000 runs and the true EP values. The SG 

kernel for a given ROI mask was calculated following the steps of section 2.6. The process 

was repeated for each ROI diameter. A total of 13 different ROIs and corresponding SG 

kernels were used in the study. For each ROI, the G factor defined in Eq. (42) was computed 

and compared with the continuous-limit value 20√21 (Eq. (40)).

Figure 4(a) shows that the simulated SNR of EPs agrees very well with the theoretical SNR 

obtained by Eqs. (45,46). This also verifies the approximations Eqs. (15,16) which relates 

the noise in  magnitude and phase separately to the noise in the real and imaginary parts 

of the normalized  (Appendix 1). We find that a very poor SNR of between 1 and 2 at L = 

1.0 cm (Nx= 5) grows to an SNR > 100 at L = 4.0 cm (Nx = 20). The scaling of SNR with the 

ROI size follows SNR  as predicted (Section 2.5) when only the SNR due to random 

noise is considered.

Figure 4(b) shows the statistical mean values of the reconstructed EPs in a given ROI as a 

function of the ROI size. Note that the accuracy of the EP calculation slowly degrades at a 

large Nx. This is because for a large ROI, higher (>2) order spatial variation of the  map 

becomes significant, and it is not accounted for in the second-order polynomial fitting, 

which our SG kernel is based on. Including higher order terms in the construction of the SG 

kernel could reduce this discrepancy for a large ROI.

Figure 4(c) shows that the G factor for a spherical ROI calculated in the continuous limit 

(Eq. (40)) predicts well the numerical G factors on a discrete grid.

Our theory predicts rapid increase of EP SNR with the ROI size. This is demonstrated in 

Fig. 4. Here the EPs of a numerical cylinder phantom were calculated with the Savitzky-

Golay Laplacian kernel defined on a series of ROIs approximating spheres with different 

diameters, L = 0.2 Nx [cm], ranging from Nx = 5 to 29 (L = 1.0 cm to 5.8 cm). The  data 

were synthesized in the same way as in the previous section, except that the cylinder, with 
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20 cm diameter, was homogeneous with (∈r, σ) = (80, 0.8 S/m). Instead of looking at spatial 

variation of the reconstructed EPs, we tracked statistical variation of EPs in a given ROI (at 

the center of the cylinder) over many (1000) runs. The SNR of EPs was defined as the ratio 

between the standard deviation over the 1000 runs and the true EP values. The SG kernel for 

a given ROI mask was calculated following the steps of section 2.6. The process was 

repeated for each ROI diameter. A total of 13 different ROIs and corresponding SG kernels 

were used in the study. For each ROI, the G factor defined in Eq. (42) was computed and 

compared with the continuous-limit value 20√21 (Eq. (40)).

Figure 4(a) shows that the simulated SNR of EPs agrees very well with the theoretical SNR 

obtained by Eqs. (45,46). This also verifies the approximations Eqs. (15,16) which relates 

the noise in  magnitude and phase separately to the noise in the real and imaginary parts 

of the normalized  (Appendix 1). We find that a very poor SNR of between 1 and 2 at L = 

1.0 cm (Nx=5) grows to an SNR > 100 at L = 4.0 cm (Nx=20). The scaling of SNR with the 

ROI size follows SNR  as predicted (Section 2.5) when only the SNR due to random 

noise is considered.

Figure 4(b) shows the statistical mean values of the reconstructed EPs in a given ROI as a 

function of the ROI size. Note that the accuracy of the EP calculation slowly degrades at a 

large Nx. This is because for a large ROI, higher (>2) order spatial variation of the  map 

becomes significant, and it is not accounted for in the second-order polynomial fitting, 

which our SG kernel is based on. Including higher order terms in the construction of the SG 

kernel could reduce this discrepancy for a large ROI.

Figure 4(c) shows that the G factor for a spherical ROI calculated in the continuous limit 

(Eq. (40)) predicts well the numerical G factors on a discrete grid.

5. Comparison with previous experimental results

Experimental studies of the behavior of SNR in MREPT have been published earlier. 

Katscher et al. [6] investigated the SNR of the simulated and measured conductivity as a 

function of the reconstruction parameters at 1.5 Tesla. The authors noted that the SNR of the 

reconstructed conductivity was proportional to that of the B1 map, and plotted their ratio for 

a bi-cylindrical phantom as a function of two reconstruction parameters: the number of 

pixels (2I + 1) used for linear derivative computation and the integration area (L2), as 

relevant in the particular reconstruction equations used (Eqs. (3,4) of [6]). Translated to our 

formulation, I and L determine the Laplacian kernel shape and its size. Based on the 

descriptions of ref. [6], we attempted to reproduce the corresponding Laplacian kernels (K) 

and the predicted SNR ratios. For the kernel K, we assumed the simplest approximation 

model mentioned in ref. [6], namely Hz = H−=0. Figure 5(b) shows an example. For the 

SNR ratio, we used our Eq. (46) where the factor √NtotL2/(20√21) was replaced by 1/rss(K) 

(see Eq. (42)). Explicitly, we plotted

(47)
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for a phantom with σ = 2.5 S/m, for which|Im(k2)| = ωσμ0 = 1263 [m−2]

Figure 5(a) shows the result. Comparing this with Fig. 5 of ref. [6], we find that the general 

trend of the SNR ratio is well predicted. A main difference between the two figures is the 

definition of the SNR ratio on the y axis; our theory predicts the SNR ratio with respect to 

the B1 phase SNR, whereas in ref. [6] the ratio used the “B1 map” SNR. If the latter meant 

the B1 magnitude SNR, it is conceivable that it was a smaller number than the B1 phase SNR 

(which seems to be the case from Fig. 7(d) of ref. [6]). In such a case, the SNR ratio of our 

prediction should be smaller than that of ref. [6], which is what is observed.

Van Lier et al. [7] have investigated the accuracy and precision of MREPT at 1.5, 3, and 7 

Tesla through phantom and in-vivo experiments. We observe the following from the 

experimental EP maps of [7]:

(1) Random noise in EP maps in the brain and a brain-sized phantom is very high at 

1.5 T, to the point where quantification of EPs is severely hampered.

(2) The random noise decreases rapidly as B0 increases from 1.5 to 7 T.

(3) From visual inspection of the phantom results (Figs. (5,6) of [7]), the noise in 

permittivity appears to decrease with B0 more dramatically than the conductivity 

noise.

These features can be qualitatively explained by our theoretical predictions.

(1) Table 3 shows that at 1.5 T, the EP SNR in brain tissue is generally low, being 

less than 4 under the conditions of Table 2. The SNR calculation assumed the 

input ( ) SNR of 100 for both the magnitude and phase, and a noise-

minimizing Savitzky-Golay Laplacian kernel on a sphere (G = 91.65) with 

diameter L = 2.0 cm containing Ntot=1000 voxels. On the other hand, ref [7] 

used a kernel that was an anisotropic version of the kernel KvL (Fig. 2). The 

largest linear dimension of the kernel in [7] was L = 2.72 cm. If we therefore 

scale the SNR according to  (Eqs. (45,46)), we estimate that 

the EP SNR of Table 3 is reduced by a factor √1000/117 · (2.0/2.72)2 · 

(290.2/91.65) = 5.0 where the G factor 290.2 was taken from section 2.6. This 

decreases the theoretical SNR in ∈r and σ of grey matter at 1.5 T from 2.4 and 

3.5 (Table 3) to 0.48 and 0.7, respectively. Such low SNR will indeed make 

quantification of EPs difficult.

(2)(3) According to Eqs. (45,46), B0 increase from 1.5 to 7 T causes increase in SNR 

in ∈r and σ by (71.5/)2=21.8 and 71.5/=4.67, respectively, for a given input ( ) 

SNR and frequency-independent EPs (as was the case in [7]). Although  SNR 

was not available from ref. [7], it is conceivable that 7 T scans had a higher 

SNR than 1.5 T scans, which would increase the field-dependent SNR gain to an 

even higher value. Very large, at least an order-of-magnitude gain in SNR in 

permittivity at 7 T compared to 1.5 T is apparent in Fig. 6 of ref. [7].
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In addition to the qualitative observations, ref. [7] also provides quantitative analysis of the 

measured noise in the electrical properties. The blue bars in Fig. 7 of [7] indicate the 

measured “noise level”, defined by the standard deviation of the experimental EP maps on a 

homogeneous compartment of the phantom, normalized by the true EP values. According to 

this plot, the noise level decreases monotonically with B0; the noise reduction factor from 

1.5T to 7T was reported to be 3.1 for permittivity, and 3.8 for conductivity. These numbers 

are considerably smaller than the predicted gain in random-noise-limited SNR (21.8 for ∈r 

and 4.67 for σ) from our theory. One possible reason for the difference is that the reported 

noise level in the plot of [7] could have contained contributions from reconstruction errors 

(due to phase approximation) that are larger for 7T than for 1.5T. Even though the plot 

separately shows the reconstruction errors (green and red bars) for each field strength, they 

were taken from a separate simulation study, and it does not appear as if the blue bars were 

obtained after subtracting such non-random errors. For example, inspection of the three 

measured permittivity maps in Fig. 6 of [7] strongly suggests that the random noise at 1.5T 

is at least an order of magnitude larger than at 7T; at 1.5T, many pixels are out of the color 

range, whereas at 7T, the permittivity variation appears to be more attributable to non-

random reconstruction errors. If this had been the case, the actual random noise reduction 

factor from 1.5T to 7T would have been much higher than 3.1, consistent with our theory.

6. Dicussion

Random noise amplification by Laplacian operation has been known to be a challenge in 

MREPT that relies on the Laplacian of the measured  map. In this work we have 

quantified the noise amplification by introducing the minimum uncertainty Laplacian kernel, 

and demonstrating explicit derivation of random noise-limited electrical properties SNR 

equations for a specific (spherical) kernel shape. Our results showed that the Laplacian noise 

contains a factor (G) that depends on the kernel shape, as well as factors (L2, Ntot) that 

depend on the size of the kernel. Further analysis also revealed how the EP uncertainties 

scale with the complex RF wave number k2 and through it, with the B0 strength.

We have elucidated the relationship between the Savitzky-Golay second derivative filter, 

quadratic fitting, and the minimum uncertainty Laplacian kernel. By explicit derivation, we 

showed that a Laplacian kernel obtained by the Savitzky-Golay second derivative filters 

achieve the lowest noise amplification among all linear Laplacian kernels satisfying Eqs. 

(23,24). We have outlined numerical steps to compute such a kernel (section 2.6) for an 

arbitrary ROI. This result will be useful for Laplacian estimation in MREPT and in any 

other applications requiring the Laplacian of noisy data.

An implication of the theoretical EP SNR formula is that EPs calculated from a small ROI 

suffer a disproportionately large penalty in random noise-limited SNR. In 3D and for a fixed 

voxel size, the loss in SNR follows the 3.5th order power law with respect to the linear size 

of the ROI. This implies that dividing a large ROI into smaller ROIs and averaging EPs 

obtained from the latter can be much less precise than calculating EPs from the original, 

larger ROI with a matching Laplacian kernel.
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In this work we have ignored any correlated noise or systematic errors in MREPT. For 

example, the predicted benefit of lower uncertainty in MREPT at higher field strengths 

should be balanced with potential increase in systematic errors [7] due to inaccurate 

phase assumption, when a single transmit and receive RF coil is used. Phase assumption 

errors at high fields could be reduced by use of multiple RF coils for transmission and 

reception [22, 23]. Similarly, it is possible that the increase in EP SNR with the ROI size 

may be less dramatic than the predicted 3.5th power dependence. This is because our theory 

(as well as the numerical simulation) assumed that noise in different voxels was 

uncorrelated. In practice, hardware drift and instabilities can cause inter-voxel noise 

correlation. For example, in the Weisskoff analysis performed on a 2D image [24], repeated 

MRI measurements ideally results in fluctuations in the ROI-averaged signal amplitude that 

decrease linearly with the ROI dimension. In a survey of clinical scanners, however, the 

radius of decorrelation (RDC), which was a measure of the size of the ROI at which 

statistical independence of the voxels is lost, was found to range between 4 and 17 voxels 

[25]. Likewise, past a similarly defined RDC point further increase in the ROI size for EP 

calculation will reach a point of diminishing returns.

In a heterogeneous medium such as biological tissue, a larger ROI is more likely to include 

voxels at EP boundaries where the homogeneous Helmholtz equation-based MREPT 

formulation (Eqs. (1,2)) fails. Boundary artifacts produced by such voxels are apparent in 

the numerical simulation shown in Fig. 3(a), where the width of the artifact “ring” is set by 

the ROI size. The proposed Savitzky-Golay kernel may perform relatively poorly near the 

boundaries compared to other kernels because it tends to weigh heavily distant voxels in the 

ROI.

Recent works by Liu et al. [26] and Hafalir et al. [27] have shown that EP reconstruction 

from solution of the inhomogeneous Helmholtz equation (i.e., without assumption of 

spatially uniform EPs) is feasible under experimental conditions where the axial component 

of the RF field can be ignored. In addition to greatly reducing the boundary artifacts, these 

methods were shown to also reduce the random noise in the reconstructed EPs in a 

homogenous medium (Fig. 4 of [26] and Fig. 17 of [27]). While more work is needed to 

better define applicable experimental conditions and characterize systematic errors, 

advances in methods that explicitly address spatial variation of EPs [20, 26, 27] appear 

promising towards clinical MREPT. Our work can inform these methods in two ways. First, 

the minimum uncertainty Laplacian can still be useful since ∇2B1 often appears in the more 

sophisticated MREPT equations. Second, theoretical SNR of the conventional MREPT can 

provide an easily accessible reference for evaluation of the SNR of the new methods.

In this work we excluded any nonlinear processing of the input ( ) data [28] or of the 

reconstructed EP maps (such as a median filter [17]) for noise reduction. Naively, one might 

think that the SNR gain from the pre- or post-processing steps can be independently added 

(logarithmically) to the SNR ratios from Eqs. (45,46). However, changes in spatial 

correlation of the filtered data may complicate such consideration. Investigation of how 

nonlinear filters can improve the best case SNR of MREPT based on the homogeneous 

Helmholtz equation could be a relevant subject of a future study.
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A major limitation of the present work is the lack of direct experimental validation of the 

derived SNR equations (Eqs. 45,46). To compensate for this, we presented numerical 

phantom simulations to support the validity of the key assumptions (Eqs. 15,16) and confirm 

the soundness of the theoretical development leading to the main results (Eqs. 45,46). We 

showed that our theory captures many salient features of the SNR behavior of Laplacian-

based MREPT that have been reported previously. They include very poor SNR at 1.5T 

under typical conditions, dramatic SNR gain at higher fields, and quantitative tradeoff (Fig. 

5) between better EP localization (favoring a smaller ROI) and SNR (favoring a larger ROI).

In conclusion, we have presented a quantitative relationship between the input and the 

output noise in MREPT. Despite its limitations, our work provides a useful formula relating 

the experimental parameters and the SNR of the MREPT in its commonly used form based 

on the homogeneous Helmholtz equation and a linear Laplacian estimator. Our results can 

help guide the experimental design and choice of reconstruction parameters in conventional 

MREPT experiments. Detailed experimental validation and comparison with noise 

behaviors of other, more sophisticated methods remain as an area of future research.

Acknowledgement

This work was partly supported by the Grant R01CA154433 from the National Institute of Health of USA. The 
views expressed in this work do not necessarily reflect those of the NIH.

Appendix 1. Derivation of Eqs. (15,16)

We assume that in the ROI in which the electrical properties need to be determined, the 

spatial variation of  is small in magnitude compared to the average . That is,

(A1)

This is reasonable since in most cases MREPT is concerned with determining EPs in an ROI 

where  varies weakly.
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Figure A1. 

ROI-averaged  and a collection of individual voxel  in the complex plane.

Figure (A1) illustrates the mean  and a collection of individual voxel  in the 

complex plane. Let us denote  in the complex plane. Then the 

normalized  is

(A2)

Under the condition Eq. (A1), the real and imaginary parts of the above quantity (r.h.s. of 

Eq. (A2)) can be approximated to the leading order in δB as

(A3)

(A4)

Incidentally, substituting Eqs. (A3,A4) in Eqs. (9,10) (using the definitions of Eqs. (11,12)) 

leads to the  magnitude-only method for ∈r and  phase-only method for σ calculation 

[13], respectively. For our purpose, we take the standard deviation of br and bi, with the 

assumption that the ROI averaged  has negligible statistical fluctuation compared to that 

of  at individual voxels: . This leads to
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which are Eqs. (15,16).

Appendix 2. Derivation of Eq. (25)

If gv minimizes Eq. (22) while satisfying Eqs. (23-24), then there exist 10 constants 

a1,a2,···,a10 (Lagrange's multipliers) for which the following quantity is minimized 

unconditionally by gv:

(A7)

(A8)

Eqs. (A7, A8) lead to

(A9)

which states that the kernel gv is a quadratic function of the coordinates. The multipliers are 

determined by imposing the 10 conditions Eqs. (23-24). We first express Eq. (A9) in terms 

of the row vectors as

(A10)

Next, Eqs. (23-24) can be expressed as

(A11)

Substituting Eq. (A10) to Eq. (A11) and solving for the multipliers we get

(A12)

Substituting this to Eq. (A10) yields Eq. (25).
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Figure 1. 
Functional form of the kernel g as a function of x (a), 

, for the 1D, 2D, 3D cases of Table 1 in the 

continuous limit, respectively. The ROI size is L = 0.02 [m]. Each function is normalized to 

unity at the boundary.
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Figure 2. 
Comparison of linear Laplacian estimator kernels. Five images correspond to axial slices at z 

= 1 to 5. (a) Kernel that corresponds to averaging all nearest-neighbor Laplacians in the 

ROI. (b) Kernel used in van Lier et al. [12]. (c) Savitzky-Golay Laplacian kernel. All kernels 

are defined in the ROI shown in (d) that fits in a 7 × 7 × 5 grid and has Ntot = 117 voxels. 

All images have the same grey scale.
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Figure 3. 

(a) EP maps reconstructed from simulated  data on a three-layer cylinder phantom; nn 

(averaged nearest neighbor), vL (van Lier), and SG (Savitzky-Golay) indicate three different 

Laplacian kernels of Fig. 2. The last column shows the true ∈r and σ. The numbers on the 

axes label the pixels. (b) SNR of the magnitude and phase of the simulated  map (left 

column), and theoretical SNR maps of EPs for the SG kernel (right column). (c) EP statistics 

on individual regions (excluding boundary artifacts) for each of the three kernels. SNR, 

defined as the ratio between the mean and the standard deviation, is shown in parenthesis.
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Figure 4. 
Numerical simulation on ROI size dependence of the random noise-limited EP SNR. (a) 

Simulated vs. theoretical SNR in EPs as a function of the linear size (Nx) of the spherical 

ROI. (b) Simulated mean vs. true EP values. (c) Laplacian noise amplification factor G for a 

spherical ROI on a discrete grid compared to the continuous-limit value.
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Figure 5. 
(a) SNR ratios predicted from the reconstruction kernels of Katscher et al. [6]. I is the 

number of pixels on either side of a target pixel used to compute the derivative. L is the 

length (in pixels) of one side of the square used for B1 map integration. (b) An example of 

the kernel with I = 2, L = 5 on the third of the five slices. The dashed line indicates the L = 5 

integration area. The kernel values are in unit of (i.e., should be multiplied by) 1/(Δx)2 where 

the pixel size is Δx = 1.15 mm from [6].
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Table 1

Minimum uncertainty Laplacian kernels in different ROIs.

ROI g rss(g) G

1D line with length L 30

Ntot L 2 ( 12

L 2
⋅ x2 − 1) 12 5

Ntot
1∕2L 2

12 5 = 26.83

2D disc with diameter L 96

Ntot L 2 ( 8

L 2
(x2 + y2) − 1) 32 3

Ntot
1∕2L 2

32 3 = 55.43

3D sphere with diameter L 210

Ntot L 2 ( 20

3L 2
(x2 + y2 + z2) − 1) 20 21

Ntot
1∕2L 2

20 21 = 91.65

Expressions for the 3D sphere case are from Eqs. (37,38,40).
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Table 2

A simple case for illustration of SNR in EPs.

parameter SN R
∣B1

+∣
SN R

∠B1
+

Ntot L [m] dv [mm3] G (sphere)

value 100 100 1000 0.02 1.61×1.61×1.61 91.65

dv is the voxel volume.
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Table 3

Electrical properties, RF length scales and theoretical random noise-limited MREPT SNR in brain tissue at 

three different MRI field strengths under the conditions of Table 2.

parameters unit grey 1.5T white 1.5T grey 3T white 3T grey 7T white 7T

ε r 1 97.5 67.9 73.6 52.6 60.1 43.8

σ S/m 0.51 0.29 0.59 0.34 0.69 0.41

Re(k2) = ω2ε0εrμ0 m−2 175 122 527 377 2345 1709

|Im(k2)| = ωσμ0 m−2 257 146 595 343 1624 965

λ = 2π ∕ ω 2∊0∊rμ0
m 0.475 0.570 0.274 0.324 0.130 0.152

δskin = 2 ∕ ωσμ0
m 0.088 0.117 0.058 0.076 0.035 0.046

SNRεr 1 2.4 1.7 7.3 5.2 32.4 23.6

SNRσ 1 3.5 2.0 8.2 4.7 22.4 13.3

λ, wavelength; δskin, skin depth.
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