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DALSA: Domain Adaptation for Supervised Learning from Sparsely 
Annotated MR Images 

Michael Goetz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, 

Barbara Bobek-Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stieltjes, Klaus H. Maier-Hein 
We propose a new method that employs transfer learning 

techniques to effectively correct sampling selection errors introduced 
by sparse annotations during supervised learning for automated 
tumor segmentation. The practicality of current learning-based 
automated tissue classification approaches is severely impeded by 
their dependency on manually segmented training databases that 
need to be recreated for each scenario of application, site, or 
acquisition setup. The comprehensive annotation of reference 
datasets can be highly labor-intensive, complex, and error-prone. The 
proposed method derives high-quality classifiers for the different 
tissue classes from sparse and unambiguous annotations and 
employs domain adaptation techniques for effectively correcting 
sampling selection errors introduced by the sparse sampling. The new 
approach is validated on labeled, multi-modal MR images of 19 
patients with malignant gliomas and by comparative analysis on the 
BraTS 2013 challenge data sets. Compared to training on fully labeled 
data, we reduced the time for labeling and training by a factor greater 
than 70 and 180 respectively without sacrificing accuracy. This 
dramatically eases the establishment and constant extension of large 
annotated databases in various scenarios and imaging setups and 
thus represents an important step towards practical applicability of 
learning-based approaches in tissue classification. 

Index Terms—Brain Tumor Segmentation, Domain Adaptation, 
Transfer Learning, Automatic multi-modal Segmentation, 
Random Forest, Glioma 

I. INTRODUCTION UTOMATED 

approaches for the segmentation of brain tumors allow 

a time-efficient and objective evaluation of large 

amounts of data [1]. Current techniques in 

fullyautomated malignant glioma segmentation use multi-

modal data and advanced pattern recognition methods – such 

as support vector machines (SVM) [2]–[5], neuronal networks 

(NN) [6], logistic regression [6], or random forests [1], [7] 

– to learn the appearance of tumorous tissue from manually 
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Fig. 1. Parts of T2-Flair images where it is difficult to differentiate between 
healthy and tumorous tissue. (a) diffuse border between edema and healthy 
(b) gliosis (c) chronic stroke (d) blood and inflammation 

labeled training data. One important limitation of 

learningbased approaches is the dependency on a larger 

amount of complete tumor segmentations. Several factors 

make it extremely challenging and labor intensive to manually 

segment malignant gliomas and to create the required training 

data [8]–[10]. Gliomas invade the surrounding tissue rather 

than displacing it. This leads to blurry and unclear borders (Fig. 

1a). This is aggravated by the fact that other tissue types, such 

as gliosis (Fig. 1b), stroke (Fig. 1c), inflammation, and the 

presence of blood (Fig. 1d) can all have a similar appearance in 

the MR images. It is therefore difficult to create a complete 

segmentation of tumorous and non-tumorous tissue without 

leaving a substantial amount of voxels labeled as unknown. 

The size of these tumors, their irregular shape, and the 

heterogeneous growth patterns add to the difficulties in this 

complex and error-prone task. Consequently, Mazzara et al. 

report an intra- and inter-observer variability of 20% and 28% 

respectively for gross tumor segmentation [11]. Similar Menze 

et al. reported interrater-variances of 85±8% for whole tumor 

segmentation and 74 ± 13% for active tumor segmentation 

[12]. This implies that the commonly used training data and 

reference segmentations are not flawless. 

Some previous studies completely avoided supervised 

learning on basis of manual segmentations for these reasons, 

for example by analyzing brain symmetry [13] or by 

incorporating atlas information in combination with geometric 

and spatial priors [14]. Parisot et al. employed model-based 
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analysis in a complementary way by combining it with a 

learning-based tumor annotation [15]. 

To increase the quality of manual segmentations that can be 

used for training and evaluation of supervised approaches, 

Pedoia et al. proposed a tool for supporting labeling of glial 

tumors [13]. They showed that the use of their tool reduces 

labeling errors and results in more consistent segmentations. 

Another way of improving segmentation quality is to fuse 

multiple segmentations. Warfield et al. showed that a fusion 

based on ‘Simultaneous truth and performance level 

estimation’ (STAPLE) increases segmentation quality and 

yields more consistent segmentations [16]. While these 

approaches can reduce the variance in the segmentations, 

they cannot solve the problem of ambiguous image 

information. The experts are still confronted with a significant 

uncertainty about the true tissue borders. Also, the problem 

remains that the annotations are highly labor-intensive: it 

takes up to an hour to create a high-quality segmentation [11], 

[12]. 

MRI does not have a standardized measurement value per 

voxel, i.e. it is not quantitative, as it is for example the case for 

computed tomography (CT). The image intensity is given in 

arbitrary units and cannot be easily calibrated without a 

ground truth measure. Thus, both gray scale images and MRI-

derived semi-quantitative values (like apparent diffusion 

coefficient ADC, or fractional anisotropy FA) exhibit a 

substantial variability; a variation of 15% is not extraordinary 

(e.g. [17] for the ADC). Potential sources of variation can 

include varying internal value ranges, slightly varying sequence 

implementations, or varying noise characteristics between 

scanners or different manufacturers. In practice, the 

annotations needed for classifier training must therefore be 

repeated when the scanner hardware or MR sequence settings 

change. Also, the introduction of new MR sequences or a 

reconfiguration of imaging protocols may require a novel 

training set to be reestablished. Since precise manual labeling 

is time-consuming and difficult, this is a very expensive task, 

which reduces the likelihood of these methods being 

incorporated in a clinical setting. 

For this reason, the use of incomplete segmentations was 

introduced in previous work to avoid long labeling times in 

generating the training data. Verma et al. used a nearly 

complete segmentation that omitted ambiguous areas [5]. 

With these incomplete segmentations they performed an 

intrapatient segmentation with Gaussian mixture models 

(GMM) and trained an SVM classifier for inter-patient 

segmentation. Kaus et al. segmented low-grade brain tumors 

by combining brain atlases and classifiers [18]. A first voxel-

based segmentation was registered to an atlas and this data 

was then used to refine the segmentation. This is repeated 

iteratively and the classifier is re-learned every time. The 

whole method was initialized with few manually selected and 

not necessarily connected voxels. Although these approaches 

used incomplete segmentations to train classifiers for tumor 

detection, none of them investigated or corrected for the 

influence of the incomplete segmentations. 

We propose a new approach that allows learning from 

partial, incomplete annotations, which sparsely represent 

each label class and ensure unambiguous assignments of 

labels to voxels. The approach yields complete annotations of 

MR images but keeps the necessary training annotations 

sparse, unambiguous and thus fast to perform compared to 

full annotations. The resulting sampling selection error 

introduced by the sparse and unambiguous annotation leads 

to differences between the training and test data 

distributions, i.e. ptrain(x) 6= ptest(x). As suggested by Cortes 

et al. we consider the non-i.i.d sampled training data as the 

training domain and the full images as the testing domain 

[19], thus treating the problem as a special instance of a 

domain adaptation (DA) problem. This allows us to correct 

for the sampling bias using DA techniques which optimize 

performance on one domain, given training data that is from 

a different domain [20]. Our training and test domains differ 

in the sampling and not in their origin as it is for example the 

case in the work of Heimann et al., who trained classifiers for 

ultrasound transducer localization from synthetic images 

[21]. We show that our method returns similar results to 

traditionally trained classifiers on a set of clinically acquired 

images, even though the traditional classifiers were trained 

directly on the gold standard reference segmentations. 

Compared to our previous work [22], this paper offers a more 

detailed analysis and experimental protocol. 

With sparse annotations becoming feasible as means to 

train automated classifiers, the generation and continuous 

expansion of large annotated data sets for various kinds of 

lesions and imaging setups comes within reach, allowing a 

workflow that is fully integrated into a clinical setup. The fast 

labeling strategy also comes with the added value of allowing 

the differentiation of multiple tissue classes. While this paper 

focuses on the segmentation of malignant gliomas in MR 

images, the presented method can also be applied to other 

applications. It might be used to improve other learning-based 

approaches in any scenario involving segmentation or 

imagebased tissue characterization. 

II. METHODS 

To reduce the labeling time necessary for creating training 

data for automatic tumor segmentation, we propose the 

annotation of sparse and unambiguous regions (SUR) instead 

of segmenting the complete images. Unlike learning from 

complete annotations (LCA), learning from sparse annotations 

(LSA) introduces a sampling bias. We propose to correct this 

error with domain adaptation, which we refer to as domain 

adaptation for Learning from Sparse Annotations (DALSA). The 

different methods used for annotating, sampling, and using 

training data are summarized in Fig. 2. In this work, the sparse 

annotations (SURs) were typically located in one or two slices 

of the image and covered approximately 1% of the brain 

voxels. Fig. 3 gives some examples of SURs and Table I shows 
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different annotation strategies that were applied to create 

SURs. 

A. Domain Adaptation 

A basic assumption in machine learning is that the training 

data are independent and identically distributed (i.i.d.) [23]– 

TABLE I 

LABELING STRATEGIES 

Type Description Diameter Location 

Main 
1-3 SUR per class rater 

dependent 
covering bordering as well 

as central tissue areas 
Type 1 1 SUR per class 

6−14mm 

arbitrarily varying 

Type 2 3 SURs per class 
(different slices) 6−14mm 

covering bordering as well 

as central tissue areas 
Type 3 3 SURs per class 

(different slices) 6−14mm 

covering central tissue 

areas only 

Type 43(different slicesSURs per class)6−14mm covering bordering 

tissueareas only 

Description of different SUR labeling strategies. A complete set of SURs 

was created for each strategy. 

[25]. However, if only small areas of an image are used for 

training, this assumption becomes invalid and a sampling 

selection bias occurs [26]. The distribution of features x and 

labels y will be different in the observations (x,y) processed 

during training and testing, i.e. PTrain(x,y) 6= PTest(x,y). This will 

lead to classifiers with non-optimal decision boundaries, since 

some features may be overrepresented while others are 

underrepresented. 

Fig. 4 shows a simplified example to demonstrate the effect 

of sampling selection error and domain adaptation. The 

probability for a combination of feature vector and label P 

(x,y) is affected by a sampling bias. This probability can be 

written as: 

 P (x,y) = P (y | x) · P (x) . (1) 

A theoretical assumption often made in domain adaptation 

is that the meaning of a feature is the same in the training and 
test domains, e.g. 

 PTrain (y | x) = PTest (y | x) . (2) 

 
 FLAIR GTV SURs 

 
 FLAIR GTV SURs 

 
 FLAIR GTV SURs 

Fig. 3. Exemplary axial slice of the annotations for 3 patients. Left is the FLAIR 
without annotation, in the middle the complete manual annotation and on the 
right the SUR annotation. The color coding for the SUR is green: ‘healthy’, 
yellow: ‘edema’, red: ‘active tumor’, blue: ‘necrosis’. Labels not shown in the 
images are annotated in a different slice. 

 

Fig. 2. Different methods used for annotating, sampling, and using training data for supervised learning. Most state-of-the-art approaches make use of LCA or 

LCA%, which require a complete annotation of the data and differ in their sampling strategy. We propose the use of sparsely annotated training data (LSA and 

DALSA) to reduce the annotation time. The sparse annotations of 5 tissue classes were either treated separately or merged to two classes (‘healthy’ and ‘fluid’ 

were merged to ‘healthy’, ‘edema’, ‘active’ and ‘necrosis’ were merged to ‘tumorous’) 
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Huang et al. [27] showed that techniques that depend on this 

assumption are useful even if this assumption is only partially 

fulfilled. The remaining difference between the distributions in 

the training and test data is the probability of a given feature 

 

(a) Original image. 

Bright spots are noise. 

 

(b) SUR annotation of 
training voxels (red) for left 
(blue) and right (green). 

 

(c) Segmentation result if no 

domain adaptation is used. 

Split 

 

(d) Tree created when no 
domain adaptation is used. 
Sampling selection error 
dominates results. 

 

(e) Segmentation result 

if domain adaptation is used. 

Split 

 

(f) Tree created when 

domain adaptation is used. 

Fig. 4. Simplified example to demonstrate the effect of sampling selection error and domain adaptation. (a) The given image with 100 pixels is classified into left 
and right using intensity as feature. On both sides salt noise (bright pixels) simulates noise in the multidimensional data. (b) For training data, SURs are used. A 
single tree with a tree depth T = 1 is used as classifier. (c) shows the segmentation result with the original image if no domain adaptation is used; (d) shows the 
resulting tree that has a false split due to the noise pixels. (e) gives the segmentation result if domain adaptation is used, (f) gives the tree from the corrected 
data. The number of pixels at each node differs from the number of the pixels within the SURs because the classifier uses the number of pixels multiplied by a 
weight. For example, there are nine bright pixels in the given image and the SURs cover three of them. Therefore the weight for 
bright features is w(BRIGHT) = 9÷3 = 3. 

vector 

 PTrain (x) 6= PTest (x) . (3) 

Shimodaira [28] calls this situation covariate shift. He suggests 

compensating the difference by weighting each sample with 

the density ratio of the feature vectors during training: 

  . (4) 

The ratio w(x) is high for observations occurring often 

within test data and seldom within training data, while w(x) is 

low for observations that are rare in the test data but frequent 

in the training data. In our case this means that labeled voxels 

(training data) that are typical for the entire image (test data) 

receive more emphasis than untypical voxels. The relaxation 

coefficient λ ∈ [0..1] was introduced by Shimodaira to control 

the effect of the weights [28]. If λ = 0, the weights do not have 

any effect and for λ = 1 the effect of the weights is maximized. 

The best value for λ depends on the number of available 

training points and the used classifier; in general λ needs to be 

smaller for small training sets. We set λ to 1 because, being 

voxel-based, our training base is rather large. This choice was 

further evaluated with an experiment. 

Since w(x) is unknown for most applications, it is usually 

estimated. There are several ways to do this and [29] gives an 

overview for the most common methods. We chose the 

approach of assessing w(x) by estimating the probability of 

whether an observation with feature vector x belongs to the 

training or the test data [30]. If observations that are used for 

the training data are labeled z = 1 and observations that are 

tested z = 0 then w(x) can be estimated by 

  . (5) 

We estimate the probability pˆ(z = 1 | x) by training a logistic 

regression classifier (LRC). For this purpose, each voxel within 

a SUR is labeled as training data, i.e. z = 1. Additionally, all 

voxels that belong to the brain are labeled as test data, i.e. z = 

0. Thus the voxels that belong to the SURs appear twice: once 

within the training data and once within the test data. These 

s 0 

s 1 s 2 

 

Intensity 

s 0 

s 1 s 2 

 

Intensity 
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data are then used to train the parameter function of the 

logistic regression θ(x), which can then be used to estimate 
the required probability by: 

  (6) 

The estimation of w(x) can be further simplified by 

incorporating equation 6 in equation 5: 

 wˆ(x) = (c · exp(−θ(x)))λ . (7) 

This allows a fast calculation of the weights and eliminates 

the need for division, which increases the numerical stability. 

We used generalized linear models with a logit function as link 

function and a binominal distribution to fit the logistic 

regressor [31]. The advantage of this method is the 

parameterfree training of the logistic regressor, which makes 

the whole algorithm more robust and easier to use. 

The weights are calculated patient-wise, e.g. for each 

patient the SURs are created and then the weights for this 

patient are calculated. Therefore the weights for a patient are 

independent of other patients and new patients can be added 

to the training data without recalculating the weights within 

the existing training data. Also, no full tumor segmentation is 

necessary. 

The constant c can be used to control the influence of each 

image volume during the training without changing the 

relations of voxels which belong to the same image. The sum 

of weights of all SUR voxels is c · nTest (nTest is the total number 

of voxels in the brain mask, see appendix A for a mathematical 

derivation). A common approach is to set 

, with nTrain being the number of voxels in the SURs 

[29]. This normalizes the sum of all weights to the number of 

training points. However, in our case this would mean that the 

contribution of an image to the overall training depends on 

the size of the SURs, i.e. an image with large SURs would have 

more impact on the final classifier than an image with small 

SURs, although the latter might contain more valuable 

information. We therefore set c = 1. In this case, the impact 

of an image is determined by nTest, as it would be in a standard 

classifier training scenario. 

B. Observation-weighted Classifier 

The classification in our main experiments is based on 

random forests [32], [33]. Random forest-based methods have 

previously achieved promising results in brain tumor 

segmentation [1], [7]. Since the original random forest 

definition does not support observation weights, we used a 

variant that is similar to the random forest implementation in 

the python scikit module [34]. Here, the prediction algorithm 

itself is not modified. An unseen observation is passed down 

the decision trees based on binary tests within each node of 

the tree until it reaches a leaf node. The prediction is then 

obtained by majority voting of all trees. The training of 

observationweighted random forests is also similar to the 

original version. At each node, the best split within a random 

set of features is determined based on an impurity 

measurement. All data are then split into two groups, which 

are used to train the child nodes. This is repeated until the 

maximum tree depth is reached or only one label type is left. 

The major difference to the canonical random forest is how 

the impurity is calculated. We used the Gini Impurity I [35]: 

 I(V ) := 1 − X PV (y)2 (8) 
y∈Y 

The class probability PV (y) is usually calculated from the 

number of observations with this label divided by the overall 

number of observations. If observation weights are used, 

PV (y) is calculated using the sum of the weights instead of the 

number of observations. 

The forests in our experiments consisted of 1000 trees; the 

number of features at each node was set to the square-root of 

the number of all features (i.e. 4). The minimum sample size at 

each leaf node was set to 1, the noise reduction being instead 

achieved by limiting the maximum tree depth. To account for 

the different levels of noise and amount of data, we ran 

multiple runs of our experiments with different tree depths 

and used the optimal tree depth for each approach. 

While we used random forests in our main experiments, our 

method can be used with any classification algorithm that 

allows for the incorporation of observation weights. We 

demonstrated this in an additional set of experiments on basis 

of weighted SVMs as described by Yang et al. [36]. We chose a 

non-linear radial basis function kernel (Gaussian) and the 

Karush-Kuhn-Tucker stop criterion [37]. The noise sensitivity is 
regularized using the cost parameter c. 

III. EXPERIMENTS 

A. Dataset I 

Dataset I consists of a longitudinal study including 19 

patients with high-grade glioma. For each patient, a T1-

weighted image with contrast agent (T1C), T2-weighted FLAIR 

image (FLAIR), and a diffusion tensor image (DTI) 

reconstructed from a diffusion-weighted image (DWI) were 

available. All images were acquired during clinical routine on a 

single 1.5T Siemens Avanto (Siemens Health Care, Erlangen, 

Germany) using a standard protocol with a duration of less 

than 20minutes per examination. T1C and FLAIR images were 

acquired with an in-plane resolution of 0.55 × 0.55mm and 

0.65×0.65mm, respectively, and 6mm between slices. DWI 

parameters were: single-shot spin echo EPI sequence, echo 

time = 95ms, repetition time = 3.6s, slice thickness of 4mm, 

and pixel spacing of 1.8 × 1.8 × 5.2mm. Two shells (b = 

1000,2000s/mm2) with 48 directions were acquired. Several 

commonly used parameter maps were calculated from the 

DTI: fractional anisotropy (FA), relative anisotropy (RA), axial 

diffusivity (AD), radial diffusivity (RD), clustering anisotropy 

(CA), and mean diffusivity (MD) [38]. All parameter images 

were calculated with and without free water elimination (FWE) 
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[39]. A free-water map (FW) and a b0-image (B0) were also 

included. Fig. 5 shows examples of the image contrasts. 

A single point in time (13 pre-operative and 6 postoperative) 

was selected for each patient for the experiments. We 

selected either the last point in time before or the last 

available point in time after an operation. 

All images were rigidly registered intra-patient-wise to the 

FLAIR image and then resampled to a common resolution of 

1mm × 1mm in-plane. The slice thickness was set to 3mm, 

compromising between resampling artefacts and the number 

of slices that needs to be labeled. A semi-automatic brain-

mask was created and B0, T1C and FLAIR were normalized to 

the most frequent gray value inside the brain mask and a 

standard deviation of 1. 

An expert radiologist segmented the GTV manually based on 

T1C and FLAIR. We defined the gross tumor volume as the area 

that covers edema, contrast-enhancing areas and necrosis. To 

reduce segmentation errors, multiple refinement runs were 

carried out. We used Tumor Progression Maps (TPM) [40] to 

ensure the consistency of segmentations with the other time 

steps of the same patient. TPMs highlight areas in which the 

tumor outlines change over time. Cases where such changes 

were caused by inconsistencies in the segmentation could thus 

be quickly identified and corrected. The time required for 

segmenting a single time point for a patient was more than six 

hours. Although significantly longer than clinically applied 

segmentation procedures [11], this time was taken since the 

resulting segmentations were used for training and validation 

of our classifiers. 

In addition, three raters (one expert radiologist and two 

medical students) segmented independent sets of SURs (c.f. 

Table I, ‘Main’). Each rater was blindfolded to the complete 

tumor segmentation and the SURs created by the other raters. 

SURs were defined for each of five different clinically relevant 

tissue classes including high proliferative tumor parts (active 

tumor, e.g. as potential target for biopsies), necrosis (e.g. as an 

indicator of tumor grade and poor target for biopsies), and low 

proliferative tumor parts (edema, e.g. as part of the peripheral 

tumor border) in addition to healthy tissue and cerebrospinal 

fluid (CSF). The task of the raters was to annotate small areas 

which are typical for each tissue class. If possible, areas close 

to tissue borders should be included if they were clearly 

distinguishable from the neighboring class. No other 

restriction in terms of size, number of ROIs per patient, relative 

location, or number of annotated slices was made. It took less 

than five minutes to create these small 2DROIs, which were 

usually located in one or two single slices of an image. Fig. 5 

shows an example of a complete gross tumor segmentation 

and the SURs. The mean coverage ratio of segmented voxels 

to brain voxels for the SURs created by rater 1, 2 and 3 were 

0.53% ± 0.23%, 0.41% ± 0.11%, and 

0.18% ± 0.05%, respectively. The minimum and maximum 

coverage ratios were 0.24%, 0.17%, and 0.08% and 1.22%, 

1.16%, and 0.33%, respectively. On average, 2.6% ± 1.5%, 

1.6% ± 1.1%, and 1.0% ± 0.5% of the tumorous tissue were 

covered by SURs. 

To analyze the effect of varying SUR placement strategies, a 

medically trained expert created four additional different sets 

of SURs using different labeling strategies (c.f. Table I, ‘Type 1’-

‘Type 4’). The mean coverage ratio of segmented voxels to 

brain voxels for these SUR sets was 0.2%±0.1% (maximum: 

0.63%, minimum: 0.06%). The SURs of Type 1 were the 

smallest (0.12% ± 0.03%) and those of Type 2 the largest 

(0.28%±0.10%). Those of Type 3 and 4 were similar in size 

scattering around 0.18%. The mean tumor coverage ratio was 

1.3% ± 0.1% across all types. 

 
 FLAIR T1C B0 AD CA FA 

 
 MD RA RD FWE GTV SUR 

Fig. 5. Exemplary axial slice of the available contrasts except the free-water-corrected contrasts and the available complete and sparse annotations. The color 

coding for the SUR is green: ‘healthy’, yellow: ‘edema’, red: ‘active tumor’, blue: ‘necrosis’. ‘Fluid’ is not segmented in the shown slice. 
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B. Dataset II 

The BraTS 2013 challenge dataset was used as second 

dataset to compare our approach to the state of the art in 

tumor segmentation. The dataset consists of 20 training and 

10 test subjects. For every subject a T1-weighted (T1), a 

contrast-enhanced T1-weighted (T1C), a T2-weighted (T2), and 

a T2-weighted FLAIR (FLAIR) image is given. All images were 

already registered intra-patient-wise and resampled to a 

common resolution. Semi-manually created annotations of 

the training set on the basis of 4 raters are provided. The 

remaining 10 subjects are used to compare the different 

algorithms; the segmentations for these patients are not 

public. The mean inter-rater variance was reported at 85% ± 

8% for the class ‘whole tumor’, i.e. GTV based on our 

definition [12]. Total annotation time per rater was about one 

hour, resulting in a total annotation time per segmentation of 

four hours [12]. Similar to dataset I, we defined additional SUR 

segmentations for DALSA. 

C. Experimental Protocol 

Classifiers were trained in leave-one-patient-out 

experiments. The quality of the obtained segmentation on the 

left-out patient was evaluated on the basis of the manually 

annotated ground truth using the well-known DICE score [41] 

as well as the sensitivity (true positive rate) and specificity 

(true negative rate). The ground truth contained only the 

labels ‘tumorous’ and ‘healthy’. Thus, in the five-class 

automatic segmentation, the labels ‘healthy’ and ‘fluid’ were 

relabeled ‘healthy’, while the labels ‘edema’, ‘active’ or 

‘necrosis’ were relabeled ‘tumorous’ prior to evaluation. In all 

our experiments – except the generation of Fig. 8 – the 

decision threshold of the classifiers was left at 50% for the two 

class problem. The decision threshold was not affected by 

adding the class weights used by our method. The following 

three different setups were used in our experiments. 

Setup I consisted of dataset I in conjunction with weighted 

random forests. The feature vector xi for a voxel vi of this setup 

consisted of the gray values of all available images, i.e. FLAIR, 

T1C, B0, AD, CA, FA, MD, RA, RD, AD-FWE, CAFWE, FA-FWE, 

MD-FWE, RA-FWE, RD-FWE, and FW. 

On the basis of setup I, we assessed seven different methods 

for annotating, sampling, and using training data (cf. Fig. 2). As 

a reference, three of those methods were trained using the 

ground truth GTV segmentations as training labels. Two 

different sampling strategies were applied: sampling of all 

labeled voxels (Learning from Complete Annotations, LCA) and 

random sampling of the labeled voxels at 0.5% ratio (similar 

to SUR coverage ratio of the expert rater). The randomly 

sampled training data were used with (DALCA%) and without 

(LCA%) domain adaption. The reference methods were 

compared to classifiers trained on SURs created by the expert 

radiologist, either using (DALSA) or not using (LSA) domain 

adaptation. The SURs differentiated five different tissue 

classes while the ground truth segmentations only 

differentiated tumorous from healthy tissue. It was therefore 

necessary to fuse tissue classes to allow direct comparison of 

the different methods. Indices indicate the number of classes 

that were used during training (e.g. LSA2: fusion of labels 

before training; LSA5 fusion of labels after training in predicted 

images). 

The influence of λ was evaluated by conducting leave-

onepatient-out experiments for DALSA2. We set the maximum 

tree depth to 4, the minimum sample size at each leaf node to 

1, and the maximum number of evaluated features at each 

node to 4. We then varied λ between 0.0 and 1.0. The 

influence of altering SUR annotations was evaluated in two 

experiments: First, LSA2 and DALSA2 classifiers were trained on 

SURs with varying annotation strategies (cf. Table I, ‘Type 1’-

‘Type 4’). Second, we compared the expert’s influence on the 

resulting segmentation quality by training LSA2 and DALSA2 

classifiers on SUR sets created by the expert rater and 

compared these with sets created by two student raters. We 

also applied majority voting to computed combined results of 

all raters. 

Setup II was similar to setup I, but used weighted SVM 

instead of weighted random forests. On the basis of setup II, 

we assessed whether SVM-based classification can also profit 

from DALSA. We conducted leave-one-patient-out runs at 

varying cost settings between 0.01 and 0.08 and compared the 

results obtained by LSA2 and DALSA2. 

Setup III was used to evaluate the performance of DALSA on 

the basis of the BraTS 2013 challenge data (c.f. dataset II), in 

contrast to other segmentation approaches that are trained on 

complete segmentations. For the experiments, we adapted 

the pipeline of Kleesiek et al., who scored third on the on-site 

BraTS 2014 challenge [42]. The same preprocessing, features, 

and post-processing as in the original work were used. Only 

the sample selection was varied. Instead of randomly drawing 

a fixed number of samples for each tissue class (which 

corresponds to our LCA% training scheme), we used LSA or 

DALSA on the basis of the SURs that we had defined. 

On the basis of setup III, we assessed whether it is possible 

to integrate our approach in another existing tumor 

segmentation pipeline and compared the obtained results for 

LSA and DALSA with state-of-the-art methods that were 

trained on complete manual annotations on the basis of the 

ongoing BraTS 2013 challenge. 

D. Implementation 

We implemented setup I using MITK – a widely used C++ 

framework for medical imaging [43], [44] – which allows 

loading, processing and visualization of medical images. We 

added support for Vigra for random forest capability [45]. Both 

training and prediction of the random forests were performed 

multi-threaded on the basis of OpenMP. The complete 

workflow has been released open-source as part of MITK 

(www.mitk.org). The SVM-based classification for setup II was 

implemented in Matlab. For setup III we adapted the 
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implementation by Kleesiek et al. [42] that is based on Vigra 

python bindings. Calculations were partially carried out on 

infrastructure of GeCONiI (POIG.02.02.01-24-099/13). 

IV. RESULTS 

A. Setup I 

Fig. 6 shows the obtained DICE scores and ROC analysis for 

the different methods assessed. Table II lists the 

corresponding uncorrected statistical significance values on 

the basis of the Wilcoxon signed rank test. Fig. 7 provides some 

exemplary qualitative results. The proposed domain 

adaptation could effectively reduce the drop in segmentation 

quality caused by learning from sparsely annotated data. 

DALSA results did not significantly differ from the results 

obtained by LCA%, which is a commonly applied sampling 

strategy in other studies but requires complete annotations. It 

was possible to further increase the quality of the final 

segmentation by merging the segmentations obtained from 

different experts. The merged DALSA results did not 

significantly differ from LCA (p = 0.084). There was also a 

significant increase in segmentation quality when applying 

domain adaptation to LCA%. The extent of the effect, however, 

was very small (median DICE difference 0.0008, mean 6.23 × 

10−5). 

Fig. 8 demonstrates the effect of domain adaptation on the 

classification results. The LSA2 DICE scores are plotted over a 

moving decision threshold (blue curve) and should optimally 

exhibit a bell-shaped curve with its maximum at 50%. The SUR-

based sampling bias, however, lead to a skewed curve with 

suboptimal classification results. DALSA corrected for this 

effect and yielded a more bell-shaped curve (Fig. 8a, red 

curve). Fig. 9a shows the performance of DALSA under 

different SUR labeling strategies. DALSA significantly 

outperformed LSA (p ≤ 0.001) in all cases. Similarly, DALSA 

outperformed LSA regardless of which expert labeled the data 

(Expert 1: p = 0.015, student 1: p = 0.007, student 2: p = 0.001, 

c.f. Fig. 9b). DALSA performance was always comparable to 

LCA%. Fig. 10 shows the influence of the relaxation coefficient 

λ. 

B. Setup II 

Fig. 9c shows the results obtained by SVM-based 

classification. Again, DALSA outperformed LSA in all 

experiments (p ≤ 0.005). DALSA results on the basis of SVM did 

not significantly differ from DALSA results on the basis of 

random forests (p-values between 0.08 and 0.28). 

C. Setup III 

BraTS 2013 challenge results are shown in Fig. 7g. On the 10 

test datasets DALSA yielded a visible increase in segmentation 

                                                                 
1 LSA and DALSA-results were obtained with our implementation of the 

approach of Kleesiek et al. [42]. They differ from the original results due to the 
different training setting. 

accuracy with respect to DICE score (0.84 to 0.86) and 

Sensitivity (0.74 to 0.78) for GTV1. The Positive Predictive Value 

was reduced from 0.94 to 0.93. The resulting segmentation 

quality was similar to those achieved in the original 

approaches of Kleesiek et al. and Peres et al. that were trained 

on complete segmentations (reported DICE for both was 0.86). 

While sensitivity was clearly lower than in both previous 

approaches (0.91 and 0.87), this was compensated by the 

Positive Predictive Value (0.83 and 0.85 in the previous 

approaches). P-values were not calculated due to the small 

number of test subjects. 

D. Annotation Time and Performance 

The mean times required both for creation of the training 

data and for training and application of the forests are 

provided in Table III. The SUR-based training was faster than 

training with sampled or complete data. Since less data 

needed to be labeled and labeling was more straightforward, 

the sparse annotation took less than five minutes per patient 

(for all annotation strategies), while the full annotation took 

more than six hours (a reduction of labeling time by a factor of 

more than 70). 

V. DISCUSSION 

We presented a new approach that allows training of 

classifiers in automatic tumor segmentation using easy-to-

annotate SURs instead of complete segmentations without 

sacrificing segmentation accuracy. The proposed domain 

adaptation technique correctly compensates for sampling 

selection errors and yields results that are comparable to 

state-of-the-art methods 
TABLE II 

STATISTIC SIGNIFICANCE BASED ON WILCOXON SIGNED-RANK TEST 

 

LCA%  X    

DALCA%  
 

X   

LSA  
  

X  

DALSA2 
.035 

↑ .019 
.409 

.  
 

X 

LSA5 
.003 .028 .023 .121 .191 

X 
 ↑ .046 ↑ .039 ↑ .040   

DALSA5 .017 .220 .220 .003 .251 .003 

 ↑ .019 ← .051 ← .027 

Uncorrected p-values of Wilcoxon signed-rank test indicating differences in 
segmentation results based on the DICE score for the gross tumor volume. p 6 
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.05 is shown in bold. The absolute difference of the group median DICE scores 
is shown below the significant p-values. Arrows point to the group with higher 
median score. For example, LCA performs significantly better than LCA%. 

 TABLE III 
RUNTIMES 

 

Metho

d 
 Training time Prediction time 

 

Tree 

depth 

LCA 192.5±1.67min 226±41.0sec 1

2 
LCA%  46.9±1.1sec 149.3±16.3sec 1

0 
LSA2  12.4±1.1sec 45.7±4.3sec 4 
DALSA2 63.8±14.4sec 74.4±8.3sec 6 

that require tedious full annotations. This alleviates a major 

obstacle of learning-based methods with regard to clinical 

applicability and will facilitate the transfer of methods to 

different clinical domains and settings. 

A. Learning on SUR is Time-efficient 

Using SURs saves time during manual creation of the 

training data. Fewer voxels need to be labeled and the labeling 

of these voxels is more straightforward, since areas of 

uncertainty can be avoided. For our experiments these effects 

add up to an overall reduction of the labeling time by a factor 

of more than 70. 

The use of SURs also reduces the mean training time by a 

factor greater than 180. The main reason for this – beside the 

reduction of training data points (voxels) – is the more 

coherent structure of the data. Since a full segmentation is 

prone to incorrectly labeled voxels and inconsistent border 

definitions, the separation of the classes is more difficult. This 

also explains why lower tree depths perform better if SURs are 

used. 

The usual approach of reducing the training time is to learn 

only from a randomly drawn subset of all training data. While 

this approach does not reduce the required labeling time, it 

does reduce the training time significantly, resulting 

in times comparable with LSA and DALSA. The times that we 

reported for DALSA include the calculation time of the 

correction weights. Since this is an independent step, it could 

be performed separately from the training. This would reduce 

the overall training time if multiple training runs were 

performed – for example during parameter optimization or 

cross validation. 

Learning on sampled training data also reduces the 

prediction time. Although the effect is not as pronounced as it 

is on the training time, it still takes twice as long to predict an 

unseen patient using conventional classifiers compared to 

using DALSA classifiers. This is mainly due to the more 

coherent training data, which allow the use of trees with a 

lower tree depth. The decreased prediction time will be 
especially important for interactive applications. 

B. Learning on SUR Introduces a Selection Bias 

Learning on reduced training data results in a drop in the 

quality of the prediction results. Neither randomly sampled 

nor sparsely annotated training data yield classifiers of similar 

quality as the ones trained on complete annotations (Fig. 6). If 

the reduction of training data is not done randomly, e.g. when 

annotating with SURs, a selection bias is introduced. This leads 

to classifiers which are not optimal for the given problem, as 

shown in Fig. 8. A simple correction of this effect by an adapted 

decision threshold is not possible for several reasons: 1. The 

threshold depends on the unknown PTest(x) and PTrain(x) and 

the corresponding PTest(y) and PTrain(y) and therefore on the 

rater and his selection of SUR (c.f. Fig. 8). 2. The decision 

threshold is multi-dimensional for classifiers with more than 

two classes. 3. Optimal decision thresholds can only be 

determined for a known gold standard (i.e. fully annotated 

training data), while the proposed classifier training is bases on 

 2 

class 2 class 5 class 

Fig. 6. The results of the leave-one-patient-out experiments using setup I. (a): Boxplots showing the results grouped by classifier scheme. The left section shows 

the results for classifiers that were trained on complete segmentations. The middle and right sections show results for classifiers trained on SURs using two and 

five different tissue classes respectively. (b): ROC-curves for LSA2 (blue) and DALSA2 (red). The curves where obtained by varying the decision threshold of the 

classifier and then calculating the mean (solid) and standard deviation (colored area). 
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SURs only. Fig. 8 could only be plotted because we had 

complete segmentations available for validation of our 

approach. 

C. Domain Adaptation Compensates Selection Bias 

The proposed domain adaptation successfully compensates 

this disproportion of label representations in the training data 

(Fig. 8). All our experiments show that the use of domain 

adaptation increases the DICE score and results in a 

segmentation quality similar to random sampling at 

comparable ratios. Our experiments with combined SUR sets 

of different raters show that the level of quality reached by 

learning from all voxels in the complete annotations can be 

reached by investing more time into labeling multiple SURs per 

subject. The DALSA DICE score improves with increasing values 

of λ, i.e. with a higher influence of the corrective weights (Fig. 

10), further demonstrating the positive effect of DALSA. Our 

experiment with SVMs and the BraTS challenge data 

supported these finding. 

Training on SURs can increase the classifier’s sensitivity for 

tumorous tissue and at the same time result in an increasing 

amount of false positive decisions (Fig. 12). This could be 

caused by the increased tumor-to-tissue ratio in the 

annotations, as suggested by the finding that domain 

adaptation lowers the effect when correcting for this ratio. In 

addition, the classifier’s sensitivity could be influenced by the 

training data quality. Due to ambiguities in the data, complete 

annotations potentially include a higher number of falsely 

labeled voxels, resulting in less distinctive label classes. Further 

betweenclass ambiguities could be caused by healthy tissue 

voxels that contain inflammation, above-average blood-

volume, or chronic stroke and thus have similar appearances 

to tumorous tissue. The labeling of these voxels would likely 

be avoided when annotating SURs. The increased amount of 

false positive decisions that are not connected to the main 

tumor could likely be reduced by simple post-processing of the 

results. However, these results could also help identify as yet 

undiscovered signs of tumorous tissue. The reversed findings 

in setup III (lower sensitivity and higher positive predictive 

value for DALSA) are not contradictory, since Kleesiek et al. 

originally sampled 
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Fig. 7. Exemplary axial slices from setup I (a-e) and setup III (f-g). (a) FLAIR images, (b) gold-standard segmentations, (c) results of classifier trained on complete 
segmentations, (d) DALSA with 2 classes, and (e) DALSA with 5 classes. In (b-d), the red color indicates ‘gross tumor volume’. The color coding in (e) and (g) is: 
yellow: ‘edema’, red: ‘active tumor’, blue: ‘necrosis’. 
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 (a) DICE over threshold for expert rater (b) DICE over threshold for different labeling stategies 

Fig. 8. Mean DICE score (line) and standard error (area) for LSA (blue) and DALSA (red) at varying decision thresholds. A balanced curve indicates a well-balanced 
classifier, while a skewed curve indicates an under- or over-representation of a class. The default threshold is at 50% for a two-class problem. (a): Curves 
generated from the set of SURs created by the expert rater. (b): Different curves for the different labeling strategies. 
the data non-i.i.d., thereby introducing artificial class weights. 

The effect of domain adaptation on LCA% is only marginal 

and the absolute improvement is unlikely to be relevant for 

real applications. The low p-value of the Wilcoxon signedrank 

test can be explained by the fact that random sampling is never 

perfectly i.i.d.. Thus our correction does have a minimal effect 

on each data point, which then adds up to a high sum of ranks 

in the test. 

D. DALSA Applicable Under Different Conditions 

Our experiments demonstrate that DALSA can be easily 

integrated into existing classification pipelines, such as the one 

of Kleesiek et al.. In cases where a classification algorithm does 

not offer native support for observation-based weighting, 

solutions based on classifier ensembles could help and make 

our approach applicable in combination with virtually any 

classification algorithm [46]. This is important, since previous 

studies [47] and our own experiments with SVM demonstrate 

the impact of the sampling bias also on other classifiers. Our 

experiments also show a positive effect of DALSA under 

varying data and feature sets. Using the pipeline of Kleesiek et 

al. [42], we achieved state-of-the-art performance on the basis 

of sparse training data. 

Our experiments also show that the performance of DALSA 

does depend on the way SURs had been selected (c.f. Fig. 9a). 

An arbitrarily varying placement of SURs produced the lowest 

quality end result while at the same time, mostly profiting 

from the proposed domain adaptation. The advantage of this 

sampling scheme was its time efficiency: On average it took 

only 50 seconds to annotate a single patient and add the 

annotation to the training data. The other annotation schemes 

(Type 2 − 4) all yielded similar results in terms of DICE scores 

while requiring an annotation time between two and three 

minutes per patient. Type 3 has the additional advantage of 

not requiring tissue annotations close to tissue borders. 

Irrespective of the labeling scheme, all SUR-based classifiers 

could be improved by the use of domain adaptation. 

E. Future Work and Implications 

One advantage of our method is that the fast creation of 

training data allows larger training data sets to be built. We 

were, for example, able to build a 5-class classifier without 

much labeling effort. Further tissue classes could be easily 

added, even without necessarily having to relabel all other 

tissue classes. It is, for example, possible to add training data 

for additional stroke or blood classification. The sparse labeling 

furthermore allows more patients to be labeled within the 

same time. Based on [7], we think that this will further improve 

the quality of the trained classifiers and boost the results of 

our method. 

Future work could also be directed to applying 

crowdsourcing methods in order to further reduce the 

resources from medical experts when training machine 

learning algorithms (c.f. [48]). The reduced labeling will reduce 

the costs caused by the crowd and make this approach more 

feasible. 

VI. CONCLUSION 

We showed that the proposed approach (DALSA) 

successfully compensates the selection bias introduced by 

SURs and yields results that are comparable to learning from 

complete annotations while being significantly more time-

efficient. The reduction of labeling time by a factor greater 

than 70 dramatically eases the establishment of large 

annotated training collectives with reasonable effort. Our 

method makes it feasible to create large training sets and 

update them on a regular basis. It also allows a more efficient 

adaptation to variations in scanner hardware, modalities and 

protocols, since labeling of novel training databases takes 

much less time. We hope that in the future this will support a 
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broader integration and application of automatic tumor 

segmentation methods in the clinical workflow. 
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Fig. 9. DICE scores obtained by leave-one-patient-out experiments. (a): 
Evaluation of different labeling schemes (c.f. Table I). (b): Variability between 
different raters that drew the SURs independently and blindfolded to the 
complete tumor segmentation. (c): Comparison of LSA2 and DALSA2 using SVM 
instead of random forests. The cost factor determines the noise sensitivity. 

 

Fig. 10. Mean and standard error for the leave-one-out experiments acquired 
with different λ. Tree depth was set to four in all iterations. 
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APPENDIX A 

According to Equation 5, the sum over all estimated weights for 
the SURs of an image can be written as 

(9a) 
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 ˆ( = 1 ) 
 nTrain nTrain 

(9b) (9c) 

nTrainTrainnTrain+nTest (9d)  1 − 

 = c · nTrain · n 
nTrain+nTest 

 · · nTrain + nTest − nTrain (9e) 

APPENDIX B 

In Fig. 11 we show the ROC curves for the individual subjects. Each curve is obtained by moving the decision threshold 

for the trained random forest classifier and connecting the 
individual results. 

Fig. 12. 
Specificity and sensitivity of each classifier using the standard decision threshold of 
50%. The diameter of the ellipsoids indicates the standard error. LCA% is partly 
covered by DALCA%. 

False-Positive-Rate 

Fig. 11. ROC curves for LSA2 and DALSA2. For each patient, one curve was 
obtained by training on the other patients and varying the decision threshold 
of the resulting classifier. 

= c nTrain nTrain  

= c · nTest (9f) 
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