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Abstract

Markov random field (MRF) model has been widely employed in edge-preserving regional noise 

smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in 

low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional 

smoothing may sacrifice tissue image textures, which have been recognized as useful imaging 

biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign 

lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional 

noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while 

retaining the advantage of MRF’s neighborhood system on edge preservation. Specifically, we 

adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from 
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previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian 

reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction 

framework, experiments using clinical patient scans were conducted. The experimental outcomes 

showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the 

commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving 

LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for 

texture-specific clinical applications.

Index Terms

Bayesian image reconstruction; low-dose CT; a priori knowledge; image textures

I. Introduction

X-RAY computed tomography (CT) has been widely exploited for various clinical 

applications. However, CT scan is a radiation-intensive procedure [1, 2]. For image-guided 

interventions and dynamical studies where repeated scans are routinely prescribed, the 

accumulated CT radiation dose could be tremendous. For instance, CT is commonly used to 

guide a needle for lung nodule biopsy [3], where up to ten scans could be performed on the 

same patient. Similar situation occurs to dynamical scans in order to assess disease stages 

[4]. To reduce radiation dose, a full-dose (i.e., diagnostic high-quality) CT scan can be first 

performed to set up a reference as current practice does, but the following scanning series 

may be acquired at lower dose levels by lowering the production of X-ray tube current and 

exposure time (milliampere-second (mAs)) during data acquisition without hardware 

modification, followed by an adaptive software approach for statistical image reconstruction 

(SIR) to control the increased data noise [5, 6]. In the past decade, many SIR algorithms 

have been developed to incorporate the physics and geometry of CT imaging. The central 

theme of these developed SIR algorithms is based on the assumption that the image intensity 

distribution shall be piece-wise smooth, so various regularizations have been explored to 

realize a piece-wise smooth image reconstruction with consistency to the acquired low-dose 

projection data [6–8].

More recently, noticeable research efforts have been devoted to take advantage of 

previously-available FdCT scan, in addition to the above assumption, for the purpose of 

improving the piece-wise smooth image reconstruction of low-dose CT (LdCT) images [9–

16]. For instance, Nett et al. [9] incorporated a registered FdCT image into their prior image 

constrained compressed sensing (PICCS) cost function [17] for iterative reconstruction of 

subsequent LdCT images. Stayman et al. [14, 15] presented a PICCS-type penalty term, but 

the high-quality prior image was formulated into a joint estimation framework for both 

image registration and image reconstruction in order to better capturing the anatomical 

motion among different scans. Moreover, Ma et al. [11, 16] proposed previous FdCT image 

induced nonlocal means penalties to improve the following LdCT image reconstruction for 

perfusion and interventional imaging, wherein the previous FdCT image was also pre-

registered with the LdCT scans. These efforts share the common idea of registering the 

FdCT image structure with the LdCT image to ensure piece-wise regional smoothness and 
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edge-sharpness image reconstructions. The edge-preserving regional smoothing paradigm 

can sharpen the tissue region borders, but may sacrifice the tissue region image texture 

characteristics, which have been shown as a useful imaging marker for many clinical tasks, 

e.g., [18–20].

This exploratory study aims to shift the paradigm to texture-preserving LdCT reconstruction 

by capturing the regional tissue textures from the previous FdCT scan and incorporating the 

textures as a priori knowledge for Bayesian reconstruction of the current LdCT images. 

Specifically, it captures the image textures of muscle, fat, bone, lung, etc., from the full-dose 

image and then incorporates the tissue image textures as a priori knowledge for Bayesian 

reconstruction of the corresponding tissue regions in the low-dose images, so that the 

reconstruction preserves not only the edges but also the textures inside the tissue regions. It 

is noted that several other studies also expressed interest on image texture preservation in 

iterative reconstruction [21, 22].

The remainder of this paper is organized as follows. Section II reviews the Bayesian 

theorem-based SIR framework and introduces a texture penalty model to incorporate tissue 

textures from the full-dose scan. Section III describes experimental design using both 

simulated and acquired low-dose projection data of patients, and then reports the 

performance of the presented knowledge-based Bayesian reconstruction with the texture 

penalty model. After a brief discussion, conclusions of this study are drawn in Section IV.

II. Methods

A. Bayesian Theorem-based Texture-preserving Low-dose CT Image Reconstruction

Given a set of acquired projection data, denoted by a vector , where I is the number 

of data elements, we are interested in a solution, denoted by a vector , where J is 

the number of image voxels, which maximizes the posterior probability . By the 

Bayesian theorem, we have:

(1)

where  becomes a constant when maximizing the posterior probability and, therefore, is 

ignored. Let the log data likelihood or fidelity term, , be described as a re-

weighted least squares (RWLS) [6] and the log prior term, , be described by a 

Markov random field (MRF) model [23], the desired solution can be expressed as:

(2)

where A is the projection matrix with size I×J, and its element  is calculated as the 

intersection length of projection ray i with voxel j.  denotes the mean value vector  of 

the acquired data y. T is a transpose operator. Since the noise, i.e., the difference , 

is statistically independent among all the data elements, D is a diagonal matrix, where each 

diagonal element is called a weight for its corresponding datum. Because of the Poisson 

nature in X-ray generation and detection, each weight in D must depend on the 
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corresponding mean  [24, 25] and the weight D must be re-weighted in calculating the 

solution of Eq. (2), thus the first term of Eq. (2) is called RWLS. A mathematical derivation 

for D is given in [26].  in the second term of Eq. (2), based on the MRF model [23], can 

be expressed as:

(3)

where index j runs over all the voxels in the image domain, Wj denotes a small fixed 

neighborhood window (typically 8 neighbors in a 2D case) of the jth image voxel, and wjm is 

the weighting coefficient that indicates the interaction degree between voxel j and voxel m. 

Usually the weighting coefficient is considered to be inversely proportional to the Euclidean 

distance between the two voxels. Thus, in 2D case, wjm for the eight neighboring image 

pixels can be given as:

And ϕ denotes a potential function, which can be given as:

(4)

where the former corresponds to the Gaussian MRF (GsMRF) penalty, and the latter 

corresponds to the Huber MRF (HuMRF) penalty that introduces an adjustable parameter δ 

to balance the desired degree on the regional smoothness and edge sharpness.

Different from the regional noise smoothing penalty in Eq. (3), we proposed, based on the 

work of [27, 28], a novel tissue region-based texture-preserving regularization which can be 

given as:

(5)

where R is the number of different tissue regions and typically set to be 4 for chest CT 

imaging, representing lung, bone, fat and muscle, respectively. The index r runs over all the 

tissue regions, and index j runs over all the voxels in a specific tissue region. Ω denotes the 

MRF window for the neighborhood system.  represents a set 

of MRF model coefficients of tissue region r (each tissue region has a specific set of MRF 

coefficients, and the voxels in the same tissue region employ the same set of MRF 

coefficients) predicted from the previous FdCT scan, where FD is the abbreviation for full-

dose. This definition of MRF model coefficients is the central idea of this study and will be 

investigated in the following sections. The description on the MRF neighborhood system 

employs a pair-wise quadratic form  for simplicity in computing the penalized 
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RWLS (PRWLS) solution of Eq. (2). For the task of extracting tissue textures, an adequate 

window size is desired and will be determined by experiments. β in the second term is a 

scalar parameter, controlling a balance between the data fidelity and prior MRF model. So 

far this parameter has been determined experimentally for a specific application. The 

definition of Eq. (5) is based on the well-established MRF theory [23] and thus our attention 

will then turn to its implementation in the following sections.

B. Determination of the Tissue-specific MRF Model Coefficients

Given a FdCT image and an adequate MRF window size, a set of MRF model coefficients 

corresponding to a tissue region can be determined by a linear regression strategy such that 

every image voxel inside the MRF window can be predicted from a linear combination of its 

clique-mates. Among all the linear regression estimation algorithms, the least-squares 

algorithm [29] is adapted in this study because of its computational efficiency as 

demonstrated in [30]. According to the MRF definition that the clique-mates of current 

voxel are the neighbors within the MRF window, thus the least squares predicted MRF 

coefficients for the clique-mates can be formulated as [27]:

(6)

where vector  is the FdCT image. The expression  is the sample 

auto-correlation matrix, and  is the sample cross-correlation vector. It is 

expected that the sum of the predicted MRF coefficients for each region, , 

shall be equal to 1.

C. Algorithm for the Presented Texture-preserving LdCT Image Reconstruction

While many numerical methods could be chosen to calculate the PRWLS solution of Eq. 

(2), this study employed the Gauss-Seidel updating strategy due to its rapid convergence, as 

demonstrated in [6]. The algorithm for the minimization solution of Eq. (2) can be illustrated 

by the pseudo codes below, where Aj denotes the jth column of the projection matrix A, 

is the electronic noise and  is the mean number of X-ray photons just before entering the 

patient body and going toward the detector cell i, where the values of  and  were 

estimated given the data acquisition protocol [26]. We stopped the reconstruction process 

after a number of iterations when the estimated images between two successive iterations 

become very small. For the datasets presented in this study, 20 iterations were seen to be 

large enough for good convergence.

Initialization:
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For each iteration:

begin

For each voxel j:

determine tissue region for voxel j, ;

choose corresponding MRF coefficient set;

begin

;

end

end.

III. Experiments and Results

A flowchart for implementation of the presented knowledge-based Bayesian reconstruction 

method can be summarized by the four steps in Fig. 1, where steps 1 and 2 operate on both 

full- and low-dose scans, and steps 3 and 4 only on full- and low-dose scan, respectively. 

More details on the implementation are described below.

A patient, who was scheduled for CT-guided lung nodule needle biopsy at Stony Brook 

University Hospital, was recruited to this study under informed consent after approval by the 

Institutional Review Board. The patient was scanned using a Siemens CT scanner. The X-

ray tube voltage was set to be 120kVp, and the tube current was set to be 100mAs for the 

full-dose scan. The subsequent low-dose scans were performed at 20 mAs level. The raw 

data were calibrated by the CT system and outputted as sinogram data or line integrals. In 

addition to the patient recruitment for both full- and low-dose scans, two more recruitments 
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were made for only full-dose scans on patients, one patient has a lung nodule and the other 

patient has a colon polyp, both of which have a size of 10 mm.

Based on the patient scans, we first performed experiments using simulated low-dose 

sinogram data by adding noise to the full-dose sinogram data with the simulation tool of [6]. 

The reason of using simulated low-dose data is that the ground truth is available for a proof-

of-concept study. Also, by a prefect registration between the full- and low-dose scans in the 

simulation, the region-specific MRF coefficients predicted from the neighboring slices of 

the full-dose image can be applied to different slices in the corresponding low-dose image 

reconstruction and the impact on the mismatch of slice location and, therefore the mismatch 

of tissue regions, can be accurately documented.

Then experiments using the acquired full- and low-dose sinogram data at 100 and 20 mAs 

levels from the same patient were also performed. In the 20 mAs scan, all variations, 

including patient movements, organ deformations, gantry positioning between the full- and 

low-dose scans, etc., are present. In addition, the variation associated with the image 

segmentation is also involved. This clinical pilot study reflects the current clinical situation.

A. Experiments on Simulated Low-dose Sinogram Data

1) Extraction of MRF Model Coefficients—Given the 100 mAs full-dose data of the 

patient (who has also a low-dose scan at 20 mAs level) and its simulated low-dose sinogram 

data, the Step 1 of Fig. 1 is to apply the well-established filtered back-projection (FBP) 

algorithm to reconstruct the full-dose data with Ramp filter at Nyquist frequency and the 

low-dose data with Hann filter at 50% Nyquist frequency. The reason of using Hann filter at 

50% Nyquist frequency is because of the increased noise in the low-dose data. This 

smoothed FBP reconstruction of low-dose data will be treated as the initial estimate of the 

desired solution of Eq. (2). The full-dose FBP reconstruction will be treated as a priori 

image, from which the tissue image textures will be extracted.

Given the above FBP reconstructions, the Step 2 of Fig. 1 is to apply an efficient image 

segmentation algorithm to label the tissue regions. Because of its high computing efficiency, 

our previously-reported vector quantization (VQ) segmentation algorithm [31] was adopted 

in this exploratory study. It is fully automatic once the number of tissue types is given, e.g., 

setting R=4 to represent lung, bone, fat, and muscle for chest CT imaging. Moreover, we 

adopted morphological operations to enlarge the segmented lung parenchyma and bone 

region boundaries slightly so that the final lung region for MRF coefficients prediction 

would include both the blood vessels inside lung and the juxta-pleural nodules attached to 

the pleural wall. The bone marrow with relatively lower intensities was also included in the 

refined bone region for MRF coefficients prediction of the bone tissue. Generally, it took 

less than 1 second to segment a 512×512 image on a desktop computer of single CPU of 

3GHz and 12 GB RAM without acceleration. Because of the high computing efficiency, the 

VQ algorithm was applied to the low-dose initial estimate and each refining iteration result 

to obtain the tissue masks. Fig. 2 illustrates an example of segmenting the full-dose image.

Given the segmented masks of the four tissue types from the FdCT FBP reconstruction of 

Fig. 2, the Step 3 of Fig. 1 is to extract the corresponding MRF model coefficients set by Eq. 

Zhang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6). From experiments, we found that a 7×7 MRF window size is sufficient, since the MRF 

coefficients beyond this window are close to zero and have nearly no impact. Fig. 3 

illustrates the predicted MRF coefficients set of the four tissue regions, respectively. It is 

interesting to see that the MRF model coefficients of the lung and bone regions have some 

similarity while the coefficients of the fat and muscle regions also have some similarity, but 

the coefficients of the group of lung/bone are clearly different from the coefficients of the 

group of fat/muscle. The former group has a large intensity variation while the later group 

has a small intensity variation. All the four tissue regions exhibit different spectral patterns 

corresponding to different image textures. It is worth noting that the sum of the predicted 

MRF coefficients for each region, , is close to 1, as expected.

Since our ultimate goal is to preserve these image textures of full-dose scan in the low-dose 

image reconstructions, the spatial mismatch between the full- and low-dose images must be 

considered. In the image slice (transverse) plane, the spatial mismatch is not a concern 

because the contents in each segmented region mask remain the same regardless where the 

region is located once the axial location is the same between the full- and low-dose images. 

Therefore, the concern would be on the mismatch of the axial location. To get insights on 

this, we took the slice of Fig. 3 which is located at slice #60 as the reference to investigate 

its nearby slices. Fig. 4 shows the predicted MRF model coefficients of the lung region from 

slice #58 to slice #62 of the same patient, as well as the coefficients predicted from the 

whole five neighboring slices. The similarity among the six sets of MRF coefficients can be 

quantified by the correlation coefficient measure with a value greater than 98% and with a 

very tiny difference (discrepancy <5%). The phenomenon of the predicted MRF model 

coefficients from the neighboring image slices for the lung region also holds for the other 

three regions (bone, fat, and muscle).

The regional spectral pattern similarity can be attributed to the tissue structure similarity 

among nearby image slices. Because of this similarity among nearby image slices and the 

region-specific nature of the estimated MRF model coefficients across the entire image slice, 

an accurate image alignment between the full-and low-dose in the axial direction is also not 

necessary. In other words, when we reconstruct one slice of the low-dose scan, we can 

potentially utilize the MRF model coefficients trained from the roughly-matched nearby 

image slices of the FdCT scan, which dramatically relieves the demand for accurate 

alignment of the full-dose image with the low-dose image along the axial direction and 

completely eliminates the need for voxel-by-voxel alignment across the transverse plane.

Given the extracted MRF model coefficients of the four major tissue regions from the full-

dose image, the Step 4 of Fig. 1 is to incorporate these tissue textures into the low-dose 

image reconstruction. To show the gain by incorporating the textures into LdCT image 

reconstruction, three commonly used image reconstruction methods were implemented to set 

up reference for comparison purpose: (1) the FBP method; (2) the GsMRF method; (3) the 

HuMRF method. The comparisons were conducted by both simulated and acquired low-

dose projection data experiments.

2) Image Reconstruction—From the simulated low-dose data of the patient, the 

sinogram of one slice (slice #60) was extracted to illustrate the first scenario of our 
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experiments, i.e., the slice match between full- and low-dose scans. In this study, we chose β 

value that gave the best eye-appealing result among other values for the three MRF 

algorithms. The reconstructed images from the simulated low-dose sinogram by the FBP, 

GsMRF, HuMRF, and our proposed MRF-texture algorithm are shown in Fig. 5. It can be 

observed that all the MRF algorithms outperformed the FBP method in terms of noise 

suppression. While for the three MRF algorithms, the proposed MRF-texture is superior to 

both the GsMRF and the HuMRF in terms of edge/detail preservation, which will be 

quantified in the following sections. It should be noted that, for the MRF-texture algorithm, 

the region-specific MRF coefficients were predicted from the same slice of the 

corresponding full-dose image (i.e., slice #60, as shown in Fig. 2(a)). Therefore, we use the 

legend “MRF-T60” to denote the corresponding results.

According to the analysis of Fig. 3 and Fig. 4, since the predicted MRF coefficients from 

nearby slices show similar patterns, we may not necessarily need to utilize the MRF 

coefficients predicted from the exactly same slice of the corresponding FdCT scan. That is, 

when we reconstruct the slice #60 of the low-dose scan, we can potentially employ the MRF 

coefficients predicted from any one or summation of all the nearby slices (slice #58, #59, 

#60, #61, #62) of the full-dose scan. In this second scenario of our experiments, Fig. 6 

shows the reconstructed images from the simulated low-dose sinogram data by the proposed 

MRF-texture algorithm using MRF coefficients predicted from different slices of the full-

dose image. We can observe that the reconstructed images in Fig. 6 are very similar to each 

other, and the quantitative evaluations in the following sections also validate this 

observation.

3) Normal Vector Flow Measure—In order to quantify the texture benefit of the 

proposed a priori knowledge model of Eq. (5), a region of interest (ROI), indicated by a 

rectangular box in Fig. 2(a), was selected to plot the normal vector flow (NVF) [32] images 

for different reconstruction methods in Fig. 5, and the corresponding NVF images are 

illustrated in Fig. 7. The NVF image in Fig. 7(a) is corresponding to the FBP reconstruction 

from the full-dose scan of Fig. 2(a), and can serve as the reference standard. The gradual 

changes of the intensities in the desired image are often shown as ordered arrow in the NVF 

image, while the noise in the image is often shown as disordered arrows, as shown in Fig. 

7(b). From Fig. 7(c)–(e), we can see that the disordered arrows in the uniform regions were 

suppressed by using MRF reconstruction methods. However, the ordered arrows around the 

bone boundaries in Fig. 7(c) swelled a little bit due to the edge blurring in the GsMRF 

reconstructed image of Fig. 5(b), and those in Fig. 7(d) were falsely depicted due to the 

brute enforcing of edge-preserving characteristics of the Huber penalty of Fig. 5(c). In 

contrast, the NVF image of the proposed MRF-texture algorithm in Fig. 7(e) demonstrated 

best matches of the ordered arrows as compared to the reference standard of Fig. 7(a), which 

indicates that the textures of the corresponding reconstruction were best preserved. Other 

quantitative measures using image quality merits, such as noise and resolution tradeoff and 

local image quality assessment, are reported in Appendix of this paper.

4) Haralick Texture Measures—Haralick texture features have been widely used for 

classification of lesion malignancy [33] and, therefore, adopted to quantify the texture 
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preservation in the reconstructions of the four methods above (the FBP, GsMRF, HuMRF, 

and MRF-texture). Eight ROIs were selected on the lung, bone, fat, and muscle, 

respectively, from the full-dose image in Fig. 5(a) to set up the baseline or reference. The 

corresponding ROIs were selected on the low-dose reconstructions of the four methods. The 

14 Haralick texture measures were extracted from each ROI. The Euclidean distance 

between the textures of the full- and low-dose images was used as the quantitative measure. 

A shorter distance indicates better texture preservation by the reconstruction algorithm. 

Table I shows the quantitative results. The presented MRF-texture image reconstruction has 

the best performance on texture preservation, as expected. Because of the known textures 

from lung, bone, fat, and muscle from the full-dose image, the gain by the proposed MRF-

texture algorithm on these four tissue types are noticeable in the low-dose image 

reconstruction.

To show how the gain on the large tissue volumes of lung, bone, fat, and muscle can lead to 

the gain on the texture preservation of small lung nodule or colon polyp inside the large 

tissue volumes, the above procedure of extracting texture information from FdCT and 

performing texture-preserving LdCT image reconstruction was repeated to the sinogram 

data of the two patients, one with a nodule and the other with a polyp, respectively. Fig. 8 

shows the reconstructed images of the two patients acquired from routine protocol of full-

dose level (120 kV, 100 mAs) where the ROIs were selected to compute the textures. The 

simulated low-dose scans were reconstructed by the four algorithms of FBP, GsMRF, 

HuMRF, and MRF-texture. The textures from the full-dose scans were used as the reference 

when comparing the texture distance of the four algorithms. Table II and Table III show the 

experimental outcomes. The gain from the known large tissue volumes led to a noticeable 

gain on the unknown small nodule or polyp.

B. Experiments on Real Low-dose Sinogram Data

1) Image Reconstruction—To evaluate the proposed a priori knowledge model of Eq. 

(5) in a more realistic situation, the real low-dose sinogram data (120 kVp, 20mAs) of the 

same patient (of Fig. 5) was also used to perform a pilot clinical study. The slice #45 of the 

low-dose scan roughly matches the slice #60 of the full-dose scan by visual judgment. 

Therefore, we employed the MRF coefficients sets (as shown in Fig. 3 and Fig. 4) predicted 

from the slice #60 and its neighboring slices of the full-dose scan to reconstruct the slice #45 

of the low-dose scan.

In the first scenario of using the MRF coefficients of the slice #60, the reconstructed images 

from the low-dose 20mAs sinogram by the FBP, GsMRF, HuMRF and MRF-T60 methods 

are shown in Fig. 9. It is evident that all the three MRF methods outperformed the FBP 

method in terms of noise suppression, and the MRF-T60 result is superior to the GsMRF 

and the HuMRF in terms of edge/detail preservation.

In the second scenario of using the MRF coefficients set of the nearby slices around the slice 

#60, (i.e., slice #58, #59, #60, #61, #62) of the full-dose scan to reconstruct the slice #45 of 

the low-dose 20mAs sinogram data, Fig. 10 shows the results of our proposed MRF-texture 

method. By visual judgment, the reconstructed images in Fig. 10 are very similar to each 
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other, concurring with the simulation results of Fig. 6. Quantitative measures on the results 

of Fig. 9 and Fig. 10 are given below.

2) Normal Vector Flow Study—The NVF images of a ROI as indicated in Fig. 9(a) were 

also plotted for the results of the four different reconstruction methods of Fig. 9, and the 

corresponding NVF images are illustrated in Fig. 11. The NVF image of Fig. 7(a) can be 

served as a reference for comparison, because that image was made from a similar ROI as 

that in Fig. 9(a). Despite the lacking of golden standard in this real clinical low-dose data 

pilot study, yet we can still observe similar phenomena as those claimed in the Section III.A 

of simulation study. And the NVF image of the presented MRF-texture algorithm in Fig. 

11(d) has the best match to the reference in Fig. 7(a), indicating that the textures of the 

corresponding reconstructed image were best preserved by our proposed a priori knowledge 

model of Eq. (5).

3) Evaluation by Physician Experts—In an effort to qualitatively compare the results 

of the four different reconstruction methods, three experienced physicians were asked to 

score the reconstructed images from 0 (worst) to 10 (best) in terms of noise reduction and 

resolution/contrast/ detail/texture preservation. The reconstructed images by different 

methods were displayed on the screen randomly, so it was a completely blind procedure for 

the physicians. Table VI lists the physicians’ scores on the reconstructed image quality 

under three different display windows: bone window (BW), soft tissue window (TW), and 

lung window (LW). It is evident that the reconstructed image by our proposed MRF-texture 

algorithm generally has the highest scores (with mean 7.56) and, therefore, outperformed the 

other three methods (with mean 3.22 for FBP, 5.67 for GsMRF, and 5.44 for HuMRF, 

respectively) from the physicians’ point of view.

IV. Discussion and Conclusion

This work introduced a previous full-dose high-quality CT scan induced MRF penalty 

model for Bayesian image reconstruction of subsequent low-dose scans. The proposed a 

priori knowledge model of Eq. (5) considers the anatomical similarity among the 

reconstructed image series of the previous full-dose and current low-dose scans and utilizes 

the full-dose image to predict region-specific MRF model coefficients, which have been 

routinely specified by an ad hoc manner based on the nearby image voxel distance to the 

concerned voxel. The presented a priori knowledge model further considers the tissue 

specific patterns in addition to the anatomical similarity and makes the MRF model 

coefficients adaptive to be regionally specific, resulting in the elimination of the demand for 

point-by-point image registration between the full- and low-dose scans in the prediction of 

the model coefficients [28]. Experimental outcomes showed noticeable gain by the proposed 

a priori knowledge model of Eq. (5) compared to the well-known generic GsMRF penalty 

and HuMRF penalty (which are based on the distance model coefficients), in terms of 

computer-based merits and physician assessment on the reconstructed images. Essentially, 

the generic MRF penalty encourages regional smoothness and edge sharpness, lacking a 

mechanism to preserve the tissue specific characteristics or patterns (i.e., image textures). 

The proposed MRF-texture model takes advantages of the generic MRF penalty’s 

neighborhood system and also brings the a priori knowledge of the image textures into the 
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LdCT image reconstruction. Particularly, the gain on textures of the nodule and polyp is 

clinically important because (1) the majority of nodules and polyps are benign and 

differentiation of malignant vs. benign is necessary and (2) the image textures play an 

important role in the lesion differentiation.

While utilizing previous full-dose image (or high-quality image) to improve the quality of 

follow-up LdCT images has become a research endeavor [9–16, 28], one major limitation 

therein is that the previous full-dose image usually needs to be registered to the current low-

dose images. In practice, severe patient motion, tissue or organ deformation, fluid flow, etc. 

can occur between the full- and low-dose scans, where even a deformable registration may 

not be adequate to capture the complex anatomical and physiological motions, resulting in 

residual errors in the low-dose image reconstruction [15]. In our previous study of utilizing 

full-dose image via MRF model coefficients [28], we predicted MRF coefficients for each 

single voxel in the full-dose image. That is, for a 2D image with 512×512 pixels, 512×512 

sets of MRF coefficients were obtained. And because of the pixel-by-pixel mechanism, 

accurate registration between the previous full-dose image and the current low-dose images 

is required before we can reconstruct the low-dose images. In contrast, the method proposed 

in this paper does not demand registration between the full- and low-dose scans in the 

transverse plane. However, it does require a segmentation step to divide each image into 

several tissue regions (e.g., lung, bone, fat, and muscle). And then, for a 2D image with 

512×512 pixels, only 4 sets of MRF coefficients are predicted from the previous full-dose 

image, assuming that the pixels within the same tissue region share similar texture pattern, 

as shown in Fig. 3. In this study, a rough segmentation was shown to be sufficient, and the 

simple and fast VQ-based image segmentation approach was employed. Because of its 

region-by-region nature, the strategy in this work is more efficient and more feasible in 

practice than that of [28]. It is noted that the image in Fig. 9(a) shifts substantially compared 

with the image in Fig. 2(a) (the cause could be re-positioning of the patient, physiological 

changes like breath or heartbeat, etc.), and their detailed structures within lung region also 

vary substantially, but we can still utilize the region-specific MRF coefficients predicted 

from Fig. 2(a) to help the reconstruction of Fig. 9(a) without any registration. Along the 

axial direction, a rough alignment on the full- and low-dose scans is sufficient for the 

reconstruction of the low-dose scans by the presented MRF-texture algorithm. This 

statement is based on the results in Fig. 6 and Fig. 10, which use nearby slice-predicted 

MRF coefficients, and the outcomes were very satisfactory.

In this proof-of-concept study, we used 2D MRF window (with size 7×7) when computing 

the MRF model coefficients and reconstructing each transverse image, while the 3D volume 

was formed as a stack of 2D transverse images. Although lacking of regularization in axial 

direction, we did not observe artifacts in the coronal or sagittal views of the reconstructed 

volume. However, a 3D MRF window (e.g., with size 7×7×3), which results in fully 3D 

MRF-texture regularization, may be beneficial and would be investigated in our future 

study.

The smoothing parameter β in Eq. (2) controls the tradeoff between the data fidelity term 

and the penalty term. A larger β value produces a more smoothed reconstructed image with 

lower noise level but also lower resolution, and vice versa. Determining the optimal β value 
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for SIR methods is still an open question. In this study, we chose β value that gave the best 

eye-appealing result among other values for the three MRF algorithms. For the presented 

MRF-texture algorithm, we observed that, as long as the β in a reasonable range (within an 

order of magnitude) around the optimal value, the image texture does not change noticeably. 

That is, the desired texture does not require extremely careful tuning of β.

Shared with other iterative reconstruction methods, the proposed MRF-texture algorithm is 

iterative and demands intensive computing power to perform the multiple re-projection and 

back-projection operation cycles in the projection and image domains, although the image 

segmentation and MRF coefficients prediction steps are pretty fast. Fast computer with 

GPU-assisted implementation is expected to dramatically accelerate the associated 

computation for possible clinical practice. It is also noted that because of limited clinical 

datasets, further evaluation using more real patient datasets and specific clinical tasks is 

necessary to show the clinical significance and, therefore, is under progress.
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Appendix: Image Quality Evaluation

1) Noise and Resolution Tradeoff

In addition to the above NVF and Haralick texture related measures on the reconstruction 

results of Fig. 5, we further evaluated the results in terms of noise reduction and resolution 

preservation. As noted above that the parameter β of the three MRF algorithms controls the 

noise and resolution tradeoff, which means one can always sacrifice spatial resolution for 

better noise performance by increasing the value of β, or vice versa. In this study, we 

selected the β value for the three MRF algorithms to have similar noise level at uniform 

regions. The noise level of the reconstructed images was quantified by the standard 

deviation of the four uniform ROIs (ROI 5–ROI 8) shown in Fig. 5(a). The image resolution 

can be characterized by a vertical and a horizontal profile labeled by the red lines in Fig. 

5(a). Fig. 12 compares the profiles. The comparison demonstrated the advantage of the 

presented MRF-texture algorithm over the GsMRF and HuMRF on edge and contrast 

preservation.

As reported above, the MRF coefficients from nearby image slices are very similar and the 

resulting images by the MRF-texture algorithm are also very similar in terms of noise 

reduction and resolution preservation, as shown in Fig. 6. To visualize the similarity, 

profiles were drawn from the images in Fig. 6 and are shown by Fig. 13, which demonstrates 

that the profiles of the reconstructed images in Fig. 6 are nearly overlapped with each other. 

The similarity reveals that the proposed MRF-texture algorithm using MRF coefficients 
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predicted from nearby slices of the previous full-dose image can generally produce very 

similar reconstruction results.

2) Local Image Quality Assessment

To further quantitatively demonstrate the benefits of our proposed a priori knowledge model 

of Eq. (5), we compared the reconstruction results of Fig. 5 on the ROIs, which have 

detailed structures (ROI 1 – ROI 4) and were labeled with red rectangles in Fig. 5(a). Two 

quantitative metrics were used to evaluate the image quality of the ROIs. The first metric is 

the traditional root mean squared error (RMSE), which indicates the difference between the 

reconstructed image and the reference image, and characterizes the reconstruction accuracy. 

The second metric is the universal quality index (UQI) [34] which measures the similarity 

between the reconstructed image and the ground truth image, and quantifies the noise, 

spatial resolution, and texture correlation between two images.

The corresponding quantitative results with the two metrics are shown in Fig. 14. As we can 

see, the proposed MRF-texture algorithm offered the lowest RMSE and the highest UQI for 

all the four detailed ROIs. As expected that the three MRF algorithms would perform better 

than the FBP method.

The image quality similarity of the reconstructed ROIs in Fig. 6 was also evaluated with the 

RMSE and UQI metrics, and the corresponding results are shown in Fig. 15. It can be seen 

that all the reconstructions’ ROIs in Fig. 6 by different MRF coefficients sets are close to 

each other. These local image quality assessments can also conclude that the proposed 

MRF-texture algorithm using MRF coefficients predicted from the nearby slices of the 

previous full-dose image can generate very similar reconstructed images at low-dose levels.
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FIG. 1. 
Flowchart of the proposed texture-preserving LdCT image reconstruction algorithm.
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FIG. 2. 
Segmented masks of the chest CT image (a). Picture (b) is the lung mask or region; (c) is the 

bone mask; (d) is the fat mask; and (e) is the muscle mask.
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FIG. 3. 
The predicted four sets of MRF model coefficients for the four tissue regions of Fig. 2 with 

a 7×7 MRF window size in 2D presentation. The corresponding regions are indicated by 

picture title.
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FIG. 4. 
The predicted MRF coefficients of the lung region for five neighboring slices in 2D 

presentation. The corresponding slice numbers are indicated in picture title.
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FIG. 5. 
Reconstructed transverse slice of the patient from the simulated low-dose sinogram: (a) The 

FBP reconstruction; (b) The GsMRF reconstruction, β = 3×105; (c) The HuMRF 

reconstruction, β = 3×105, δ=0.004; and (d) The MRF-T60 reconstruction, β = 3×105. All the 

images are displayed with the same window [0, 0.034] mm−1.

Zhang et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 6. 
Reconstructed transverse slice of the patient by the proposed MRF-texture algorithm from 

the simulated low-dose sinogram: (a) The MRF-T58 reconstruction; (b) The MRF-T59 

reconstruction; (c) The MRF-T60 reconstruction; (d) The MRF-T61 reconstruction; (e) The 

MRF-T62 reconstruction; and (f) The MRF-T58-62 reconstruction. The images were 

cropped for better visualization. All the images are displayed with the same window [0, 

0.034] mm−1.
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FIG. 7. 
NVF images of a ROI labeled in Fig. 2(a). (a) is the reference from Fig. 2(a). (b)–(e) are 

corresponding to the reconstructions in Fig. 5(a)–(d).
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FIG. 8. 
Reconstructed transverse slice of two patients from full-dose acquisitions: (a) containing a 

lung nodule as indicated by ROI 5; (b) containing a colonic polyp as indicated by ROI 4.
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FIG. 9. 
Reconstructed transverse slice of the patient data from the low-dose 20mAs sinogram: (a) 

The FBP reconstruction; (b) The GsMRF reconstruction, β = 1×105; (c) The HuMRF 

reconstruction, β = 1×105, δ=0.004; and (d) The MRF-T60 reconstruction, β = 1×105. All the 

images are displayed with the same window [0, 0.034] mm−1.
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FIG. 10. 
Reconstructed transverse slice of the patient by the proposed MRF-texture algorithm from 

the low-dose 20mAs sinogram: (a) The MRF-T58 reconstruction; (b) The MRF-T59 

reconstruction; (c) The MRF-T60 reconstruction; (d) The MRF-T61 reconstruction; (e) The 

MRF-T62 reconstruction; and (f) The MRF-T58-62 reconstruction. All the images are 

displayed with the same window [0, 0.034] mm−1.
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FIG. 11. 
NVF images of a ROI labeled in Fig. 9(a). The NVF images in Fig. 11(a)–(d) are 

corresponding to the reconstructions in Fig. 9(a)–(d).
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FIG. 12. 
Comparison of the profiles along the vertical line and the horizontal line labeled in Fig. 5(a) 

between the four reconstruction methods with simulated low-dose sinogram and the FBP 

reconstruction with the full-dose sinogram.
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FIG. 13. 
Comparison of the profiles along the vertical line and the horizontal line labeled in Fig. 5(a) 

for the proposed MRF-texture algorithm using different MRF coefficients sets with 

simulated low-dose sinogram.
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FIG. 14. 
Performance comparison of the four reconstruction methods on their reconstructions’ ROIs 

labeled in Fig. 5(b) with RMSE and UQI metrics. The corresponding reconstruction 

methods are illustrated in figure legend.
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FIG. 15. 
Performance comparison of the proposed MRF-texture algorithm using different MRF 

coefficient sets on the reconstruction of the detailed ROIs labeled in Fig. 5(a) with RMSE 

and UQI metrics. The corresponding MRF coefficient sets are illustrated in figure legend.
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