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Abstract

Detecting cancerous lesions is a major clinical application of emission tomography. In a previous 

work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection 

in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic 

PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak 

parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by 

first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on 

the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images 

are estimated directly from raw sinogram data by incorporating the Patlak model into the image 

reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction 

methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak 

parametric images. Simplified expressions for evaluating the lesion detectability have been derived 

and applied to the selection of the regularization parameter value to maximize detection 

performance. The proposed method is validated using computer-based Monte Carlo simulations. 

Good agreements between the theoretical predictions and the Monte Carlo results are observed. 

Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect 

and direct methods under optimized regularization parameters in dynamic PET reconstruction for 

lesion detection, when compared with the conventional static PET reconstruction.

Index Terms
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I. Introduction

Statistical reconstruction methods based on the penalized maximum-likelihood (PML) 

principle have been developed to improve image quality [1]–[3]. A number of metrics have 

been used to evaluate the quality of the reconstructed PET images, including spatial 

resolution, noise variance, contrast-to-noise ratio, etc. However, task-specific optimization of 

the reconstruction parameters are needed in order to achieve the optimal performance. Here 

we focus on the evaluation of image quality for lesion detection.
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Based on the theoretical analysis of resolution and noise properties of quadratically 

regularized PML reconstruction [4]–[6], researchers have derived simplified theoretical 

expressions for fast evaluation of lesion detectability in PML reconstruction for static PET 

[7]–[9]. The theoretical results were used to guide the design of a quadratic penalty function 

to maximize the lesion detectability [10]–[12]. However, the potential of PET is under-

utilized by static imaging protocols, which only examine the tracer concentration at a single 

time point. It is reasonable to expect that dynamic PET, which follows the tracer uptake over 

a period of time, would provide more accurate information for cancer detection than static 

PET [13]–[15]. One popular method to analyze dynamic PET data is the Palak graphical 

model [16]. The slope of the Patlak plot has proved to be a useful quantitative index for 

characterizing kinetic properties of many PET tracers. Parametric images of the Patlak slope 

have been used to assist lesion detection [17]. The conventional method to generate Patlak 

parametric images is to reconstruct a sequence of dynamic images first and then perform 

Patlak analysis pixel-by-pixel, which we refer to as the indirect method. Alternatively, direct 

reconstruction methods estimate Patlak parametric images directly from dynamic sinogram 

data by incorporating the Patlak model into the image reconstruction procedure [18].

To explore the full potential of dynamic PET reconstruction, both indirect and direct 

methods need to be optimized for the specified clinical application. Here we focus on the 

task of detecting small lesions (10 mm or smaller). Task-based optimization of dynamic PET 

reconstruction using multiple Monte Carlo reconsturctions is often impractical, due to the 

high computational cost associated with fully 4D dynamic PET simulation and 

reconstruction. A better way is to theoretically analyze and predict the properties of different 

dynamic PET reconstruction methods and use the results to guide the task-based 

optimization. However, theoretical analysis of reconstruction methods in dynamic PET is 

more complicated than that in static PET, due to the need of modeling noise propagation 

from PET activity images to kinetic parametric images. In this work we extend our 

theoretical analysis of static PET reconstruction to dynamic PET. We derive simplified 

theoretical expressions to compute the lesion detectability for a signal-known-exactly and 

background-known-exactly (SKE/BKE) task in Patlak parametric images reconstructed by 

either direct or indirect methods, and then use the theoretical predictions to guide the 

selection of the regularization parameters in both reconstruction methods for lesion 

detection. Part of this work was presented at the 2015 IEEE International Symposium on 

Biomedical Imaging [19].

The rest of this paper is organized as follows. In Section II, we first review the theory of 

dynamic PML reconstruction methods and numerical observers. Then we derive the 

theoretical expressions for lesion detectability. In Section III, we conduct computer-based 

Monte Carlo simulations to validate the theoretical results. A discussion is included in 

Section IV. Finally, we draw conclusions in Section V.

II. Theory

A. Dynamic data model

In emission tomography, the measured sinogram data in the nth frame, yn ∈ ℝM×1, can be 

modeled as a collection of independent Poisson random variables with the expectation ȳn ∈ 
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ℝM×1 related to the unknown tracer distribution in the nth frame, xn ∈ ℝN×1, through an 

affine transformation

(1)

where M is the number of sinogram bins, N is the number of pixels in each image, P ∈ 
ℝM×N is the detection probability matrix with the (i, j)th element equal to the probability of 

detecting an event from the jth voxel in the ith line of response, and rn ∈ ℝM×1 is the 

expectation of background events (scattered and random events) in the nth frame.

For a set of dynamic data containing T frames, the relationship between the mean dynamic 

sinogram  and the dynamic image  can be written as

(2)

where ⊗ denotes the Kronecker product, IT ∈ ℝT×T is an identity matrix, and 

 are the expected background events. The superscript ‘′’ denotes matrix 

or vector transpose.

The log Poisson likelihood function of the measured data y is given by

(3)

where a constant term that is independent of x is omitted.

B. Patlak graphical model

To analyze dynamic PET data, the Patlak graphical method [16] has been widely used for 

compartment models that contain at least one irreversible compartment. Under this model, 

the tracer concentration at time t, c(t) ∈ ℝN×1, can be represented by a weighted sum of the 

blood input function Cp(t) and its integral after a sufficient length of time t★,

(4)

where κ ∈ ℝN×1 and b ∈ ℝN×1 are the parametric images of the Patlak slope and Patlak 

intercept, respectively. The slope image κ reflects the influx rate of the PET tracer and can 

be used for lesion detection in FDG PET, since tumors often have higher influx rates than 

normal tissues.
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The PET image xn in the nth frame is related to c(t) by

(5)

where tsn and ten are the start time and end time of frame n, respectively, λ is the decay 

constant of the PET tracer, and

(6)

(7)

The relationship between the whole dynamic image sequence  and the 

Patlak parametric images can be written as

(8)

where

Substituting (8) into (2), we can get

(9)

Ignoring the constant term, the corresponding log-likelihood function is

(10)
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Noted that equation (10) is the log-likelihood function of data y with respect to the Patlak 

parameters κ and b, while equation (3) is the log-likelihood function of data y with respect 

to the dynamic image x.

C. Indirect reconstruction

Given a set of measured dynamic sinogram data, the conventional indirect method to 

generate Patlak parametric images is to first reconstruct the dynamic images frame-by-frame 

and then estimate the Patlak parametric images pixel-by-pixel using least squares (LS). To 

reconstruct the image for frame n, PML is used to find the solution maximizing the sum of 

the log-likelihood function and a roughness penalty:

(11)

βx is a parameter that controls the degree of the regularization, ϕ(xn) is the penalty function. 

While the above equation uses a frame-independent βx for simplicity, the following analysis 

is directly applicable to reconstructions with βx varying across different frames. We focus on 

commonly used quadratic penalty functions because quantitative studies have not found that 

edge-preserving penalty functions provide improvement to lesion detection tasks [20], [21]. 

The quadratic penalty function is expressed as

(12)

where R is a positive semi-definite matrix. Performing least squares estimation of Patlak 

parameters from the reconstructed dynamic PET images , we can get 

the following results:

(13)

We refer to the above conventional indirect method as ‘indirect1’.

Since the correlations between pixels are ignored in the Patlak analysis, the indirect1 method 

may result in very noisy reconstruction. To overcome this problem, we impose a spatial 

regularization in the pixel-wise Patlak analysis. We refer to this method as ‘indirect2’. Using 

the quadratic penalty to regularize κ and b images, the resultant indirect2 method can be 

written as
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(14)

where x̂ represents the dynamic PET images obtained using (11) with a spatial regularization 

parameter βx, βκ and βb are the regularization parameters on κ and b, respectively. In total, 

there are three regularization parameters βx, βκ and βb, to adjust in the indirect2 method. 

The quadratic penalty function on κ and b can be written in matrix form:

(15)

where

(16)

The closed-form solution of indirect2 reconstruction is

(17)

where

(18)

Obviously, the indirect1 method in (13) is a special case of the indirect2 method in (17) with 

βκ = βb = 0. Note that equation (17) is mostly used for theoretical analysis of indirect2 

reconstruction. In practice an iterative algorithm is used to find the solution to (14).

D. Direct reconstruction

Direct methods reconstruct Patlak parametric images directly from dynamic sinogram data 

in one step by incorporating the Patlak model into the image reconstruction procedure [18]. 
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Combining the likelihood function with a quadratic penalty function to regularize κ and b 
images, the direct PML estimate of the Patlak parametric images can be found by

(19)

where βκ and βb are the regularization parameters on κ and b, respectively. There is no 

closed form solution to (19), so an iterative algorithm must be used to obtain the solution.

E. Lesion detection with numerical observer

For a given reconstructed image, a numerical observer computes a scalar test statistic η and 

compares it with a threshold to determine whether the image is normal (i.e., lesion absent) or 

abnormal (i.e., lesion present). By varying the threshold, we can plot the receiver operating 

characteristic (ROC) curve and compute the area under the curve (AUC) to compare 

detection performance. One popular numerical observer for lesion detection is the 

channelized Hotelling observer (CHO) [22]. With properly selected channel functions, CHO 

has been shown to have good correlation with human performance.

To study lesion detectability in dynamic PET, we apply CHO to the Patlak slope image κ̂ in 

order to mimic the scenario wherein a human observer examines parametric images to detect 

a lesion. The test statistic of the CHO is computed by

(20)

where z is the expected profile of the reconstructed lesion, i.e., z = E[κ̂|H1] − E[κ̂|H0] (H0 is 

the null hypothesis representing lesion absent and H1 is the alternative hypothesis 

representing lesion present), U denotes a set of frequency-selective channels, ň is the 

internal channel noise that models the uncertainty in the human detection process with mean 

zero and covariance KN [23]–[25]. K is the covariance of the channel outputs and can be 

computed by

(21)

where Σκ̂|H1 and Σκ̂|H0 are the covariance matrices of κ̂ under the hypotheses of H1 and H0, 

respectively. Here we assume Σκ̂|H1 = Σκ̂|H0, since the presence of a small lesion with size 

less than 10 mm has little effect on the variance of PET data.

The detection performance can be measured by the signal-to-noise ratio (SNR) given by

Yang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22)

F. Lesion detectability in dynamic PET reconstruction

Up to this point, we have covered the basic dynamic PET model, indirect and direct dynamic 

PET reconstruction methods, and the evaluation of lesion detectability using numerical 

observers. To compute the lesion detectability (i.e., SNR in equation (22)) for different 

reconstruction methods, we need expressions for z and Σκ̂. One approach is to reconstruct 

multiple realizations of simulated or measured data sets; however, the high computational 

cost associated with fully 4D dynamic PET reconstruction can be prohibitive. In this work 

we overcome this difficulty by deriving analytical expressions of CHO SNR for both indirect 

and direct methods. In the following we will first analyze the noise propagation in dynamic 

reconstructions and then apply the results to the evaluation of lesion detectability, which are 

the main results of this paper.

For indirect methods, we first obtain the approximate mean and covariance of reconstructed 

images in each frame by (11) using theoretical results derived in [9] as

(23)

(24)

where  is the Fisher information matrix for frame n, and f̄ln is the expected 

lesion profile after subtracting the background in frame n. The mean and covariance of the 

complete dynamic image x̂ can be written as

(25)

Applying the linear Patlak estimation in (17), we can derive the mean and covariance of the 

Patlak parametric images by the indirect methods as

(26)
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For direct reconstruction, considering A ⊗ P as a single system matrix, the resulting Fisher 

information matrix for estimating parametric images from the dynamic sinogram y can be 

computed by

(27)

Following the derivations similar to that in static PET reconstruction, the mean and 

covariance of Patlak parametric images reconstructed by the direct method can be 

approximated by

(28)

where f̄κb is the expected lesion profile after subtracting the background in the Patlak 

parametric images.

Substituting (26) and (28) into (22), we can obtain the theoretical expressions of the SNR for 

the indirect and direct reconstructions, respectively. Direct computation of (26) and (28) is 

impractical as it requires the inversion of a large matrix. We assume the local impulse 

function and the covariance are locally stationary i.e., shift-invariant in a local neighborhood 

[6], and then use the fast Fourier transform to compute the expressions in the frequency 

domain [5]. A derivation for the fast computation of (26) and (28) is given in Appendix A. 

The theoretical expressions can be used to predict the detection performance for a signal-

known-exactly and background-known-exactly (SKE/BKE) task, i.e., the SNR of CHO, to 

evaluate various system configurations and reconstruction parameters.

III. Simulation Study

A. Simulation setup

We simulated a 2D PET system, which has a geometry similar to a GE Discovery PET/CT 

690 scanner. A digital phantom (Fig. 1(a)) was created based on a patient PET/CT image 

(see Fig. 1 in [11]). We segmented out the breast tissue and lungs. Two lesions were 

simulated as round hot spots with diameters of 6 mm and 10 mm, respectively. The dynamic 

scanning protocol consisted of 49 frames: 30 frames of 10 seconds, 10 frames of 60 seconds, 

and 9 frames of 5 minutes, for a total of 60 minutes. The time activity curves (TACs) 

assigned to the breast tissue, lungs and tumors (Fig. 1(c)) in the phantom, as well as the 

blood input function (Fig. 1(b)), were extracted from a real dynamic PET scan of a breast 

cancer patient with 10 mCi FDG injection. The patient had a 3-cm high-grade invasive 

ductal carcinoma. Fitted Patlak curves are shown in Fig. 1(d), where a linear relationship can 

be observed after 20 minutes post injection. The fitted Patlak parameters are shown in Table 

I. In this study, the last 7 frames (from 25 min to 60 min post injection) were used for the 
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Patlak parametric image reconstruction. The activity images were forward projected to 

generate dynamic sinograms with proper modeling of the resolution degradation effects, 

photon attenuation and radioactivity decay. Independent Poisson noise was then added to 

generate a noisy realization with around 24M total counts over the 60-minute dynamic scan, 

mimicking a PET scan with 10 mCi FDG injection. We did not include scatters and randoms 

in the computer simulation here. The impact of this limitation will be discussed in Section 

IV.

We focus on detection of the smaller tumor in the right breast. The larger tumor in the left 

breast was simulated for quantification task, and the results will be presented elsewhere [26]. 

We used a CHO with three difference-of-Gaussian (DOG) channels [27] to evaluate 

detection performance on the reconstructed Patlak slope image κ for indirect and direct 

methods. We also compared the performance of dynamic PET with that of the last 5-minute 

static scan. The CHO with the same DOG channels was applied to the static reconstructions 

to evaluate lesion detectability. The internal noise was modeled as zero-mean Gaussian noise 

with covariance

(29)

where I is the identity matrix and  is the data variance in the ith channel output. The values 

of the scaling factors {α1, α2, α3} were taken directly from the previous work [11] as α1 = 

1.58 × 104, α2 = 0, and α3 = 0.144, which resulted in good correlation with human 

performance. To use the internal noise model with same parameters, we scaled the 

reconstructed κ images and the static activity images to the same mean intensity value as the 

one in previous work [11] before applying the CHO.

B. Theoretical analysis of different reconstruction methods

We used the theoretical expressions to study the effect of βx in (11) for static reconstruction 

and indirect1 reconstruction, the effect of βx in (11) and {βκ, βb} in (17) for indirect2 

reconstruction, and the effect of {βκ, βb} in (19) for the direct reconstruction. To compute 

the Fisher information matrix in (24) and (27), we used the plug-in approach developed in 

[9], which approximates 1/ȳ by 1/(y + 1). For the indirect2 method, we plotted the 

theoretical SNR as a function of βκ and βb under one βx value (=10−1) in Fig. 2(a). We can 

see that the maximum SNR is achieved when the regularization on the Patlak intercept 

image b is strong (βb ≥ 1011). In Fig. 2(b) we plotted the theoretical SNR of the direct 

reconstruction as a function of βκ and βb. Similarly, the maximum SNR is also achieved 

when the regularization on the Patlak intercept image b is strong (βb ≥ 104). For both 

methods, the strong regularization (large βb value) on the Patlak intercept image reduces 

noise not only in the intercept image b, but also in the Patlak slope image κ because of the 

strong negative correlation between b and κ. In addition, since the tumor has a higher 

intercept value than the background, the oversmoothing results in a negative bias in the b 
image, which in turn increases the tumor contrast in the κ image. Both of these improve the 

lesion detectability in the Patlak slope image. (Example images can be seen in Fig. 6.) In 
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comparison, such improvement in lesion detectability cannot be achieved by post-smoothing 

the Patlak slope image obtained from the indirect1 method.

In Fig. 3 we plotted the SNR of the indirect2 as a function of βx with the optimal {βκ, βb} 

(i.e., SNR(βx) = max{βκ,βb} SNR(βx, βκ, βb)), SNR of the direct method as a function of βκ 
with the optimal βb (i.e., SNR(βκ) = maxβb SNR(βκ, βb)), SNR of the indirect1 as a function 

of βx, and compared them with the static reconstruction which is a function of βx. It is 

interesting to see that the best performance of indirect2 and direct reconstruction are 

comparable. This indicates that the regularization on the parametric images is important to 

improve lesion detection for Patlak parametric reconstruction. Both the indirect2 and direct 

reconstruction, with their own optimal regularization parameters, can greatly improve the 

SNR compared to the static and indirect1 methods. Note that the indirect2 method has three 

regularization parameters to adjust, while the direct method has two regularization 

parameters.

C. Theoretical analysis under different tumor contrasts

To investigate how the performance changes with the tumor-to-background contrast ratio, we 

scaled the tumor TAC by a factor of 0.2, 0.3, and 0.4 as shown in Fig. 4(a). These modified 

TACs correspond to tumors with a lower FDG transport rate from blood into tumor cells. 

The scaling of the tumor TAC is similar to the inverse scaling of the background TAC used 

by others [28]. We plotted the theoretical SNRs of static, indirect1, indirect2 and direct 

methods under different tumor-to-background contrast in Fig. 4(b, c, d). The results show 

that the performance of all reconstructions drops as the tumor-to-background contrast 

decreases. The rankings among the static, indirect2 and direct reconstructions remain 

unchanged across different tumor contrast. However, the relative performance of the 

indirect1 method improves with reduced tumor contrast. When the tumor contrast is low and 

βx > 0.1, the optimal βκ and βb values in indirect2 method are very small. In this case the 

performance of indirect1 method approaches that of the indirect2 method, because the 

indirect1 method is simply a special case of the indirect2 method with βκ = βb = 0. The 

results show that the optimal regularization parameters in each reconstruction method 

change for different tumor contrast ratios. The optimal regularization parameters also 

depend on the tumor location and background activity. One solution is to use the theoretical 

expressions to design a shift variant penalty function similar to what we did for static PET 

[11]. The design of the optimal shift variant penalty function for indirect and direct 

reconstruction is beyond the scope of this paper.

D. Validation by Monte Carlo simulation

To verify the theoretical predictions, we reconstructed 200 noisy datasets using the direct 

method and indirect method with different regularization parameters. The MAP-EM 

algorithm [29] was used for frame-by-frame reconstructions. A linear least squares 

estimation was used to generate Patlak parametric images for the indirect1 method. For the 

indirect2 method, we used an optimization transfer algorithm [30] to find the solution of 

(14). A nested MAP-EM [31] algorithm was used for the direct reconstruction. Three 

hundred iterations were used for the MAP-EM algorithm, and 200 iterations with 20 inner-

iterations were used for the nested MAP-EM algorithm to ensure all algorithms reached 
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effective convergence. Note that the specific reconstruction algorithms used for different 

methods are not critical, as long as they are iterated to convergence, because all the objective 

functions are concave and do not have local optima. All images were reconstructed using a 

256×256 image array with 2×2 mm2 pixels starting from a uniform initial image with 

intensity equal to 1. We computed the mean and covariance of the channel outputs from 200 

pair reconstructed images (i.e., 200 images under H0 and 200 images under H1) for different 

methods, and then calculated the Monte Carlo SNR using equation (22). Figure 5 show the 

resultant Monte Carlo SNR with standard deviation estimated using a bootstrap method. In 

general, the Monte Carlo results match the theoretical predictions very well. Figure. 6 shows 

a set of sample images reconstructed by different methods using weak, moderate, and strong 

regularization (corresponding to the three Monte Carlo SNR values for each method, as 

shown in Fig. 5). Clearly both the indirect2 reconstruction (Fig. 6(c)) and direct 

reconstruction (Fig. 6(d)) using the optimal set of regularization parameters (middle column) 

achieve the highest SNR for lesion detection. We note that a large βb in the indirect2 and 

direct methods can cause some bias in the reconstructed Patlak slope image, especially for 

the background breast and lung regions. However, such bias does not have a negative impact 

on the detection performance. In this example, the lesion detectability is actually improved 

because of the reduction in background noise. The streaky artifacts appeared in the 

reconstructions under strong regularization is due to the count-dependent resolution 

properties of PML reconstruction. A spatially-variant, anisotropic penalty can be designed to 

ensure uniform resolution as in [32] or to further improve detection performance as in [11].

In addition, we applied the theoretical analysis to dual time-point data [33]–[35]. We select 

two frames (25–30 min and 55–60 min) to perform the indirect and direct reconstruction, 

and compare the results with those using seven frames (25–60 min) and static reconstruction 

(the last frame). The theoretical predictions (dashed lines) and Monte Carlo results are also 

shown in Fig. 5. We can see that even with 2 frames, both indirect2 and direct reconstruction 

can still improve detection performance by 15% over the conventional static PET 

reconstruction. However, the performance of the dual time-point data are worse than that of 

the full dynamic data. A 22% decrease in the performance was observed for the indirect1 

method, while a 43% decrease was observed for the indirect2 and direct methods.

IV. Discussion

Our results show that the theoretical expressions provide an accurate prediction of the CHO 

SNR under different conditions. On one hand, the theoretical analysis confirmed that the 

direct method can obtain higher lesion detectability than the indirect1 method, which is 

consistent with previous results in the literature [18], [36]. On the other hand, we found that 

the indirect2 and direct methods can achieve comparable performance when using their 

respective optimum regularization parameters. This indicates that for Patlak parametric 

image reconstruction, it is important to regularize the parametric image. However, to achieve 

the best performance, the indirect2 method requires tuning of three regularization parameters 

simultaneously, while the direct reconstruction has only two regularization parameters to 

adjust. We note that the optimum regularization parameters also depend on the scanner 

parameters, patient background and lesion characteristics, such as size and shape. Once the 

information is available, the theoretical formulae allow us to select the patient-specific 
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regularization parameters. While our simulation was performed for a 2D PET scanner 

without modeling random and scatter events, the theoretical analysis method is directly 

applicable to fully 3D PET with a proper system matrix accounting spatially-varying 

sensitivity in 3D PET and a 3D numerical observer model. We do not expect that the 

inclusion of background events would affect the accuracy of the theoretical predication 

because the theoretical expressions depend only on the Fisher information matrix. To 

estimate the Fisher information matrix, we need to know the variance of the prompt data, but 

not a separate estimate of the background events. Because scatters and random events 

increase the number of counts of the prompt data, they can improve the accuracy of the 

variance estimation by the data plug-in method [6]. We have validated the theoretical 

analysis and penalty design in static PML reconstruction method for fully 3D PET using real 

patient data with random and scatter events in [12]. In the future we will extend the 

validation for fully 4D (3D space + 1D time) dynamic PET.

Another factor that affects the optimum regularization parameters are the internal noise 

model used in the numerical observer. Without internal noise, the CHO would prefer over-

smoothed images because the numerical observer can distinguish tiny differences between 

two reconstructed images. This is inconsistent with human performance. The internal noise 

model used in this paper was obtained by fitting the CHO performance to a human observer 

study [11]. However, the theoretical formulae are amendable to other internal noise models 

as well as other linear observer models.

Another limitation of the simulation study is that we did not model the effect of patient 

motion. Motion has become a limiting factor on image quality of modern PET scanners, in 

particularly in lungs and liver where respiratory motion can be substantial. The problem is 

further complicated in dynamic PET image reconstruction because the tracer distribution is 

changing over time. We will address this issue by developing a motion-compensated 

dynamic PET image reconstruction method in the future.

We used the least squares fitting in the indirect methods, because the variances among 

different frames are comparable in Patlak analysis. However, the theoretical derivation can 

be easily extended to indirect methods that use weighted least squares (WLS) estimation. In 

this case, equation (13) becomes

(30)

where W is a weighting matrix which ideally equals to the inverse of the covariance matrix 

of x̂. The indirect1 method in (13) is simply a special case of the WLS method in (30) with 

an identity weighting matrix. Because it is impractical to use the exact inverse of the 

covariance matrix in (30), the weighting matrix is often reduced to a diagonal matrix to 

account for different variances in each voxel across different frames.
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To assess the difference in performance between the WLS estimation in (30) and the LS 

estimation in (13), we computed the image variance for each frame from the 200 Monte 

Carlo datasets under three different βx, and used the reciprocals of the pixel variances as the 

weights in (30) to estimate the Patlak parametric images. Then the CHO SNR was evaluated. 

The results show that even using the estimated image variance as the weights, the WLS 

method only improved the SNR by 2.5% compared to the LS method, and both the indirect2 

and direct method can improve the SNR by 221.3% compared to the WLS method.

Finally, we note that the Patlak model is not accurate for tracers that do not contain an 

irreversible compartment. In this case, a nonlinear compartment model can be used. 

Analysis of nonlinear compartment models in dynamic PET will be included in our future 

work.

V. Conclusion

We have derived simplified theoretical expressions for fast evaluation of lesion detectability 

in the Patlak parametric image reconstruction by both indirect and direct methods. The 

theoretical results can be used to optimize penalty functions in dynamic PET reconstruction 

for lesion detection. Computer simulations show good agreement between the theoretical 

predictions and the Monte Carlo results. The results also demonstrate the benefit of both 

indirect and direct dynamic PET reconstruction for lesion detection when compared with 

static PET reconstruction. In the future we will evaluate the method using real dynamic PET 

data.
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Appendix A. Fast computation of theoretical SNR

Here we derive approximate expressions for fast computation of (26) and (28). Using results 

in [9], (23) and (24) can be computed by:

(31)

(32)

where Q is the two-dimensional (or three-dimensional) Kronecker form of the Fourier 

transform, λn and μ are the Fourier coefficients of the column vectors corresponding to the 

lesion location of Fn and R, respectively, ξn is the Fourier transform of f̄ln. Substituting (31) 

and (32) into (25), the mean and covariance of the dynamic image x̂ can be represented by:

(33)
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(34)

For the indirect reconstruction, we have

(35)

Then the mean of Patlak parametric images can be computed by

(36)

Since

(37)

substituting (33) and (37) into (36), we can get
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(38)

Similarly, the covariance of Patlak parametric images by indirect reconstruction can be 

computed by

(39)

For direct reconstruction, the Fisher information matrix in (27) can be computed by

(40)

To simplify the notation, we define a 2×2 block matrix

(41)
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Then the mean of the Patlak parametric images by direct reconstruction can be computed by

(42)

The covariance of the Patlak parametric images by direct reconstruction can be computed by

(43)

Note that the matrices in (38), (39), (42) and (43) are all 2×2 block matrices with diagonal 

blocks and thus their inverse can be easily computed using following formula:

(44)

where DA, DB, DC, DD are all diagonal matrices.
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Fig. 1. 
(a) Digital phantom (here shows the activity image for the last frame which is from 55 to 60 

minutes post injection); (b) the blood input function; (c) TACs for the breast tissue, lungs 

and tumors; and (d) the fitted Patlak plot.
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Fig. 2. 
Theoretical SNR as a function βκ and βb in (a) the indirect2 reconstruction under βx = 10−0.1 

and (b) direct reconstruction.
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Fig. 3. 
Theoretical SNRs of static (as a function of βx), indirect1 (as a function of βx), indirect2 (as 

a function of βx with the optimal {βκ, βb}) and direct reconstruction (as a function of βκ 
with the optimal βb).

Yang et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(a) Background TAC for the breast tissue and tumor TAC with different scaling factor. (b)–

(d) Theoretical SNRs of static (as a function of βx), indirect1 (as a function of βx), indirect2 

(as a function of βx with the optimal {βκ, βb}) and direct reconstruction (as a function of βκ 
with the optimal βb) for the scaled tumor TAC with a scaling factor of (b) 0.2, (c) 0.3, and 

(d) 0.4, respectively.
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Fig. 5. 
Theoretical (solid and dashed curves) and Monte Carlo (‘□’, ‘○’, ‘◇’, ‘★’, ‘×’, ‘▷’, ‘◁’) 

SNRs of indirect1 (as a function of βx), indirect2 (as a function of βx with the optimal {βκ, 

βb}), direct reconstruction (as a function of βκ with the optimal βb) using 7 frames and 2 

frames, and static reconstruction (as a function of βx). The error bars indicate plus and 

minus one standard deviation estimated by a bootstrap method.

Yang et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Sample reconstruction: static PML reconstructed image of last frame (a), Patlak slope image 

reconstructed by indirect1 method (b), indirect2 method (c), and direct method (d) under 

weak (left), moderate (middle), and strong (right) regularization (corresponding to the three 

Monte Carlo points for each method in Fig. 5).
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TABLE I

Fitted Patlak Parameters for Tacs shown in Fig. 1

Patlak slope κ Patlak intercept b

Breast 0.001 0.3695

Lung 0.0009 0.1965

Tumor 0.0233 0.8008
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