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Abstract

Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. 

The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate 

segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well 

as large variations of shape and appearance of the pelvic organs. Among existing segmentation 

methods, deformable models are the most popular, as shape prior can be easily incorporated to 

regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their 

performance, especially for segmenting organs with large shape variations. In this paper, we 

propose a novel approach to guide deformable models, thus making them robust against arbitrary 

initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement 

from any image voxel to the target organ boundary based on the local patch appearance. This 

regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming 

the initialization problem suffered by the traditional deformable models. To learn a reliable 

displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is 
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proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context 

model is used to iteratively enforce structural information during voxel-wise prediction. Extensive 

experiments on 313 planning CT scans of 313 patients show that our method achieves better 

results than alternative classification or regression based methods, and also several other existing 

methods in CT pelvic organ segmentation.

 I. Introduction

Prostate cancer is a common type of cancer in American men. It is also the second leading 

cause of cancer death, behind only lung cancer, in American men [1]–[3]. External beam 

radiotherapy is one of the most effective treatments for prostate cancer. In the planning 

stage, delineation of organs at risk is a crucial task for radiation oncologists. Radiation fields 

are optimized with the goal of delivering the prescribed dose to the prostate volume, while 

sparing nearby healthy organs, such as bladder, rectum, and femoral heads. Manual 

delineation is normally adopted in most clinical practices, but is a time-consuming and 

labor-intensive process, typically taking 27–33 minutes for an experienced radiation 

oncologist to delineate target (prostate) and four major organs of risk, including bladder, 

rectum and two femoral heads. Moreover, manual delineation often suffers large inter-

operator variability [4], [5]. Accordingly, it is clinically desirable to develop a robust, 

accurate and automatic algorithm for the segmentation of major male pelvic organs from CT 

images.

It is generally difficult to automatically segment male pelvic organs from CT images due to 

three challenges, as illustrated in Fig. 1. 1) Male pelvic organs exhibit low contrast in CT 

images. For example, the organ boundaries are often indistinct, especially when two nearby 

organs touch together. 2) The shapes of bladder and rectum are highly variable. They can 

change significantly across patients due to different amounts of urine in the bladder, and 

bowel gas in the rectum. 3) The rectum appearance is highly variable due to the uncertainty 

of bowel gas and filling.

Many methods have been proposed to address the aforementioned challenges, such as 

deformable models [5]–[11], deformable registration [4], [12] and multi-atlas-based labeling 

[13]. A few methods [8], [12], [13] achieved high segmentation accuracies by exploiting 

patient-specific information from the previous CT scans of the same patient. However, these 

methods cannot be directly applied to segment the planning CT scans due to the 

unavailability of such patient-specific data in the beginning. In addition, most existing works 

[4], [6], [7], [9] segmented only one or two major pelvic organs. It is unclear whether these 

methods can be extended to segment other pelvic organs with good performance. Also, there 

are few works [5], [10] that simultaneously segment three major pelvic organs, including 

prostate, bladder and rectum. Although [10] obtained a good segmentation accuracy on the 

prostate, their performance on the bladder and rectum is still limited mainly because of the 

difficulty in robust model initialization for organs with highly variable shapes. The same 

situation applies to [5]. Since prostate cancer radiotherapy focuses on not only maximizing 

the dose to the prostate, but also minimizing the dose to the nearby healthy organs, it is 

critical to accurately segment the bladder, rectum and femoral heads, in addition to the 
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prostate. Radiation therapy based on inaccurate segmentation of these organs would result in 

severe side effects, such as persistent bleeding from the bladder and rectum [14], [15], and 

femoral head necrosis [16].

To this end, we propose novel regression-based deformable models to segment male pelvic 

organs from CT images. Compared to the conventional deformable models, the contributions 

of our work are three-fold:

• We propose to learn a displacement regressor for guiding deformable 

segmentation. Different from existing deformable models [5], [7], [8], [10], 

which deform each vertex by locally searching the maximum boundary 

response, we use the underlying image patch of each vertex to estimate a 3D 

displacement, pointing to the nearest voxel on the target organ boundary, for 

guiding shape deformation. Compared with local search, the estimated 

displacement provides a non-local external force, thus making our deformable 

models robust to initialization.

• We propose a multi-task random forest, which jointly learns the displacement 

regressor and organ classifier. Compared to random forest regression or 

classification, the proposed multi-task random forest is better in estimating 

displacement fields and organ classification maps.

• We re-discover the auto-context model [17] as a structural refinement method. 

In particular, we use it to iteratively refine the estimated displacement fields by 

injecting the structural prior learned from training images.

The extensive experiments on 313 CT scans of prostate cancer patients demonstrate that our 

method can accurately segment male pelvic organs from planning CT images, and 

outperforms the published state-of-the-art methods, especially for the bladder and rectum, 

whose shapes are highly variable. To the best of our knowledge, this is the most accurate 

automatic method for segmenting male pelvic organs from planning CT images yet reported. 

Also, this is the largest dataset ever used in the literature for evaluating such automatic 

segmentation methods.

The rest of the paper is organized as follows. Section II gives an overview of related 

methods on both CT pelvic organ segmentation and learning-based deformable 

segmentation. Section III presents different components of our method, including multi-task 

random forest, iterative structural refinement and regression-based deformable model. The 

experimental results are provided in Section IV. Finally, Section V presents the conclusion.

 II. Related Works

As mentioned, we propose regression-based deformable models for segmenting male pelvic 

organs in CT images. The following literature review will cover both CT male pelvic organ 

segmentation and learning-based deformable models, respectively.
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 A. CT Male Pelvic Organ Segmentation

The segmentation of male pelvic organs from CT images has been investigated for a long 

time. Most of existing methods can be categorized into two groups, i.e., planning CT 

segmentation and treatment CT segmentation.

 1) Planning CT Segmentation—Costa et al. [7] proposed a coupled deformable 

model for jointly segmenting the prostate and bladder by considering the non-overlapping 

constraint. Chen et al. [9] incorporated anatomical constraints from pelvic bones to segment 

the prostate and rectum. Lu et al. [10] combined a learning-based boundary detector with the 

Jensen-Shannon divergence for deformable segmentation of the prostate, bladder and 

rectum. Lay et al. [5] proposed to integrate local and global image context for fast 

segmentation of five pelvic organs from CT images.

However, due to the aforementioned challenges, the performance of most existing works is 

limited. In addition, many works [6], [7], [9] were specially designed for segmenting one or 

two pelvic organs. It is difficult to extend these methods for segmenting other pelvic organs. 

To avoid handcrafting methods, recent works [5], [10] showed the potential of machine 

learning techniques to address this segmentation problem. While these methods showed 

some effectiveness in segmenting organs with small shape and appearance variations, such 

as the prostate, their performances are still limited for organs with highly variable shapes, 

such as the bladder and rectum, because of the difficulty in initialization of deformable 

model.

 2) Treatment CT Segmentation—Different from planning CT segmentation, the 

treatment CT segmentation can exploit the previous CT scans of the same patient to improve 

segmentation performance. Foskey et al. [4] segmented the prostate by deformable 

registration of the segmented planning CT scan of the same patient onto the treatment 

image. Feng et al. [8] adopted a deformable model, which leverages both population and 

patient-specific statistics for segmenting the prostate. Gao et al. [18] proposed to 

incrementally learn landmark detectors from patient-specific CT scans for rapid prostate 

localization.

Although these methods obtained promising results on treatment CTs, they often require 

contours on one or more previous CT scans of the same patient to learn patient-specific 

appearance/shape models. This requirement renders them inapplicable to segmenting pelvic 

organs in the planning CTs, where no such patient-specific data are available in the 

beginning.

 B. Learning-based Deformable Models

Deformable models are popular methods for medical image segmentation. In this paper, we 

focus on 3D parametric deformable models represented by triangle meshes. In the 

conventional deformable models, each vertex of a shape model deforms locally along the 

inward and outward normal directions to a position with the maximal boundary response. 

Instead of using intensity or gradient profiles to characterize boundaries [19], many 

researches [5], [10], [20] have shown that learning a classifier to distinguish boundary voxels 
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from non-boundary voxels is more effective, especially for organs with indistinct 

boundaries. However, since each vertex still deforms locally, deformable models are 

sensitive to initialization, no matter whether intensity profiles or classifiers are used for 

boundary detection. Actually, the performance of deformable models is highly dependent on 

whether good initializations can be obtained. Accordingly, many researches have been 

conducted to address the initialization problem. Roughly, they can be categorized into two 

types, i.e., landmark-based initialization and box-based initialization, as briefly described 

below.

 1) Landmark-based Initialization—Zhang et al. [21] adopted a boosting framework 

for landmark detection. The detected landmarks are used in the sparse shape composition to 

infer a rough shape for deformable model initialization. Gao et al. [22] proposed a two-layer 

regression forest to enforce spatial consistency between detected landmarks, which are then 

used for fast prostate initialization.

Despite the effectiveness, landmark-based initialization is often applicable only to organs 

with small shape variations, such as the bones and prostate. For organs with large shape 

variations and irregular shapes, such as the bladder and rectum, it is often difficult to define 

landmarks consistently across subjects, thus making landmark-based initialization less 

effective.

 2) Box-based Initialization—There are two typical methods for box-based 

initialization. Criminisi et al. [23] proposed to use regression forest for detecting axis-

aligned bounding boxes of organs in CT images. The detected bounding box can be used to 

initialize the position and scale of deformable model. Zheng et al. [24] proposed “marginal 

space learning” for detecting oriented bounding boxes of organs, which provides not only 

position and scale, but also orientation of the target organ.

Compared with landmark-based initialization, box-based initialization is more universal for 

deformable model initialization, as it is easy to define the 3D bounding box of an organ and 

does not suffer from the consistency issue like landmark-based initialization does. However, 

for organs with irregular shapes, such as tubular shapes of the rectum, a bounding box may 

be too rough to be considered as a good initialization. Moreover, as validated in IV-F, we 

found that bounding box detection does not work well for the bladder, whose shape is highly 

variable across subjects.

To summarize, the performance of most deformable models heavily depends on 

initialization. While many learning-based methods have been proposed to address this issue, 

so far it is still a challenging problem to robustly initialize deformable models, especially for 

organs with highly variable and irregular shapes. Therefore, we think that the problem will 

not be essentially solved by merely improving initialization. To resolve this problem, it is 

necessary to change the local deformation mechanism of deformable models.
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 III. Method

 A. Overview

As shown in Fig. 2, our method consists of two major steps, i.e., 1) displacement field 

estimation and 2) regression-based hierarchical deformation. The following sections are 

organized as follows: Section III-B describes displacement field estimation by a multi-task 

random forest, which learns the displacement regressor jointly with the organ classifier. 

Section III-C describes how structural priors can be injected into voxel-wise prediction by 

the auto-context model. Finally, Section III-D presents the regression-based hierarchical 

deformation for segmentation.

 B. Multi-task Random Forest

Conventional random forest [25] focuses only on one task, such as regression or 

classification. Recent researches on multi-task learning [26] suggest that learning related 

tasks in parallel using a shared representation could improve the generalization of learned 

model. Moreover, what is learned for each task can help other tasks to be learned better. 

Inspired by this idea, we propose a multi-task random forest for predicting the 3D 

displacement field.

In this paper, we consider two tasks, displacement regression and organ classification. The 

inputs of the two tasks are the same, which is a local patch centered at the query voxel. The 

difference between the two tasks is the prediction target. Displacement regression aims to 

predict a 3D displacement pointing from the query voxel to the nearest voxel on the 

boundary of target organ, while organ classification aims to predict the label/likelihood of 

the query voxel belonging to a specific organ (e.g., bladder). An illustration is given in Fig. 

3. It is not difficult to see that these two tasks are highly related, since displacement field and 

classification map are just two representations of organ boundary.

To adapt random forest for multi-task learning, we modify the objective function of random 

forest as follows:

(1)

where f and t are the feature and threshold of one node to be optimized, respectively. wi is 

the weight for each task. Gi is the gain of each task by using { f, t} to split training data 

arriving at this node into left and right children nodes. Since we consider only two tasks, i.e., 

displacement regression and organ classification, the objective function can be further 

specialized as follows:
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(2)

where υ, e and N are the average variance over displacement vector, the entropy of class 

label and the number of training samples at the current node, respectively. Symbols with 

superscript j ∈ {L, R} indicates the same measurements computed after splitting into left or 

right child node. Gregress is the gain of displacement regression, which is measured by 

variance reduction. Gclass is the gain of organ classification, which is measured by entropy 

reduction. Since the magnitudes of variance and entropy reductions are not of the same 

scale, we normalize both magnitudes by dividing the average variance and entropy at the 

root node (Zυ and Ze), respectively.

With this modification (Eq. 2), random forest is optimized for both displacement regression 

and organ classification, which means that we can use one random forest to jointly predict 

the 3D displacement and the organ likelihood of a query voxel. Compared to separate 

displacement regression and organ classification by conventional random forest, multi-task 

random forest could utilize the commonality between these two tasks, thus often leading to 

better performance. Experimental results (Section IV-D) also show that displacement 

regression and organ classification are mutually beneficial if jointly learned in the multi-task 

random forest.

 Features—The input of the multi-task random forest is a local patch centered at the 

query voxel. The output is the 3D displacement from the query voxel to the nearest voxel on 

the boundary of target organ, and the likelihood of the query voxel belonging to the target 

organ. Since CT images are very noisy, it is unwise to directly use local intensity patch as 

features. A common practice is to extract several low-level appearance features from the 

local patch and use them as input to random forest. Among various features, we choose 

Haar-like features because they are robust to noises and can be efficiently computed using 

the integral image [27]. In this paper, we consider two types of Haar-like features: 1) one-

block Haar-like features compute the average intensity at one location within the local patch; 

2) two-block Haar-like features compute the average intensity difference between two 

locations within the local patch. Their mathematical definitions can be formulated as 

follows:

(3)

where Ix denotes a local patch centered at voxel x, f (Ix|c1, s1, c2, s2) denotes one Haar-like 

feature with parameters {c1, s1, c2, s2}, where c1 ∈ ℝ3 and s1 are the center and size of the 

positive block, respectively, and c2 ∈ ℝ3 and s2 are the center and size of the negative block, 
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respectively. λ ∈ {0, 1} is a switch between two types of Haar-like features. When λ = 0, Eq. 

3 becomes one-block Haar-like features. When λ = 1, Eq. 3 becomes two-block Haar-like 

features. Fig. 4 below gives the graphical illustration of Haar-like features used in this paper.

In the training stage, we train each binary tree of random forest independently. For each tree, 

a bunch of Haar-like features is generated by uniformly and randomly sampling parameters 

of Haar-like features, i.e., {c1, s1, c2, s2}, under the constraint that positive and negative 

blocks should stay inside the local patch. These random Haar-like features are used as 

feature representation for each training sample/voxel. As random forest has built-in feature 

selection mechanism, it will select the optimal feature set, which are useful for both 

displacement regression and organ classification.

 C. Iterative Structural Refinement by the Auto-context Model

Given a new testing image, multi-task random forest can be used to voxel-wisely estimate 

the 3D displacement field and organ classification/likelihood map. However, since both 

displacement and organ likelihood of each voxel are predicted independently from those of 

nearby voxels, the estimated displacement field and organ likelihood map are often noisy, as 

shown in the first row of Fig. 5(a). To overcome this drawback, neighborhood structural 

information needs to be considered during voxel-wise prediction.

 A Revisit of Auto-context—Auto-context [17] is a classification refinement method 

that builds upon the idea of stacking. It uses an iterative procedure to refine likelihood map 

from voxel-wise classification. For simplicity, the following paragraphs explain the auto-

context model in the case of binary classification. Later we will show that it is easy to extend 

it for multi-task random forest.

 Training—The training of auto-context typically takes several iterations, e.g., 2–3 

iterations. A classifier is trained at each iteration. In the first iteration, appearance features 

(e.g., Haar-like features) are extracted from CT image and used together with the ground-

truth label of each training voxel to train the first classifier. Once the first classifier is 

trained, it is applied to each training image to generate a likelihood map. In the second 

iteration, for each training voxel, we extract not only appearance features from CT image, 

but also Haar-like features from the tentatively estimated likelihood map. These features 

from likelihood map are called “context features”, because they capture the context 

information, i.e., neighborhood class information. With the introduction of new features, a 

second classifier is trained. As the second classifier considers not only CT appearance, but 

also neighborhood class information, it often leads to a better likelihood map. Given a 

refined likelihood map by the second classifier, the context features are updated and can be 

used together with the appearance features to train the third classifier. The same procedure is 

repeated until the maximal iteration is reached. Because each iteration involves voxel-wise 

classification of all training images, it takes long time for training. In practice, 2–3 iterations 

are often used.

 Testing—Given a new testing CT image, the learned classifiers are sequentially applied. 

In the first iteration, the first learned classifier is voxel-wisely applied on the testing image to 
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generate a likelihood map by using only appearance features. In the second iteration, the 

second learned classifier is used to predict a new likelihood map by combining appearance 

features from CT image with context features from the likelihood map of the previous 

iteration (Fig. 5). This procedure is repeated until all learned classifiers have been applied. 

The likelihood map output by the last classifier is the output of the auto-context model. Fig. 

6 provides the schematic diagram.

Our study shows that the context features encode neighborhood structural information, 

which can be used to enforce the structural priors learned from training images. To justify 

this statement, we conduct a synthetic experiment for shape refinement. In this experiment, 

given a binary training image, which represents a shape, a sequence of random forest 

classifiers is trained in the same manner of auto-context. Then, we sequentially apply the 

learned classifiers onto a testing image with a different shape. Our assumption is that, if the 

classifiers learn the neighborhood structural information of the training shape, the testing 

shape would gradually evolve to be the training shape under the iterative classification. Fig. 

5(b) gives the results for two cases, where the training shapes are the prostate and the 

bladder, respectively. We can see that the testing shapes refined by the auto-context are 

almost identical to the respective training shapes, which indicates that the structural 

information of training images can be enforced in the testing image by the auto-context 

model.

To extend the auto-context model for multi-task random forest, we extract context features 

(i.e., Haar-like features) not only from likelihood map, but also from 3D displacement field, 

as illustrated in Fig. 5(a). Since context features capture the structural prior of training 

images, by extracting them from both likelihood map and displacement field, we can enforce 

the structural prior on both prediction maps during voxel-wise estimation. As shown in the 

bottom row of Fig. 5 (a), the likelihood map and displacement field are significantly 

improved by the auto-context model.

 D. Regression-based Hierarchical Deformation

Given a 3D displacement field estimated by multi-task random forest with auto-context, we 

can use it to guide a deformable model for organ segmentation. In this paper, we propose a 

hierarchical deformation strategy. To start segmentation, the mean shape model, calculated 

as the average of all training shapes, is first initialized on the center of a testing image (Fig. 

2). During deformable segmentation, initially the shape model is only allowed to translate 

under the guidance from estimated displacement field. Once it is well positioned, we start to 

estimate its orientation by allowing it to rigidly rotate. Afterwards, the deformation is further 

relaxed to the affine transformation for estimating the scaling and shearing parameters of the 

shape model. Finally, the shape model is freely deformed under the guidance from the 

displacement field. Alg. 1 below provides the details of our regression-based hierarchical 

deformation strategy. It should be noted that the jointly estimated likelihood map is not used 

in the segmentation stage. In this paper, the organ classification task is used only to help the 

task of displacement regression.

Compared to conventional deformable models, the proposed regression-based deformable 

models have several advantages:
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• Non-local deformation: Different from conventional deformable models, 

deformation is no longer local in the regression-based deformable models. The 

non-local deformation eliminates the need to specify the search range, which is 

often required in the conventional deformable models [28]. On the other hand, 

shape models, which are even initialized far away from the target organ, can 

still be rapidly deformed to the correct position, under the guidance from the 

estimated displacement field.

• Robust to initialization: An immediate benefit of nonlocal deformation is the 

robustness of regression-based deformable models to arbitrary initializations. 

In our case, it is sufficient to initialize the mean shape model on the image 

center, which is almost impossible for conventional deformable models to 

work in most applications.

• Adaptive deformation parameters: The deformation direction and step size 

of each vertex is adaptively determined at each iteration for optimally driving 

the shape model onto the target organ. This is different from conventional 

deformable models, which use a fixed deformation direction (e.g., normal 

direction) and step size. The adaptive deformation parameters make 

deformable models fast to converge and also less likely to fall into local 

minima.

In summary, regression-based deformable models provide non-local deformations, which 

make them insensitive to initializations. Besides, many important designs, such as search 

range, deformation direction, and step size, are either eliminated or automatically 

determined for each vertex according to the learned displacement regressor. Therefore, 

regression-based deformable models have much fewer parameters to tune than the 

conventional deformable models.

 E. Multi-resolution Segmentation

To improve the efficiency and robustness of our method, the segmentation is conducted in 

multi-resolution. In total four resolutions are used.

 Training—In the two coarsest resolutions, one multi-task random forest is trained jointly 

for all five organs. Specifically, the target displacement to predict is a concatenation of 3D 

displacements to all five pelvic organs. The entropy in Eq. 2 is measured over a multi-class 

distribution, where each class is a pelvic organ. Joint estimation of all displacement fields is 

beneficial to consider the spatial relationship between neighboring organs. In the two finest 

resolutions, one multi-task random forest is trained separately for each organ. Compared to 

the common random forest in the coarsest resolutions, learning an individual random forest 

captures specific appearance characteristics of each organ, which is more effective for detail 

boundary refinement of the shape model.

 Testing—The testing image is first down-sampled to the coarsest resolution (voxel size 8 

× 8 ×8 mm3), where rough segmentations of the five organs can be rapidly obtained by our 

method. These segmentations serve as good initializations for the next finer resolution. The 
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segmentation is then sequentially performed across different resolutions, until it reaches the 

finest resolution (voxel size 1 × 1 ×1 mm3), where the final segmentation is achieved.

Algorithm 1

Regression-based Hierarchical Deformation

Data: I - testing CT scan,  - learned multi-task random
  forest, and init - initialized shape model

Result:  - the final segmentation

Notation: World2Voxel(I, p) outputs voxel coordinate
of vertex p on image I, (I, x) returns the 3D
displacement of voxel x on the image I, and Θ (K)
denotes valid transform matrix set under transform type

K

Subroutine Deform(I, , , K)

for Iteration ← 1 to MaxIteration do

deform = 

foreach vertex p ∈ deform do

x = World2Voxel(I, p)

p = p + (I, x)

end

if K ∈ {Translation, Rigid, Affine} then

Estimate transform matrix T ∈ ℝ4×4:
  argminT‖T ( ) − deform‖2, s.t., T ∈ Θ (K)

 = T ( )

else

 = SmoothSurface( deform)

 = RemeshSurface( )

end

end

return 

Algorithm HierarchicalDeform (I, , init)

 =Deform(I, , init, “Translation”)

 =Deform(I, , ,  “Rigid”)

 =Deform(I, , ,  “Affine”)

 =Deform(I, , ,  “FreeForm”)

return 

The benefits of the multi-resolution strategy are straightforward. Instead of computing the 

displacement field for the whole image in the fine resolution, now only a sub-region of the 

displacement field around the initialization (given by the previous coarser resolution) has to 

be computed, thus significantly improving the efficiency. Apart from the efficiency, the 
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robustness of our method also benefits from the joint estimation of displacement fields of 

different organs, since the spatial relationship between organs is implicitly considered.

 IV. Experimental Results

The experimental section is organized as follows: Section IV-A describes experimental data. 

Section IV-B defines the quantitative measurements used in the experiments. Section IV-C 

provides the parameter setting, sensitivity analysis of several key parameters, and 

computational time of our method. Section IV-D evaluates multi-task random forest and 

compares it with the conventional random forest. Section IV-E evaluates the iterative 

structural refinement. Section IV-F compares our method with the conventional deformable 

models. Section IV-G compares our method with our previous published methods and other 

existing methods for CT pelvic organ segmentation.

 A. Data Description

Our experimental data consists of 313 CT scans from 313 prostate cancer patients, where 35 

of 313 CT scans are contrast enhanced. These scans were collected from the North Carolina 

Cancer Hospital. Five pelvic organs, including the prostate, bladder, rectum and two femoral 

heads, are manually contoured by two experienced radiation oncologists, whose 

interpretations were averaged as the consensus. These contours serve as the ground truth in 

our experiments.

The image size of a CT scan is 512 × 512 × (61 ~ 508). The in-plane resolution ranges from 

0.938 mm to 1.365 mm, and the inter-slice thickness ranges from 1 mm to 3 mm.

The experimental dataset is challenging because CT scans are of large diversity. For 

example, 1) CT scans were acquired with different fields of view, which causes substantial 

variation of volume dimensions and organ positions. 2) Contrast agents may be injected 

before image acquisition, which causes a bright area for the bladder in CT scans. 3) Fiducial 

markers or the catheter may be implanted into patients, thus changing the texture of major 

pelvic organs. These data diversities, in addition to the aforementioned anatomical variations 

of pelvic organs, further complicates the problem of CT male pelvic organ segmentation.

 B. Evaluation

In the following experiments, two-fold cross validation is used to evaluate our method and 

compare it with other methods. Dice similarity coefficient (DSC) is used as a main 

quantitative measurement for assessing the automatic segmentation accuracy. Besides, we 

also use several other measurements, such as symmetric average surface distance (ASD), 

sensitivity (SEN) and positive predictive value (PPV), to compare our method with other 

existing methods. Their definitions are listed below from Eq. 4 to Eq. 6:

(4)
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(5)

(6)

where Volgt and Volauto are the voxel sets of manually labeled and automatically segmented 

organs, respectively, d(a, b) is the Euclidean distance between voxels a and b measured by 

millimeter.

 C. Parameter Setting & Computational Time

 Random Forest Parameters—The tree number is 10 (Note, since we randomly draw 

samples from each image to train each of 10 trees, there is potentially overlap between the 

training samples of those 10 different trees). The maximum tree depth is 100. The numbers 

of random features and candidate thresholds in each node as set in the training stage are 

1000 and 100, respectively. The minimum number of training samples in each leaf node is 8. 

In our application, we observed that trees typically stop at the depth of 50. We have 

evaluated these random forest parameters in many applications [29]–[32]. We found that 

generally the performance increases with the increase of tree number, tree depth and number 

of random features. The performance is not sensitive to the number of thresholds and the 

minimum number of training samples in each leaf node. However, the increase of tree 

number, tree depth and number of random features could significantly increase the training 

time. As a compromise, we used the above parameter setting.

 Multi-resolution Parameters—The multi-resolution parameters are quite standard. 

The number of resolutions is 4. The spacings of four resolutions are 1 mm, 2 mm, 4 mm and 

8 mm, respectively.

 Other Parameters—Two iterations are used in the iterative structural refinement. 

Section IV-E evaluates the segmentation accuracy w.r.t. the iteration number. We found that 

two iterations are often sufficient for convergence. Block sizes s1 and s2 in Eq. 3 are 

randomly picked from the set {3, 5} to slightly improve the robustness of Haar-like features 

to CT noises. The maximum number of deformation iterations is 20, and the weight w 
between organ classification and displacement regression in Eq. 2 is 0.5.

Fig. 8 (a) gives the sensitivity analysis of the weight w in Eq. 2. We can see that the 

segmentation accuracy doesn’t vary much between w = 0.25 and w = 0.75. However, when 

w = 1, the performance drops notably because the multi-task random forest degrades to 

conventional regression forest. In this figure, we didn’t plot the performance when w = 0 

because pure organ classification doesn’t produce displacement fields for regression-based 

deformable models. In addition, Fig. 8 (b) gives the sensitivity analysis of the number of 
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deformation iterations. We can see that the performance converges after 20 iterations. So we 

choose the maximum number of deformation iterations to be 20.

 Runtime—It takes about 1.8 mins for our method to segment five pelvic organs, on a 

laptop with an Intel i7-4710HQ CPU and 16 GB memory. The training time of our method is 

about 3–4 hours for each tree, with 1884000 training samples extracted from 157 training 

images (i.e., 12000 training samples per training image).

 D. Multi-task Random Forest versus Conventional Random Forest

There are two alternative ways to generate displacement fields other than using multi-task 

random forest. One way is to adopt conventional regression forest. The other way is to use 

classification forest to predict the classification map, which can be used to generate the 

displacement field by distance transform. In this subsection, we compare multi-task random 

forest with both methods in displacement field estimation. For fair comparison, the same 

types of features, parameter setting and the auto-context model are used in regression forest, 

classification forest and multi-task random forest.

 Regression Forest—Fig. 7 shows a qualitative comparison between displacement 

fields estimated by regression forest and multi-task random forest. We can see that 

regression forest may generate displacement fields with missing parts of organ boundaries, 

due to mis-predictions in a small region. With such displacement fields, the deformable 

model will be mislead, hence resulting in poor segmentation results. In contrast, with the 

help of organ classification, multi-task random forest generates more accurate displacement 

fields. As shown in Fig. 7, the problem of missing boundaries is well addressed by multi-

task random forest.

Table. I presents a quantitative comparison between regression random forest and multi-task 

random forest for guiding deformable segmentation. The p values show that multi-task 

random forest obtains significantly better results than regression forest on segmenting the 

prostate, bladder and rectum. For left and right femoral heads, which have high contrast in 

CT images, both methods perform equally well. Their slight difference is caused by one 

failure case of regression forest.

 Classification Forest—Fig. 9 shows qualitative comparisons of classification map and 

displacement field between the conventional classification forest and multi-task random 

forest. Compared to using classification forest to generate the displacement map, it has 

several advantages to use multi-task random forest.

• In the multi-task random forest, organ classification and displacement 

regression are mutually beneficial. As we can see from both Fig. 9 (a) and (b), 

multi-task random forest produces better organ classification maps than 

conventional classification forest.

• The classification errors can be easily propagated if the displacement field is 

derived from classification map, especially when there are multiple positive 

responses in the classification map. Fig. 9 (a) provides a typical example, 

where mis-classifications in a small region ruin half of the displacement field. 
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In contrast, if the displacement field is voxel-wisely predicted by multi-task 

random forest, the mis-predictions are restricted only in local regions and will 

not be propagated.

• As illustrated in Fig. 10, near the organ boundary, the displacement field 

predicted by multi-task random forest is often smoother than the one generated 

from classification map, because binarization of classification map by simple 

thresholding often produces zigzag organ boundaries.

Table II presents a quantitative comparison between classification forest and multi-task 

random forest for displacement field prediction. The p values show that multi-task random 

forest is better than classification forest for displacement field estimation and guiding 

regression-based deformable segmentation.

 E. Iterative Structural Refinement

Now we evaluate the contribution of the auto-context model for refining the displacement 

fields. Table III shows the segmentation accuracies obtained without the auto-context model, 

with 1 iteration and 2 iterations of the auto-context model, respectively. We can see that the 

use of auto-context model significantly boosts segmentation accuracies, especially in the 

first iteration. With an additional iteration, segmentation accuracies further improve. 

However, the improvement is not as significant as the first one. Considering computational 

efficiency, we use 2 iterations for structural refinement in this study.

 F. Comparison with Conventional Deformable Model

To show the effectiveness of regression-based deformable model, we compare it with 

conventional classification-based deformable model. Unlike our method, classification-based 

deformable models require a good initialization to work well. Once the shape model (3D 

mesh) is well initialized, every vertex on the shape model independently deforms along its 

inward and outward normal directions to a position with the maximal boundary response. 

After one-step deformation of all vertices, the entire shape model is often smoothed or 

regularized by a shape space (e.g., through PCA) before the next round of deformation. 

These two steps alternate until convergence or reaching the maximum number of iterations.

In this experiment, we use random forest classifier with the same type of Haar-like features 

and the auto-context model to classify every voxel in a testing image into either “organ” or 

“background”. The gradient on the obtained organ likelihood map is used as boundary 

response to guide conventional deformable segmentation. After one-step deformation, we 

use mesh smoothing and remeshing to regularize the shape model, which is the same as our 

regression-based deformable model.

We tried two initialization methods for classification-based methods:

• Box-based initialization: The regression-based anatomy detection method [23] 

is utilized to automatically detect the bounding box of the target organ. Based 

on the detected box, the mean shape is initialized on the box center and further 

scaled to fit the box size. After initialization, the shape model deforms as the 

conventional model.
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• Multi-resolution strategy: The mean shape model is initialized to the 

classification mass center in the coarsest resolution. Once initialized, the shape 

model deforms on the organ likelihood map until convergence. After that, the 

deformed shape model in the coarse resolution is used as an initialization to the 

next finer resolution. The deformation is hierarchically performed until it 

meets the finest resolution. We use the same multi-resolution parameters as 

described in Section IV-C.

Table IV shows the segmentation accuracies obtained by classification-based deformable 

models with two initialization strategies, and our regression-based deformable model, 

respectively. Because the conventional deformable models rely on local search to deform, 

the parameter of search range is critical to segmentation. Therefore, we manually picked the 

best search range of each organ for classification-based methods, from 10 to 35 mm with a 

step size of 5 mm. From the results listed in Table IV, we can see that, for the organs with 

more rigid shapes and positions, such as the prostate and femoral heads, the conventional 

classification-based deformable models perform reasonably well, although their 

performance is still inferior to ours. However, they fail notably when segmenting organs 

with highly variable shapes, such as the bladder and rectum.

The main reason for those failures is that initialization is demanded by conventional 

deformable models. However, a good initialization is often difficult to obtain for flexible 

organs such as the bladder and rectum. Fig. 11 presents several typical bounding-box-based 

initializations for illustration. We can see that it is challenging to accurately detect the 

bounding box of the bladder, due to dramatic changes of bladder size and position across 

subjects. For the rectum initialization, it is even more challenging. As shown in the right 

panel of Fig. 11, although the detected bounding boxes (green) are reasonably good, the 

initialized shapes (green) are still far from the true organ boundaries (red), because of the 

dissimilarity between the mean rectum shape and individual rectum shapes. The highly 

variable shapes make bounding-box based initialization less effective in initializing the 

rectum, compared to other organs, such as the prostate and femoral heads, which have 

relatively stable shapes. The same challenges also apply to the multi-resolution initialization 

strategy.

Besides initialization, conventional deformable models still face another challenge when 

segmenting the rectum. That is the difficulty in determining the search range. Due to tubular 

structure of the rectum, large search ranges would easily cause mesh folding as vertices of 

left rectum wall may find high boundary responses from the right rectum wall and vice 

versa. On the other hand, small search ranges are insufficient to drive the deformable model 

onto organ boundaries if the shape model is not well initialized. These two contradictory 

factors make it unfeasible to find a compromised search range. This also explains why the 

segmentation accuracy of the rectum by the classification-based deformable models is much 

lower, compared to that of other organs.

In contrast to conventional deformable models, our regression-based deformable model is 

guided by displacement field, which provides non-local external forces to overcome the 

sensitivity of deformable models to initialization. Because of this, our method does not 

Gao et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



require a model initialization step, which is often critical in most deformable segmentation 

methods. This characteristic renders our method suitable for segmenting organs, such as the 

bladder and rectum, which are difficult to initialize. Additionally, the deformation direction 

and step size of each vertex are optimally predicted during the deformation, according to the 

underlying image appearance. This feature makes our deformable model appealing to 

segment organs with complex shapes, such as the rectum, where the conventional 

deformation strategies (e.g., normal deformation direction and fixed step size) do not work. 

All these factors contribute to the success of our regression-based deformable models in CT 

pelvic organ segmentation.

 G. Comparison with Other Segmentation Methods

Finally, we compare our method with existing methods for CT pelvic organ segmentation. 

The comparisons are separated into two parts. In the first part, we compare our current 

method with our previous methods [33], [34] on the same dataset. In the second part, we 

compare our method with works from other groups based on reported performance.

 Comparison on the same dataset—Table V and VI quantitatively compares our 

method with two of our previous methods on the same dataset. Compared to Shao [33], our 

method achieves a comparable segmentation accuracy of the prostate, i.e., with slightly 

worse DSC but better ASD. However, in terms of bladder and rectum, the segmentation 

accuracy is improved a lot, i.e., with mean DSC improved by 6% for the bladder, and 4% for 

the rectum. The improvement is mainly contributed to the use of regression-based 

deformable model, which not only solves the problem of initialization, and also increases the 

flexibility of deformable models in segmenting organs with complex shape.

Compared to Gao [34], the major improvement is on the rectum segmentation. In Gao [34], 

the estimated displacement field is used only for initialization. The final segmentation is still 

obtained by conventional classification-based deformable model. This strategy works 

reasonably well for the prostate and bladder, whose shapes are elliptic-like. However, it 

doesn’t work well for the rectum, whose shape is tubular and curvy. By using the estimated 

displacement field to fully drive deformable model from coarse-level initialization to fine-

level segmentation, we obtain a big improvement on the rectum segmentation, i.e., 9% mean 

DSC increase.

 Comparison with other works—Because different methods segment different subsets 

of the five pelvic organs, and use different metrics to measure their performance, we 

separate the comparisons with other works into multiple tables (Tables VII – X). The results 

show that our method is evaluated on the largest CT dataset, and also achieves the best 

segmentation accuracy, except that the positive predictive value (PPV) of our method in 

prostate segmentation is slightly lower than Chen [9]. However, the sensitivity (SEN) of our 

method is much higher than theirs. Besides, a careful scrutiny on these tables reveals that the 

improvement of our method over other existing methods is larger on the bladder and rectum 

than other organs. We think this is mainly because it is difficult for conventional deformable 

models to segment organs that are difficult to initialize and with highly variable shapes. 

However, with the introduction of non-local deformation, adaptive deformation direction and 
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step size, these limitations can be effectively addressed by regression-based deformable 

models.

It is worth noting that most existing works use either sophisticated methods for model 

initialization [5], [10], [35], or rely on shape priors [5], [6], [7], [9], [10], [35], [36] to 

regularize the segmentation. In contrast, our method uses a fairly simple initialization 

method (i.e., initialize the mean shape model at image center), and does not rely on shape 

priors (e.g., PCA shape analysis, or sparse shape composition [37]). It is interesting to 

observe that, even with this setup, our method still results in more accurate outcomes, when 

compared to previous methods. This demonstrates the robustness of our method to 

initialization and the effectiveness of our method in CT pelvic organ segmentation.

 V. Conclusion and Discussion

In this paper, we propose to estimate a displacement field for guiding deformable 

segmentation. The displacement field is estimated by multi-task random forest, which has 

shown better performance than conventional random forest in displacement field estimation. 

To overcome the limitation of independent voxel-wise prediction, we revisit the auto-context 

model and utilize it to iteratively incorporate the structural information learned from training 

images. Extensive experiments on a large CT dataset show that the proposed regression-

based deformable model is robust to initialization, and achieves better segmentation 

accuracies than the conventional classification-based deformable models and several other 

existing segmentation methods for CT pelvic organ segmentation.

 Acknowledgments

This work was supported by NIH grants (EB006733, EB008374, EB009634, CA140413).

References

1. American Cancer Society. Cancer facts & figures 2015. 2015

2. Shen D, Lao Z, Zeng J, Zhang W, Sesterhenn IA, Sun L, Moul JW, Herskovits EH, Fichtinger G, 
Davatzikos C. Optimized prostate biopsy via a statistical atlas of cancer spatial distribution. Medical 
Image Analysis. 2004; 8(2):139–150. [PubMed: 15063863] 

3. Zhan Y, Shen D, Zeng J, Sun L, Fichtinger G, Moul J, Davatzikos C. Targeted prostate biopsy using 
statistical image analysis. Medical Imaging, IEEE Transactions on. 2007; 26(6):779–788.

4. Foskey M, Davis B, Goyal L, Chang S, Chaney E, Strehl N, Tomei S, Rosenman J, Joshi S. Large 
deformation three-dimensional image registration in image-guided radiation therapy. Phys Med 
Biol. 2005; 50(24):5869. [PubMed: 16333161] 

5. Lay, N.; Birkbeck, N.; Zhang, J.; Zhou, S. Rapid multi-organ segmentation using context integration 
and discriminative models. In: Gee, J.; Joshi, S.; Pohl, K.; Wells, W.; Zllei, L., editors. Information 
Processing in Medical Imaging, ser. Lecture Notes in Computer Science. Vol. 7917. Berlin 
Heidelberg: Springer; 2013. p. 450-462.

6. Freedman D, Radke RJ, Tao Z, Yongwon J, Lovelock DM, Chen GTY. Model-based segmentation 
of medical imagery by matching distributions. Medical Imaging, IEEE Transactions on. 2005; 
24(3):281–292.

7. Costa MJ, Delingette H, Novellas S, Ayache N. Automatic segmentation of bladder and prostate 
using coupled 3d deformable models. Med Image Comput Comput Assist Interv. 2007; 10(Pt 1):
252–260. [PubMed: 18051066] 

Gao et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Feng Q, Foskey M, Tang S, Chen W, Shen D. Segmenting ct prostate images using population and 
patient-specific statistics for radiotherapy. 2009:282–285.

9. Chen S, Lovelock DM, Radke RJ. Segmenting the prostate and rectum in ct imagery using 
anatomical constraints. Medical Image Analysis. 2011; 15(1):1–11. [PubMed: 20634121] 

10. Lu, C.; Zheng, Y.; Birkbeck, N.; Zhang, J.; Kohlberger, T.; Tietjen, C.; Boettger, T.; Duncan, J.; 
Zhou, S. Precise segmentation of multiple organs in ct volumes using learning-based approach and 
information theory. In: Ayache, N.; Delingette, H.; Golland, P.; Mori, K., editors. Medical Image 
Computing and Computer-Assisted Intervention MICCAI 2012, ser. Lecture Notes in Computer 
Science. Vol. 7511. Berlin Heidelberg: Springer; 2012. p. 462-469.

11. Li W, Liao S, Feng Q, Chen W, Shen D. Learning image context for segmentation of the prostate in 
ct-guided radiotherapy. Physics in Medicine and Biology. 2012; 57(5):1283–1308. 3. [PubMed: 
22343071] 

12. Lu, C.; Chelikani, S.; Papademetris, X.; Knisely, JP.; Milosevic, MF.; Chen, Z.; Jaffray, DA.; Staib, 
LH.; Duncan, JS. An integrated approach to segmentation and nonrigid registration for application 
in image-guided pelvic radiotherapy. Medical Image Analysis; special Issue on the 2010 
Conference on Medical Image Computing and Computer-Assisted Intervention; 2011. p. 772-785.

13. Liao S, Gao Y, Lian J, Shen D. Sparse patch-based label propagation for accurate prostate 
localization in ct images. Medical Imaging, IEEE Transactions on. 2013; 32(2):419–434.

14. Moore EM, Magrino TJ, Johnstone PAS. Rectal bleeding after radiation therapy for prostate 
cancer: Endoscopic evaluation. Radiology. 2000; 217(1):215–218. pMID: 11012447. [PubMed: 
11012447] 

15. Hanlon AL, Bruner DW, Peter R, Hanks GE. Quality of life study in prostate cancer patients 
treated with three-dimensional conformal radiation therapy: Comparing late bowel and bladder 
quality of life symptoms to that of the normal population. International Journal of Radiation 
Oncology*Biology*Physics. 2001; 49(1):51–59.

16. Macdonald A, Bissett J. Avascular necrosis of the femoral head in patients with prostate cancer 
treated with cyproterone acetate and radiotherapy. Clinical Oncology. 2001; 13(2):135–137. 
[PubMed: 11373877] 

17. Tu Z, Bai X. Auto-context and its application to high-level vision tasks and 3d brain image 
segmentation. IEEE Trans Pattern Anal Mach Intell. 2010; 32(10):1744–1757. [PubMed: 
20724753] 

18. Gao Y, Zhan Y, Shen D. Incremental learning with selective memory (ilsm): Towards fast prostate 
localization for image guided radiotherapy. Medical Imaging, IEEE Transactions on. 2014 Feb; 
33(2):518–534.

19. Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models&mdash;their training and 
application. Comput. Vis. Image Underst. 1995 Jan.61(1):38–59.

20. Zhan Y, Shen D. Deformable segmentation of 3-d ultrasound prostate images using statistical 
texture matching method. Medical Imaging, IEEE Transactions on. 2006 Mar; 25(3):256–272.

21. Zhang S, Zhan Y, Metaxas DN. Deformable segmentation via sparse representation and dictionary 
learning. Medical Image Analysis. 2012; 16(7):1385–1396. [PubMed: 22959839] 

22. Gao, Y.; Shen, D. Context-aware anatomical landmark detection: Application to deformable model 
initialization in prostate ct images. In: Wu, G.; Zhang, D.; Zhou, L., editors. Machine Learning in 
Medical Imaging, ser. Lecture Notes in Computer Science. Vol. 8679. Springer International 
Publishing; 2014. p. 165-173.

23. Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K. Regression 
forests for efficient anatomy detection and localization in computed tomography scans. Medical 
Image Analysis (MedIA). 2013

24. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D. Four-chamber heart modeling and 
automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable 
features. Medical Imaging, IEEE Transactions on. 2008 Nov; 27(11):1668–1681.

25. Criminisi A, Shotton J, Konukoglu E. Decision forests: A unified framework for classification, 
regression, density estimation, manifold learning and semi-supervised learning. Foundations and 
Trends in Computer Graphics and Vision. 2012; 7(2–3):81–227.

26. Caruana R. Multitask learning. Machine Learning. 1997; 28(1):41–75.

Gao et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Viola P, Jones M. Robust real-time face detection. International Journal of Computer Vision. 2004; 
57(2):137–154.

28. Liu J, Udupa J. Oriented active shape models. Medical Imaging, IEEE Transactions on. 2009 Apr; 
28(4):571–584.

29. Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, Shen D. Links: Learning-based multi-source 
integration framework for segmentation of infant brain images. NeuroImage. 2015; 108:160–172. 
[PubMed: 25541188] 

30. Gao Y, Shen D. Collaborative regression-based anatomical landmark detection. Physics in 
Medicine and Biology. 2015; 60(24):9377. [PubMed: 26579736] 

31. Zhang J, Gao Y, Wang L, Tang Z, Xia J, Shen D. Automatic craniomaxillofacial landmark 
digitization via segmentation-guided partially-joint regression forest model and multi-scale 
statistical features. Biomedical Engineering, IEEE Transactions on. 2015; PP(99):1–1.

32. Huynh T, Gao Y, Kang J, Wang L, Zhang P, Lian J, Shen D. Estimating ct image from mri data 
using structured random forest and auto-context model. Medical Imaging, IEEE Transactions on. 
2015; PP(99):1–1.

33. Shao Y, Gao Y, Wang Q, Yang X, Shen D. Locally-constrained boundary regression for 
segmentation of prostate and rectum in the planning ct images. Medical Image Analysis. 2015 –. 

34. Gao, Y.; Lian, J.; Shen, D. Joint learning of image regressor and classifier for deformable 
segmentation of ct pelvic organs. In: Navab, N.; Hornegger, J.; Wells, W.; Frangi, A., editors. 
Medical Image Computing and Computer-Assisted Intervention MICCAI 2015, ser. Lecture Notes 
in Computer Science. Vol. 9351. Springer International Publishing; 2015. p. 114-122.

35. Martnez F, Romero E, Dran G, Simon A, Haigron P, de Crevoisier R, Acosta O. Segmentation of 
pelvic structures for planning ct using a geometrical shape model tuned by a multi-scale edge 
detector. Physics in Medicine and Biology. 2014; 59(6):1471. [PubMed: 24594798] 

36. Rousson, M.; Khamene, A.; Diallo, M.; Celi, J.; Sauer, F. Constrained surface evolutions for 
prostate and bladder segmentation in ct images. In: Liu, Y.; Jiang, T.; Zhang, C., editors. Computer 
Vision for Biomedical Image Applications, ser. Lecture Notes in Computer Science. Vol. 3765. 
Berlin Heidelberg: Springer; 2005. p. 251-260.

37. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS. Towards robust and effective shape 
modeling: Sparse shape composition. Medical Image Analysis. 2012; 16(1):265–277. [PubMed: 
21963296] 

Gao et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Typical CT scans and their pelvic organ segmentations. Three columns indicate images from 

three patients. The first, second, and third rows show an original sagittal CT slice, the same 

slice overlaid with segmentations, and a 3D view of segmentations of each patient. Red: 

Prostate; Green: Bladder; Blue: Rectum; Yellow: Left femoral head; Cyan: Right femoral 

head.
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Fig. 2. 
The basic flowchart of regression-based deformable model. Yellow contours in the leftmost 

and rightmost figures indicate the initialized deformable model and the final segmentation, 

respectively. In the middle two figures, color indicates the magnitude of estimated 

displacement. Blue and red indicates small and large magnitudes, respectively. The 

magnitude increases with the following color ordering: blue, cyan, green, yellow and red. 

The colder the color is, the smaller the magnitude is.
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Fig. 3. 
Illustration of displacement regression and organ classification. Red point indicates a query 

voxel, and the red rectangle is a local patch centered at the query voxel. Colors in the 

displacement field indicate displacement magnitudes. The colder the color is, the smaller the 

magnitude is.
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Fig. 4. 
Left: one-block Haar-like feature. Right: two-block Haar-like feature. Red, green and blue 

rectangles denote the local patch, the positive block and the negative block, respectively.
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Fig. 5. 
(a) Flowchart of iterative structural refinement. Red point is a query point. Red rectangle is a 

local patch of the query point in the CT image, where appearance features are extracted. 

Purple rectangles are local patches of the query point in the prediction maps, where context 

features are extracted. (b) Shape refinements by the auto-context model (AC). Upper: 

Prostate. Lower: Bladder.
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Fig. 6. 
Schematic diagram of auto-context with n iterations.
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Fig. 7. 
Qualitative comparison of displacement fields predicted by conventional regression forest 

and multi-task random forest. The first, second and third rows show two typical cases of the 

prostate, bladder and rectum, respectively. Red contours are the ground-truth segmentation, 

manually contoured by radiation oncologists. The segmentation accuracy (DSC) obtained by 

using each predicted displacement field is shown as a white number in the right bottom of 

each color-coded image.
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Fig. 8. 
The sensitivity of segmentation accuracy to the weight w in Eq. 2 (left) and deformation 

iteration (right).
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Fig. 9. 
Qualitative comparisons of displacement fields estimated by conventional classification 

forest and multi-task random forest.
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Fig. 10. 
Left: displacement field derived from classification map. Right: displacement field estimated 

by multi-task random forest.
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Fig. 11. 
Typical cases of bounding-box-based initialization (Left: bladder; Right: rectum). The 

second row shows the initialized shapes according to the detected bounding boxes in the first 

row. Red and green contours indicate the ground-truth and the results obtained by anatomy 

detection, respectively.
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TABLE I

Quantitative comparison of segmentation accuracies (DSC) obtained by regression forest (Regression) and 

multi-task random forest (Multi-task). Bold numbers indicate the better performance.

DSC (%) Regression Multi-task p value

Prostate 84.0 ± 12.6 86.6 ± 4.1 1.7 × 10−4

Bladder 90.6 ± 8.6 92.1 ± 4.7 2.7 × 10−5

Rectum 85.2 ± 6.6 88.4 ± 4.8 1.2 × 10−38

FemurL 96.5 ± 5.6 97.0 ± 1.5 0.13

FemurR 96.5 ± 5.8 97.0 ± 1.5 0.12
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TABLE II

Quantitative comparison of segmentation accuracies (DSC) obtained by classification forest 

(Classification)and multitask random forest (Multi-task). Bold numbers indicate the better performance.

DSC (%) Classification Multi-task p value

Prostate 85.6 ± 4.2 86.6 ± 4.1 5.4 × 10−4

Bladder 90.9 ± 5.2 92.1 ± 4.7 5.2 × 10−12

Rectum 86.5 ± 5.2 88.4 ± 4.8 2.8 × 10−30

FemurL 96.1 ± 1.4 97.0 ± 1.5 6.2 × 10−29

FemurR 96.1 ± 1.4 97.0 ± 1.5 2.5 × 10−30
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TABLE III

Segmentation accuracies (DSC) of five pelvic organs at different auto-context (AC) iterations. Bold numbers 

indicate the best performance.

DSC (%) No AC 1-iteration AC 2-iteration AC

Prostate 82.8 ± 12.9 86.0 ± 4.3 86.6 ± 4.1

Bladder 87.9 ± 14.2 91.8 ± 5.8 92.1 ± 4.7

Rectum 84.4 ± 7.3 87.0 ± 4.8 88.4 ± 4.8

FemurL 89.5 ± 19.5 95.4 ± 1.3 97.0 ± 1.5

FemurR 87.7 ± 24.0 95.4 ± 2.3 97.0 ± 1.5
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TABLE IV

Quantitative comparison (DSC) between classification-based and regression-based deformable models. Bold 

numbers indicate the best performance.

DSC (%)
Classification

Regression
Box Multi-resolution

Prostate 83.7 ± 12.3 83.3 ± 12.0 86.6 ± 4.1

Bladder 73.1 ± 32.4 87.1 ± 20.0 92.1 ± 4.7

Rectum 53.9 ± 26.9 57.3 ± 33.6 88.4 ± 4.8

FemurL 95.6 ± 4.6 95.9 ± 7.8 97.0 ± 1.5

FemurR 95.6 ± 4.1 96.4 ± 5.6 97.0 ± 1.5
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TABLE V

Comparison with our previous works based on Dice Similarity Coefficient (DSC). Bold numbers indicate the 

best performance.

DSC Shao [33] Gao [34] Proposed

Prostate 0.88 ± 0.02 0.86 ± 0.05 0.87 ± 0.04

Bladder 0.86 ± 0.08 0.91 ± 0.10 0.92 ± 0.05

Rectum 0.84 ± 0.05 0.79 ± 0.20 0.88 ± 0.05
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TABLE VI

Comparison with our previous works based on Average Surface Distance (ASD). Bold numbers indicate the 

best performance.

ASD (mm) Shao [33] Gao [34] Proposed

Prostate 1.86 ± 0.21 1.85 ± 0.74 1.77 ± 0.66

Bladder 2.22 ± 1.01 1.71 ± 3.74 1.37 ± 0.82

Rectum 2.21 ± 0.50 2.13 ± 2.97 1.38 ± 0.75
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TABLE VII

Comparison with other existing works based on average surface distance (ASD). Bold numbers indicate the 

best performance.

ASD (mm) Lay [5] Lu [10] Proposed

Testing dataset 45 188 313

Prostate 3.57 ± 2.01 2.37 ± 0.89 1.77 ± 0.66

Bladder 3.08 ± 2.25 2.81 ± 1.86 1.37 ± 0.82

Rectum 3.97 ± 1.43 4.23 ± 1.46 1.38 ± 0.75

FemurL 1.90 ± 1.18 N/A 0.49 ± 0.25

FemurR 1.88 ± 0.78 N/A 0.49 ± 0.22
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TABLE VIII

Comparison with other existing works based on Dice Similarity Coefficient (DSC). Bold numbers indicate the 

best performance.

DSC Martinez [35] Proposed

Testing dataset 86 313

Prostate 0.87 ± 0.07 0.87 ± 0.04

Bladder 0.89 ± 0.08 0.92 ± 0.05

Rectum 0.82 ± 0.06 0.88 ± 0.05

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 40

TABLE IX

Comparison with other existing works based on MEDIAN sensitivity (SEN) and positive predictive value 

(PPV). Bold numbers indicate the best performance.

Median Freedman [6] Chen [9] Proposed

Testing dataset 48 185 313

Prostate
SEN 0.83 0.84 0.90

PPV 0.85 0.87 0.86

Rectum
SEN 0.74 0.71 0.91

PPV 0.85 0.76 0.89
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TABLE X

Comparison with other existing works based on MEAN sensitivity (SEN) and positive predictive value (PPV). 

Bold numbers indicate the best performance.

Mean Rousson [36] Costa [7] Proposed

Testing dataset 16 16 313

Prostate
SEN 0.84 0.81 0.88

PPV 0.79 0.85 0.85

Bladder
SEN N/A 0.75 0.94

PPV N/A 0.80 0.92
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