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Abstract

This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI 

reconstruction through tracking temporal head motion using slice-to-volume registration. The 

slice-level motion is estimated through a filtering approach that allows tracking the head motion 

during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-

sensitized image slices are registered to a base volume sequentially over time in the acquisition 

order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates 

head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices 

based on the computed rotation parameters and the diffusion tensors are directly estimated from 

the corrected data at each voxel using weighted linear least squares. The method was evaluated in 

DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 

neonates and children with different types of motion. Experimental results showed marked 

improvements in DWI reconstruction using the proposed method compared to the state-of-the-art 
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DWI analysis based on volume-to-volume registration. This approach can be readily used to 

retrieve information from motion-corrupted DW imaging data.

Index Terms

Diffusion-weighted MRI; motion tracking; motion-robust MRI; outlier-robust kalman filter; slice 
registration

I. Introduction

Magnetic resonance imaging (MRI) is a relatively slow imaging technique because of the 

nature of its acquisition, which relies on exciting the spins of atoms and recording their 

relaxation times within a spatial encoding scheme. Nonetheless, it is one of the most 

compelling imaging modalities that has enabled advanced in-vivo analysis of brain activity 

and neuronal microstructure using techniques such as functional MRI and diffusion-

weighted (DW)-MRI. These advanced imaging techniques require relatively long 

acquisitions that are, consequently, very susceptible to the subject's motion. When possible, 

subjects and patients are asked to stay still during MRI scans, but motion is inevitable [1], 

[2].

Extensive research has been carried out on motion-robust sequences and motion correction 

techniques in MRI; e.g., reviews in [2]–[4]; however, the use of motion compensation 

techniques is limited by the type and amount of motion that can be compensated for [5], [6], 

the dependency on the scanner platform and the need for pulse sequence modifications [7]–

[11], and/or difficult setup [12]–[18]. Current MRI practice is still based on prevention of 

motion. In newborns, young children, and patients with limited cooperation, this commonly 

requires full sedation or general anesthesia, which is time consuming, costly, and is 

associated with significant risks.

In this paper we seek an approach that does not require prospective planning, pulse sequence 

modification, or an active or passive motion tracking sensor; but corrects motion at the slice 

level and aims at extracting as much reliable information as possible from motion-corrupted 

DWI data. While state-of-the-art DWI analysis is based on volume rejection and volume-to-

volume registration for motion correction ([1] and [19] for reviews and comparison), our 

approach relies on slice-level registration-based motion tracking to compensate for fast and 

large motion leading to an effective use of imaging data.

Slice-to-volume registration was previously used for motion correction in functional MRI 

analysis [20], [21] and motion-robust fetal brain MRI [22]–[31], but is not routinely used for 

motion-robust DWI reconstruction because of technical challenges. Image registration is an 

ill-posed problem without a guaranteed optimal solution. Slice-to-volume registration is 

further challenging due to the limited information available in the 2D slice to estimate the 

3D mapping to a reference volume, which may also be challenging to obtain or reconstruct 

for a moving subject. Often, for the registration to be successful, the slice has to be in close 

proximity to its corresponding spatial location in the coordinates of the 3D image. Previous 
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works have thus used multistage registration schemes to initialize slice-to-volume 

transformations [26], [27], or parametric models to estimate relative slice positions [25].

We introduce the notion of slice-level registration-based motion tracking in this paper. A 

number of key features distinguish our proposed method from the current commonly-used 

motion correction techniques in brain DWI reconstruction. First, we correct motion at the 

slice-level rather than at the volume level. This gives us higher temporal resolution needed 

for motion tracking and enables dealing with fast motion. Second, we reinforce slice-to-

volume registration by coupling it with a state-space model of motion dynamics. This novel 

formulation makes the registration robust to noise and image artifacts boosting its accuracy 

for large motion. Third, we use an outlier-robust Kalman filtering approach to improve the 

robustness of the technique to registration failures, inaccuracies, and motion-corrupted 

scans. With these developments, we achieved a purely computational technique that can 

recover useful information from previously intractable motion-corrupted DWI scans.

The paper follows with a description of the methods in Section II. Section III presents the 

details of our algorithm for motion-robust DWI reconstruction. The evaluation materials and 

experimental results are presented in Sections IV and V, respectively. A discussion is 

followed in Section VI, and the paper concludes in Section VII.

II. Methods

A. Motion Tracking

Our goal is to capture dynamics of subject's motion through slice-level image registration. 

Each image slice has a time stamp k, which shows the sequence of its acquisition among all t 
slices. A natural choice to model dynamics of motion is a state-space model. Assuming a 

finite sequence of observations y1, …, yt, generated by a corresponding sequence of hidden 

states x1, …, xt that represent the motion, the goal is to estimate the states x ∈ ℜd of a 

discrete-time dynamic process, which is governed by a stochastic equation as

(1)

with a measurement y ∈ ℜm that is

(2)

where ωk and νk are process and measurement noise/disturbances and represent uncertainty 

in the modeling of motion dynamics and measurements, respectively. H in (1) defines 

motion dynamics relating the states at the previous time step k − 1 to the states at the current 

step k in the absence of process noise. IS in (2) is a nonlinear function that relates states xk to 

the measurement yk. In other words, IS(xk) is the image slice corresponding to yk in the 

coordinates of the base 3D image, i.e., IV. The observation yk can be considered as a vector 

of gray-scale intensities of the image slice acquired at time step k or any other information 

extracted from the image reflecting the motion effects. Without loss of generality and since 
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our focus will be on head motion in this study, we assume a 6-parameter rigid 3D 

transformation here, i.e., d = 6 and x is represented by [θx, θy, θz, tx, ty, tz]T; where t = [tx, 
ty, tz]T is the vector of translation parameters along x, y and z axes, and θ = [θx, θy, θz] is 

the vector of Euler rotation parameters about these axes [32].

Using the representation of motion dynamics and measurements in (1) and (2), various linear 

and nonlinear state estimation techniques can be employed to obtain head motion states 

based on image slice information over time. We integrated state estimation with slice-to-

volume image registration to achieve image-based motion tracking using variants of Kalman 

filter (KF) for state estimation. Thus, the motion dynamics in (1) can be modeled as

(3)

where any change in the states from the previous time step is due to some random movement 

of the patient modeled by ωk−1. Given that yk in (2) is a vector of gray-scale intensities of 

the acquired image slice, the output model of IS(xk) will be highly nonlinear. Nonlinear state 

estimation methods are not as widely available as their linear counterparts and are often 

difficult to implement and robustly tune the parameters. Hence, we separate the nonlinear 

output model from the filtering process and rewrite (2) as

(4)

in which f(IS(p), yk) is a similarity metric between the image slice acquired at time step k, 

i.e., yk (image measurement vector), and the corresponding slice in the base 3D volume that 

is rigidly transformed with parameters p (i.e., IS(p)). Therefore, we first register the base 3D 

volume to the slice acquired at time step k, and use the resulted Euler transformation 

parameters (zk) as the measurement vector for the Kalman filtering process to estimate 

motion parameters. In this formulation, νk represents uncertainties in the estimation of the 

rigid head motion parameters based on slice-to-volume registration.

There are two main advantages in filter-based inter-slice motion estimation using (3) and (4). 

First, we initialize slice-to-volume registration at time step k based on the states estimated at 

time step k − 1, i.e., x̂k − 1. Considering that the time step between slice acquisitions is about 

100 ms, which is relatively fast compared to the scale of subject movements, the 

initialization puts each slice in a very close proximity to the corresponding spatial locations 

of the 3D image volume. This increases the success rate of the registration algorithm and 

enables slice-level registration-based motion tracking. Second, we employ an outlier-robust 

Kalman filter (ORKF) [33] for motion estimation, which accounts for noisy measurements 

caused by motion-corrupted slices and registration failures. Noisy measurements may occur 

when fast subject motion results in through-plane motion artifacts or when slice-to-volume 

registration fails in the boundary of the imaged anatomy due to the lack of sufficient image 

features.
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Similar to the classical Kalman filter, ORKF assumes that the process noise has a Gaussian 

distribution with a fixed covariance matrix Q (i.e., ωk ~  (0, Q)); but unlike Kalman filter, 

that assumes measurements are also corrupted by additive white Gaussian noise with a fixed 

covariance matrix R (i.e.,νk ~  (0, R)), ORKF allows more flexible modeling of 

uncertainties in measurements in which the noise level may vary over time or the noise may 

have heavier tail than the Gaussian distribution. The covariance of the measurement noise is 

therefore not fixed a priori and changes based on the sequential observations over time. The 

distribution of the measurement noise can be defined as

(5)

in which Sk is the covariance of the measurement noise at time step k, sampled from a 

probability distribution as [33]

(6)

where  (Λ, s) denotes a Wishart distribution [34] with a d × d precision matrix Λ ⊱ 0 and 

s > d − 1 degrees of freedom. The prior mean of  (Λ, s) is sΛ where s quantifies the 

concentration of the distribution around its mean. With the definition of the measurement 

noise model in (5) and (6), the state estimation problem for motion tracking will be robust to 

outliers. To further strengthen the algorithm, as will be explained in Section III, we identify 

motion-corrupted slices using an outlier detection strategy and exclude them from motion 

estimation and DWI analysis.

Algorithm 1

Pseudo-code of the ORKF-based motion estimation for each slice.  is the a priori estimate 

of the states at time step k given knowledge of the process prior to that time, x̂k is the a 

posteriori estimate of the states at time step k given measurement zk.  and Pk are a priori 
and a posteriori estimates of the error covariance, respectively. Kk is the Kalman gain. Q and 

R are the covariance of the process and measurement noise, respectively.

Input: IV, yk, x̂k−1

Output: x̂k

1: slice-to-volume registration:

2:

; p0 = xk̂−1

3: predict states:

4:

5:

6: repeat
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7:   update noise:

8:   δ = zk − x̂k

9:   Λk = (sR + δδT + Pk)/(s + l)

10:   update states:

11:

  

12:

  

13:

  

14: until converged

15: return x̂k

Algorithm 1 shows an implementation of the outlier-robust slice-level registration-based 

motion estimation in pseudo-code. Each slice in the acquisition order is first registered to the 

reference volume to compute zk. The registration is initialized based on the estimated motion 

in the previous time step, i.e., x̂k − 1. Then, motion states are computed in an iterative 

algorithm to compute x̂k based on zk. The process of motion estimation using the explained 

algorithm is applied in two stages on b = 0 and diffusion-sensitized images (b ≠ 0), 

separately. First, we apply motion estimation to b = 0 images to reconstruct a motion-free 

isotropic 3D base image shown by B̃
0. In the second stage, we use the reconstructed base b = 

0 image (B̃
0) as the reference volume for motion tracking, where it is registered to the 

diffusion-sensitized image slices.

B. Image Reconstruction

Estimated motion parameters for each diffusion-sensitized image slice allow us to bring all 

DWI data to the same coordinates and perform further analysis. Although more complex 

models of the diffusion signal could be considered to benefit from motion correction, for the 

sake of simplicity and to focus on the effect of motion correction, we consider 

reconstruction of the diffusion tensor matrix based on the Stejskal-Tanner (ST) equation 

[35]. Having a base B̃
0 image and Nb≠0 diffusion-sensitized volumes, a diffusion tensor can 

be estimated at any point of the regular grid in B0̃ by solving ST equation as

(7)

where B̃
0,regular is the intensity at the regular grid location in B̃

0, and Bi,regular is the 

corresponding intensity at the ith diffusion-sensitized image; gi = [gix, giy, giz] represents the 

ith diffusion gradient direction in the B0̃ coordinates and b is an imaging sequence 

dependent constant, which specifies the diffusion sensitivity. Furthermore, D is a 3 × 3 

symmetric positive definite matrix representing a diffusion tensor expressed in B̃
0 

coordinates with elements that are then rearranged in a parameter vector γ = [Dxx, Dxy, Dxz, 
Dyy, Dyz, Dzz].
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Given n ≥ 6 diffusion-sensitized images with noncollinear gradient directions and a constant 

b-value, diffusion tensors can be estimated by minimizing an objective function as [36]

(8)

where n = Nb≠0, and

(9)

is an n × 6 design matrix. Moreover, αis are weights for different gradient directions in the 

objective function. Koay et al. [36] and Salvador et al. [37] proposed to use the observed 

diffusion weighted signals as weights in the computation of diffusion tensors using a 

weighted linear least square (WLLS) method. Similarly, we put αi = Bi,regular in (8). By 

definition of the design matrix (9), the diffusion tensor matrix (D) is not guaranteed to be 

positive definite, although it is symmetric. A typical solution is to use the Cholesky 

factorization to define D = UTU where U is an upper triangular matrix with non-zero 

diagonal elements [36]. Estimating elements of U would guarantee a positive definite D.

In order to compute diffusion tensors using (8), image intensities of the diffusion-sensitized 

images at the regular grid locations identical to those of the B̃
0 image are required. In our 

case, however, due to motion correction, diffusion-sensitized image intensities are available 

at some irregularly sampled points in the 3D space of the imaged anatomy. A naive approach 

to estimate diffusion tensors from these motion-corrected DWI slices is to use scattered data 

interpolation to reconstruct each predefined diffusion gradient image on a common regular 

grid and then estimate the tensors based on these images using (8).

This approach has two main limitations: first, due to motion and motion-corrupted slices, 

sufficient data samples may not be available in a small neighborhood around all of the 

regular grid points, thus a large neighborhood window size (5 × 5 × 5 or larger) may be 

needed to compute intensity values at regular grid locations. However, a large neighborhood 

window size blurs out the reconstructed gradient images and reduces the accuracy of the 

final diffusion tensor estimation. Smaller neighborhood window in volumes with motion-

corrupted slices or using image points of the corrupted slices would produce image artifacts 

in the reconstructed isotropic 3D image. Second, this approach does not allow compensating 

for the effect of subject motion on the diffusion gradient directions.

To mitigate these limitations, we eliminate scattered data interpolation in the space of 

predefined diffusion directions and directly reconstruct diffusion tensors at regular grid 

points using data from motion-corrected irregular point locations. To this end, we form a 

data structure of motion-corrected point locations and their properties around any regular 
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grid point in a local neighborhood. Each data point in the data structure is characterized by 

its position in the B̃
0 coordinates, a gray-scale value, b value and a vector of diffusion 

gradient directions.

Gradient directions recorded in diffusion-sensitized images are in the scanner coordinates. In 

order to compute the gradient directions in the B̃
0 coordinates in (7), not only the orientation 

of the acquired image with respect to the scanner coordinates has to be considered, but also 

the estimated rotation for each slice with respect to the B̃
0 coordinates from the motion 

estimation step has to be applied. Let us assume that R0 is the rotation matrix obtained from 

the image volume orientation and Rm is the rotation matrix estimated for each slice through 

the slice-to-volume registration-based motion tracking. Then, the diffusion gradient direction 

for each slice in the B0̃ coordinates, i.e., gi in (7), is calculated as

(10)

where g0i is the vector of the ith predefined gradient direction in the scanner coordinates.

Then, similar to (8), given n ≥ 6 diffusion-sensitized points with noncollinear gradient 

directions, diffusion tensors are computed by minimizing the following objective function

(11)

where αi = Bi,irregular, Bi,irregular is the observed diffusion-sensitized signal (gray-scale 

value) at any motion-corrected point location, and B̃
0,irregular is the corresponding non-

diffusion weighted signal, which is interpolated from the B0̃ image at that irregular point 

location. Finally, wi is a weighting factor that is computed as

(12)

where ri is the distance between the ith point and the center of the grid point computed in the 

slice space to account for the slice profile. σ is the standard deviation of a bell-shaped 

Gaussian function, and n is the total number of points in the neighborhood. The weights 

(wis) balance the contribution of multiple observed points based on their distance to the 

location where the tensor is computed.

Algorithm Design and Implementation

The slice-level registration-based motion tracking explained in the previous section is a 

generic motion correction method, which can be used for processing any set of sequentially 

acquired 2D MR images (structural, functional or diffusion MRI) from a dynamically 

moving subject. Our focus in this study has been on DW brain MRI, which involves 
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relatively long duration scans with varying contrast that makes it particularly challenging for 

such an image registration-based approach.

The flowchart of our motion-robust DW brain MRI reconstruction technique is shown in 

Fig. 1. Given a set of DW brain MRI volumes, first, slices corrupted by through-plane 

motion were automatically detected using image features. These motion-corrupted slices 

were excluded from motion estimation and DTI reconstruction. Then, an isotropic 3D image 

was reconstructed from multiple b = 0 images. The proposed filtering-based motion 

estimation method was used to correct for the slice-level motion in all b = 0 images and to 

reconstruct a 3D base image (i.e., B̃
0) which is a weighted average of all b = 0 images. In the 

next step, temporal head motion was estimated using the approach proposed in Section II-A 

through registering all diffusion-sensitized image slices to the reconstructed B̃
0 image. 

Finally, diffusion tensors were computed in the B̃
0 coordinates using image information 

from all gradient directions. In the following subsections these steps are explained in detail.

C. Identification of Motion-Corrupted Slices

In routine image slice acquisitions, diffusion-weighted slices are obtained in an interleaved 

order to avoid slice cross-talk and spin history artifacts. In an interleaved acquisition 

adjacent slices are obtained at different time points and patient's head motion results in 

corruption of image slices independently. In this scheme, artifacts caused by motion can be 

identified in the out-of-plane views of an image volume in which motion-corrupted slices 

appear as severe intensity discontinuity along the slice-select direction. In order to 

automatically identify these slices, we used image features based on inter-slice intensity 

discontinuity (ISID) [38], computed using a morphological closing filter along the slice-

select direction.

Assuming a 3D image, I, with m slices and the image after applying the morphological 

closing, Ic, the difference image can be expressed as Ĩ = Ic − I. Having the difference image 

Ĩ,.we used the median and mean intensity of slices, i.e., Ĩk, 0 ≤ k ≤ m − 1, to detect motion-

corrupted slices. An image slice was considered a corrupted image if the median intensity in 

the difference image was greater than zero, i.e., median(Ĩk) > 0 or the mean slice intensity in 

the difference image was detected as an outlier among mean intensities of all slices. The 

interquartile rule (IQR) for outliers [39] was used to detect motion-corrupted slices based on 

the mean slice intensity in the difference image. Volumes with more than 15% corrupted 

slices were excluded from the analysis.

D. Constructing an Isotropic 3D b = 0 Image

Multiple b = 0 images are often acquired along with diffusion-sensitized images. We 

reconstruct a base image namely B̃
0 in an isotropic regular 3D grid from multiple b = 0 

images through an iterative process.

The first b = 0 volume or a b = 0 with least amount of motion is chosen as the reference 

image at the beginning and is registered to slices in all other b = 0 image volumes using the 

explained outlier-robust motion estimation method. Then, an isotropic 3D image is 

reconstructed in the coordinates of the selected b = 0 image using image information of all b 
= 0 images. This initial reconstructed b = 0 image may not have high quality because of 
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suboptimal motion estimation due to an imperfect initial reference image for registration; 

therefore, the reconstructed image is used as a new reference for the next iteration of slice-

level registration-based motion tracking. Our experiments on various image data sets showed 

that the algorithm converges after 2–3 iterations and a high-quality B ̃
0 image is obtained that 

is used as a reference image in the registration-based motion tracking of all b ≠ 0 images. 

The image intensity at the center of the regular grid points of the B̃
0 image is computed 

based on all (n) irregular points around the center grid in a 3 × 3 × 3 neighborhood using

(13)

where wi is a distance weight based on a Gaussian kernel centered at the regular grid point, 

computed using (12), where ri determines the distance between the ith point and the center 

grid point. For the experiments in this study, we set σ = 0.5.

E. Motion Estimation and Reconstruction

The reconstructed B̃
0 image was then used as a reference volume to bring all diffusion-

sensitized images b ≠ 0 to the same coordinates and calculate diffusion tensors. This was 

achieved through the techniques explained in Section II. For all practical purposes slice-to-

volume registration (SVR) was performed through registering the reference volume to the 

image slice and inverting the transformation. Estimated motion parameters for each slice 

were stored for the reconstruction of diffusion tensors in the next step. Similar to the motion 

estimation in b = 0 images, slices corrupted by through-plane motion were automatically 

detected and rejected. Motion parameters corresponding to the time step of any motion-

corrupted slice were considered equal to those of the previous time step.

All steps of the proposed technique were implemented in C++ using the Insight Toolkit 

(ITK) [40]. We also used the Computational Radiology Laboratory Toolkit (CRKit) for 

diffusion MRI analysis, tractography, and the evaluation and visualization of results. For the 

registration of diffusion-weighted images, we used Mattes mutual information intensity-

based image similarity metric [41], a versor type rigid 3D transformation and a gradient-

descent approach for optimization.

III. Materials

A. Subjects and Scanning Protocols

For the experiments of this paper we used two sets of DWI data. First, we acquired images 

from healthy adult volunteers with and without motion. Each image set had 30 gradient 

directions (Nb≠0 = 30) with 6 b = 0 images distributed in between them (Nb=0 = 6). We 

obtained one set of DW images while the volunteer kept still during the scan. We used these 

images as ground truth or gold standard (GS) to evaluate motion correction and tensor 

estimation techniques. Then, the volunteer was asked to move during the scan. We acquired 

2–3 sets of DW images from each volunteer having different motion scenarios (slow vs fast, 

large vs small motion) including making head rotations up to 30°. In total, 9 sets of DW 
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images with motion were obtained from four volunteers (1–1 to 4–2 in Table III, Table IV 

and Table VI).

Second, we retrospectively applied our motion correction technique to 28 sets of clinical 

DWI scans acquired from children and neonates. Each image set had 30 gradient directions 

(Nb≠0 = 30) with 5–8 b = 0 images distributed in between them. As shown in Fig. 2, these 

subjects were selected from different age groups (1-day to 8-years old). We also assigned a 

grade (0–4) to all subjects based on the amount of motion they had during scan. These 

motion grades are defined in Table I. Among our patient population we chose several cases 

at different age ranges with different types and amounts of motion to test the performance of 

the proposed method in various conditions. Access to this data and retrospective analysis of 

de-identified data were approved by the institutional review board committee.

Diffusion weighted imaging was performed on 3 Tesla Trio or Skyra Siemens scanners 

(Siemens Healthcare, Erlangen, Germany), with a 32 channel head coil, b = 1000 s/mm2, 

TR/TE = 9000–13200/88 ms, flip angle of 90 degrees, slice thickness of 2 mm, matrix size 

of 128 × 128, and variable field-of-view depending on the head size, between 176 to 256 

mm.

B. Evaluation Methods

1) Slice-Level Registration Accuracy—We designed an experiment to evaluate the 

accuracy of the slice-level registration-based motion tracking technique. To this end, we 

acquired a set of DW images with 30 gradient directions from a volunteer. The volunteer 

was asked to stay still during the scan. Then, from these scans, we synthesized DWI images 

with motion using parameters obtained from an electromagnetic motion tracking sensor 

attached to the volunteer's head in another experiment. The volunteer made slow and fast 

frequent movements and tracker data was recorded every 100 ms, corresponding to one DWI 

slice acquisition.

All slices of the scan with synthetic motion were registered to the b = 0 image volume of the 

original motion-free image set using different approaches: In the first experiment, each slice 

was registered independently (independent-SVR). The SVR in this case was initialized using 

parameters obtained from registering the whole volume of each diffusion-sensitized image to 

the b = 0 image volume. In the second experiment, image slices were registered sequentially 

in the acquisition order (sequential-SVR). The SVR in this case was initialized using 

parameters obtained from the registration at the previous time step. In the last experiment, 

we used the proposed motion estimation of this paper to register diffusion-sensitized image 

slices to the b = 0 image volume. The proposed method not only accounts for the acquisition 

order of the image slices, but also uses outlier-robust Kalman filter to estimate motion 

parameters using Algorithm 1 in Section II-A. We refer to this method as MT-SVR for 

motion-tracking slice-to-volume registration.

It should be noted that this is the only experiment in this paper that we simulated motion in 

the images in order to compare estimated parameters to those of the actual motion in the 

images. This experiment has mainly been done to show the importance of outlier-robust 

filtering in slice-level registration-based motion tracking.
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2) Performance Evaluation and Comparison—We evaluated the performance of the 

proposed method (MT-SVR) using various metrics and compared to those of volume-to-

volume registration (VVR), as well as the original images without motion correction (Orig). 

Motion-corrupted slices were identified and isotropic 3D base b = 0 images were 

reconstructed using the methods discussed in Section III. These were applied identically to 

MT-SVR, VVR, and Orig, therefore, the only difference was the technique used for 

registration.

We computed and compared fractional anisotropy (FA) and mean diffusivity (MD) [42] in 

four regions-of-interest (ROIs) including the corpus callosum (CC), anterior and posterior 

limb of the internal capsule (ALIC and PLIC) and the ventricles. High FA values (close to 1) 

are expected in CC, ALIC, and PLIC regions and very low FA (close to zero) in the 

ventricles. Uncompensated motion would result in unexpected FA changes in these regions, 

i.e., decreased FA in CC, ALIC, and PLIC, and increased FA in the ventricles.

For the volunteer subject experiments, since we had motion-free image sets (the stationary 

gold standard), we evaluated the performance of MT-SVR compared to VVR and Orig based 

on four dissimilarity metrics. These metrics [43] include

(14)

(15)

(16)

(17)

where nx is the number of voxels in the ROI, Di and D̃
i are 3×3 tensor matrices in the 

reconstructed DTI and the gold standard image, respectively. ΔFA and ΔMD compute the root 

mean squared differences (RMSD) between FAs and MDs, respectively. Δdir computes the 

angle between the principal eigenvectors in the tensors (e1,i and ẽ1,i); and ΔFro is computed 

based on the Frobenius norm of the difference tensor.
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We also computed tracts that passed through the ROIs and compared the results of MT-SVR 

with those of VVR and Orig. For the imaging data obtained from volunteer subjects, we also 

computed the Dice similarity coefficient (DSC) [44] between tract density images in the GS 

imaging data and those obtained from different motion correction techniques. To compute 

the DSC metric, we binarized the tract density images by labeling any voxel with at least one 

passing tract (tract density greater than zero) as 1 and the remaining voxels as 0.

IV. Results

A. Identification of Motion-Corrupted Slices

Using the criteria explained in Section III-A for the detection and exclusion of motion-

corrupted slices, the sensitivity and specificity of the employed technique was 80.5% and 

98.5%, respectively. These numbers were computed over a set of 2520 DW image slices (36 

volumes in total) among which 126 slices were visually identified as corrupted by motion. 

The criteria was conservative enough to include most of the intact images in the DTI 

reconstruction excluding 80.5% of the corrupted slices; however, parameters of the 

corrupted-slice detection algorithm can be tuned depending on the amount of motion and the 

available imaging data for DTI analysis.

B. Slice-Level Registration Accuracy

The effectiveness of the proposed method (MT-SVR) in estimating head motion parameters 

over time is shown in Fig. 3. Estimated rotation and translation parameters using different 

SVR approaches are depicted in this figure and compared to the parameters obtained from 

the electromagnetic tracker system. In this figure, each volume has 70 slices (interleaved 

acquisition). For better representation, estimated motion parameters for only first 8 volumes 

out of 36 image volumes have been shown in Fig. 3. Average of the mean and standard 

deviation (SD) of the error in the estimated rotation and translation parameters over 2520 

consecutive image slices have also been shown and compared in Table II.

Both Fig. 3 and Table II show that MT-SVR outperforms both independent- and sequential-

SVR methods. Although sequential SVR performs better than independent SVR in most 

slices, its performance degrades especially at slices close to the bottom and top of the brain, 

where image slices have less information to guide registration as compared to the mid-brain 

slices. As shown in the first and the second row of Fig. 3, it takes longer (more temporal 

image slices) for the sequential-SVR to recover from mis-registration and track real motion 

parameters than the independent-SVR. Our other experimental results showed that this issue 

intensifies with the fast and large head motions and as a result sequential-SVR fails 

completely to track head motion. In this experiment through-plane motion was not simulated 

(there was no motion-corrupted image slices); but both independent and sequential-SVR 

methods can fail in case slices are corrupted by motion and heavy-tailed noise. Estimated 

motion parameters in this case may significantly deviate from the true motion parameters. 

On the other hand, MT-SVR shows very robust performance in the presence of registration 

failure and motion-corrupted slices. Therefore, in the remaining experiments of this paper, 

we only evaluated the performance of the MT-SVR in the slice-level motion correction and 

compared it to the VVR and Orig.
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C. Constructing Isotropic Base b = 0 Image

We compared the normalized root mean squared error (NRMSE) between the gold standard 

b = 0 image and the reconstructed B̃
0 images using all three methods (MT-SVR, VVR, and 

Orig) in Table III. These results, given for each volunteer subject experiment, show that our 

proposed method (MT-SVR) outperforms VVR and Orig.

D. DTI in Volunteer Subjects

Two orthogonal views of the color-coded FA and the computed tracts passing the CC ROI 

using different motion correction approaches are shown in Figs. 4(b)–4(d) and compared to 

those of the gold standard image (a). Both color-coded FA and tractography results show 

that MT-SVR outperforms VVR and Orig. For quantitative evaluation, we computed average 

FA in CC, ALIC, and ventricles and compared the values to those of the GS in Table IV. 

Estimated FA values using MT-SVR are closer to the GS values than values estimated using 

VVR and Orig. Also, it is worth noting that the difference between estimated FA values in 

different motion experiments of the same subjects are smaller in MT-SVR than in VVR and 

Orig, which indicates better test-retest reliability.

The mean and SD of ΔFA, ΔDir, ΔFro and ΔMD dissimilarity metrics in all volunteer imaging 

data are given in Table V. Moreover, the DSC metric between tract densities in the GS and 

the estimated tract densities using the MT-SVR, VVR, and Orig are given in Table VI. The 

DSC values in this table were computed based on the tracts passing the CC and ALIC/PLIC 

ROIs. The DSC value in MT-SVR is higher than VVR and Orig, which indicates that MT-

SVR performed best in estimating white-matter tracts.

Finally, we note the effect of motion on images and FA values. Motion results in blurring 

artifacts in color FA (Fig. 4). Consequently, uncompensated motion results in reduced FA in 

fiber-rich tract regions like CC and ALIC/PLIC (where high FAs are expected), and results 

in increased FA in ventricles (where very low FA values are expected). These effects can be 

observed in the images as well as in Table IV.

E. DTI in Neonates and Children

We applied MT-SVR to all 28 subjects and compared the results with VVR and Orig. 

Transverse planes of the color-coded FA in two cases (different ages and motion grades) are 

shown in Fig. 5. This figure is a representative of all results showing that our proposed 

method (MT-SVR) did not degrade DWI of the subjects without noticeable motion, but 

significantly improved the analysis of cases with motion. A marked improvement over 

VVR-based motion correction was also observed. Fig. 6 shows the estimated tracts passing 

through a relatively big ROI around the CC in a 5-year old subject with motion grade 4. This 

figure shows much better delineation of corpus callosum, internal capsule, superior 

longitudinal fasciculus, and cingulum tracts using MT-SVR (a) compared to VVR (b) and 

Orig (c).

We also computed FA values in different ROIs and compared the results to those of the VVR 

and Orig in Table VII. We divided subjects to different assigned motion grades and provided 

mean and SD of the FA in all ROIs. Higher FA values in CC, ALIC and PLIC indicate better 
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alignment of the estimated fibers in these fiber-rich zones. In contrast, lower FA values are 

expected in ventricles. It can be concluded from Table VII that MT-SVR improved FA 

values in CC, ALIC, PLIC, and ventricles in subjects with motion grades higher than 0 and 

out-performed VVR. In subjects with motion grade 0, FA values slightly decreased in CC 

and ALIC/PLIC and slightly increased in the ventricles after motion correction using both 

MT-SVR and VVR but the differences were insignificant. This is mostly due to the 

smoothing effect of the applied image interpolation in motion correction techniques.

V. Discussion

The problem of subject motion in MRI has been considered as a complex problem with 

partial solutions [4]. A variety of techniques have been investigated and evaluated [3]. 

Prospective techniques such as PACE [6] and its extensions based on free induction decay 

(FID) navigators [9] have been specifically designed for fMRI and DWI; but these 

techniques work at a volume-level correction basis, and therefore, are relatively slow and 

cannot effectively deal with large, fast and continuous motion. Retrospective motion 

correction through volume-to-volume registration is also an important routine part of all 

fMRI and DWI processing pipelines [1], [19], [45].

Slice-to-volume registration was previously used for motion correction in functional MRI 

[20], [21] and motion-robust fetal MRI reconstruction [22]–[31]. In particular, Oubel et al. 
[28] presented a method for slice-level motion correction and reconstruction of fetal DW-

MRI data in which a group-wise registration and a dual spatio-angular interpolation 

technique was employed. Here we have developed and presented a novel robust slice-to-

volume registration technique that incorporates a dynamic model of head motion. While our 

application, model, and assumptions are different here from the previous work addressing 

the fetal MRI problem, a direct comparison would be fair in the future when the technique is 

adapted and applied to fetal DW-MRI.

The novel algorithm, proposed in this paper, outperforms volume-to-volume registration 

which is the current commonly-used approach in DW-MRI analysis pipelines. The proposed 

method allows better handling of DWI data due to head motion tracking, motion correction, 

and filtering at the slice-level. The use of an outlier-robust Kalman filter enables capturing 

the dynamics of motion through registration-based motion tracking at a rate close to 10 Hz. 

Our experiments show that this approach can effectively retrieve DTI data from DWI scans 

corrupted by fast and large motion at ranges close to 15 mm and 20 degrees.

Kalman filter (KF), which has been the subject of extensive research and applications since 

its introduction in 1960 [46], has been widely used for tracking objects from video or time 

series of images. For linear dynamical systems with Gaussian noise, KF provides optimal 

estimates yielding the smallest expected mean-square-error [47]. Nonlinear extensions of 

KF, the extended KF and the unscented KF [48], are considered the de facto standards in 

nonlinear state estimation. Its performance, however, significantly degrades in the presence 

of non-Gaussian noise like heavy-tailed disturbances and outlying measurements. The 

outlier-robust Kalman filter, utilized here to mitigate the effect of anomalous registration 

measurements in estimating and tracking head motion, is a discrete-time model for 
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processing sequential data in the presence of outliers, non-Gaussian, and heavy-tailed noise 

in measurements [33]. It is evident from Fig. 3 and Table II that this filtering scheme is a 

crucial part of our method to reinforce slice-to-volume registration for motion tracking.

We also developed a technique to directly reconstruct tensors from motion-corrected DWI 

data in Section II. We adjusted diffusion gradient directions based on estimated motion 

parameters and used a modified WLLS approach to estimate tensors. It has been shown that 

WLLS with well-defined weights provides more accurate estimate of the diffusion tensors 

compared to unweighted linear least squares (LLS) estimation [36], [37], [49]. A constrained 

weighted linear least squared (CWLLS) objective function was used to compute diffusion 

tensors as given in (8) and (11). Since the variance of a log-transformed DW signal depends 

on the signal itself, using the observed DW signal as weights in CWLLS method could 

correct for the distortion induced by the logarithmic transformation [49]. Therefore, we used 

the square of voxel intensities in diffusion-sensitized images as weights in CWLLS function 

in (11), i.e., αi = Bi,irregular. Another advantage of the CWLLS with DW signal intensity-

based weights over LLS is its inherent ability to mitigate the effect of signal loss in motion-

corrupted slices. Through-plane motion results in signal loss and appears as low intensity in 

motion-corrupted slices. The CWLLS method in (11) gives smaller weights to the image 

data obtained from motion-corrupted slices compared to LLS. Our results confirmed this 

hypothesis.

With these developments we have achieved a computational motion-robust DWI 

reconstruction technique that is capable of restoring DTI information from severely motion-

corrupted DWI scans. We reported retrospective application of this technique to previously 

acquired clinical data. With optimized implementation on sufficiently powerful hardware it 

would be possible to use this algorithm for prospective motion tracking and retrospective 

reconstruction. The advantage of prospective motion tracking is that in case of severe 

motion, it would be possible to adaptively acquire more data in the required diffusion 

directions to maintain a desired signal-to-noise ratio (SNR). Without prospective 

implementation we will be limited to the available data, which in case of severe continuous 

motion may not provide sufficient SNR. Future work also involves the integration of this 

motion correction scheme with multi-compartment models of the diffusion signal [43], [50]. 

The reconstruction part of the algorithm may be further improved by incorporating more 

realistic physical models of DWI acquisition [51].

Diffusion-weighted echo-planar imaging data are affected in different ways by several 

sources of distortion including artifacts caused by B0 and B1 field inhomogeneity that are 

particularly significant at higher magnetic fields, as well as eddy currents that may distort 

images in complex ways. All these distortions should be minimized in DWI acquisition and 

compensated in the analysis based on physics-driven models of distortion [52], [53], 

especially in the presence of motion [21], [28], [54]–[56]. In this study we focused on 

tracking and correcting the head motion and did not consider or correct for distortions. An 

important direction of future work, therefore, is to correct the effect of geometric and 

intensity distortions due to eddy currents and B0 and B1 field inhomogeneities.
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VI. Conclusion

We have developed a novel technique for slice-level motion estimation and correction in 

MRI. This technique employs a filtering method to track subject's head motion during scans 

based on registering acquired slices to a base volume over time. Experimental results on 

DWI sequences showed that the technique was successful in robustly estimating head 

motion, rejecting motion-corrupted slices, filtering motion-corrupted data, and 

reconstructing diffusion tensors. Through effective processing of imaging data, this 

technique outperforms the state-of-the-art DWI motion correction based on volume-to-

volume registration; and can readily be used for retrospective analysis of motion-corrupted 

DWI scans. The technique is platform-independent in the sense that it can be used for 

retrospective motion-correction of DWI data obtained using different scanners and does not 

require a specific vendor platform, hardware setup, pulse sequence modification or 

prospective planning. Experimental results showed that the proposed technique can deal 

with slow and fast motions across some extremes; so, depending on the goals and the 

imaging protocols, it may palliate the need for sedation or anesthesia, or repeated scans in 

newborns, young children, and patients with limited cooperation, and can significantly 

simplify, improve, and promote research using MRI in these populations.
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Figure 1. 
Flowchart of the motion-robust diffusion-weighted brain MRI reconstruction using slice-

level registration-based motion tracking.
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Figure 2. 
Number of clinical MR-DWI scans of children and neonates analyzed in this study per age 

group with their motion grades.
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Figure 3. 
Comparison of the rotation and translation parameters estimated using different SVR 

methods. From top to bottom: independent-SVR, sequential-SVR, MT-SVR, and actual 

parameters recorded from the electromagnetic motion tracking sensor.
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Figure 4. 
Color-coded FA and tractography results comparison in a volunteer subject (2–2). Coronal 

(top) and transverse (middle) planes along with tracts passing CC. Cingulum tracts are 

completely missing in VVR and Orig. The FA and tracts obtained from MT-SVR are much 

more similar to those of the GS compared to the ones obtained from VVR and Orig. (a) gold 

standard (GS) (b) MT-SVR (c) VVR (d) Orig.
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Figure 5. 
Transverse views of the color-coded FA in children and newborns. Top: a 6-years old, 

motion grade 4; bottom: a 1-day old, motion grade 0. These images indicate much better 

delineation of the CC, ALIC, and PLIC regions due to motion-robust reconstruction (top 

image), as well as a consistent performance in the absence of noticeable motion (bottom 

image). (a) MT-SVR (b) VVR (c) Orig.
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Figure 6. 
Estimated tracts passing the CC ROI calculated from DWI of a 5-years old child who moved 

significantly during the acquisition. These images indicate much better delineation of all 

major pathways including the CC and cingulum tracts using MT-SVR compared to VVR 

and Orig. (a) MT-SVR (b) VVR (c) Orig.
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TABLE I

Definition of Motion Grades in DWI of Children and Neonates

motion grade definition

grade 0 not any noticeable motion

grade 1 small slow/fast motion in a few volumes

grade 2 small/medium slow/fast motion in a few volumes

grade 3 small/medium/large slow/fast motion in a few volumes

grade 4 small/medium/large slow/fast motion in many volumes

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marami et al. Page 28

TABLE II

Average of the Mean and Standard-Deviation (SD) of Error in the Estimated Rotation and Translation 

Parameters Using Different SVR Methods. MT-SVR Shows the Best Performance. The Best Values are 

Highlighted in Bold

parameters MT-SVR sequential-SVR independent-SVR

rotation (deg) 0.27±0.26 0.76±2.31 1.18±2.82

translation (mm) 0.30±0.30 0.63±1.56 0.64±1.18
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TABLE III

NRMSE Between the Gold Standard b = 0 Image and the Reconstructed 3D B̃
0 Image Using MT-SVR, VVR, 

and Orig in Nine Volunteer Experiments. The Difference Between MT-SVR and VVR/Orig is Statistically 

Significant (p < 0.001 in a Paired-Sample t-Test With α = 0.05)

experiment MT-SVR VVR Orig

1-1 0.0163 0.0321 0.0373

1–2 0.0177 0.0303 0.0413

2-1 0.0185 0.0350 0.0327

2-2 0.0212 0.0576 0.0546

2–3 0.0198 0.0450 0.0324

3-1 0.0076 0.0209 0.0203

3-2 0.0093 0.0162 0.0113

4-1 0.0290 0.0403 0.0467

4-2 0.0249 0.0368 0.0391

mean±SD 0.0182±0.0067 0.0348±0.0123 0.0351±0.0131
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