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Parsimonious Approximation of Streamline
Trajectories in White Matter Fiber Bundles

Pietro Gori*, Olivier Colliot, Linda Marrakchi-Kacem, Yulia Worbe, Fabrizio De Vico Fallani, Mario Chavez,
Cyril Poupon, Andreas Hartmann, Nicholas Ayache and Stanley Durrleman

Abstract—Fiber bundles stemming from tractography algo-
rithms contain many streamlines. They require therefore a great
amount of computer memory and computational resources to
be stored, visualised and processed. We propose an approx-
imation scheme for fiber bundles which results in a parsi-
monious representation of weighted prototypes. Prototypes are
chosen among the streamlines and they represent groups of
similar streamlines. Their weight is related to the number of
approximated streamlines. Both streamlines and prototypes are
modelled as weighted currents. This computational model does
not need point-to-point correspondences and two streamlines are
considered similar if their endpoints are close to each other
and if their pathways follow similar trajectories. Moreover, the
space of weighted currents is a vector space with a closed-form
metric. This permits easy computation of the approximation
error and the selection of the prototypes is based on the
minimisation of this error. We propose an iterative algorithm
which approximates independently and simultaneously all the
fascicles of the bundle in a fast and accurate way. We show that
the resulting representation preserves the shape of the bundle and
it can be used to accurately reconstruct the original structural
connectivity. We evaluate our algorithm on bundles obtained from
both deterministic and probabilistic tractography algorithms.
The resulting approximations use on average only 2% of the
original streamlines as prototypes. This drastically reduces the
computational burden of the processes where the geometry of
the streamlines is considered. We demonstrate its effectiveness
using as example the registration between two fiber bundles.

Index Terms—Diffusion weighted imaging, Brain, Connectivity
analysis, Dimensionality reduction, Registration, Tractography,
Visualization

I. INTRODUCTION

TRACTOGRAPHY [1], [2] from diffusion-weighted mag-
netic resonance imaging (DW-MRI) [3] is the only non-

invasive technique capable to trace in vivo the wiring architec-
ture of the human brain white matter. It is widely employed
for both clinical (i.e. stroke [4], surgical procedures [5]) and
research purposes (i.e. Alzheimer’s disease, schizophrenia [6]).
The 3D polylines stemming from tractography algorithms,
called streamlines or fibers, are only estimates of the tra-
jectories of large groups of neural axons. Streamlines are
traced from points inside a starting voxel, called seeds, and
they are constituted of segments connecting neighbouring
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voxels. The direction of these segments is defined by a local
diffusion model (i.e. tensor, Q-ball [7]) computed at each voxel
and by a tractography method: deterministic or probabilistic
[7]. Deterministic algorithms produce segments which follow
the principal direction of the local diffusion model whereas
probabilistic ones use randomly perturbed versions of the main
direction. Depending on the tractography step-size parameter
(i.e. the distance between two consecutive points), segments
may be collinear. A piece-wise linearization step, as proposed
in [8], may be applied to reduce the number of segments.
Seeds are usually placed in every voxel of the white matter
(whole-brain tractography) and the resulting streamlines can
be divided into different fiber bundles based on clustering
algorithms or starting/ending Regions of Interest (ROI). Fiber
bundles may then be decomposed into fascicles which are
groups of fibers with a similar pathway and whose extrem-
ities are close to each other, connecting therefore the same
functional territories.

Fiber bundles are difficult to analyse both qualitatively and
quantitatively due to their considerable number of streamlines.
The size of a bundle can make computationally intractable
processes such as clustering [9], registration [10], atlas con-
struction [11] or shape analysis [12], where the trajectory of
the streamlines is considered. Moreover, the great quantity of
streamlines might also complicate the rendering, the visualisa-
tion and the interpretation of a bundle, thus limiting possible
clinical applications.

In this paper, we propose to approximate a fiber bundle with
a parsimonious representation of weighted streamline proto-
types. We exploit the fact that many streamlines, starting from
seeds in the same voxel or in neighbour voxels, share the same
pathway and ending area. We approximate these streamlines
with one of them, called prototype. We use a computational
model for both streamlines and prototypes characterised by
an explicit and easily computable metric. This allows us to
control the approximation error and to select the streamlines
which minimize it as prototypes. Furthermore, the resulting
representation of weighted prototypes preserve both the shape
and the fiber density on grey matter structures (i.e. structural
connectivity) with a controlled error.

The proposed approximation scheme is conceived for fiber
bundles resulting from both deterministic and probabilistic
streamline tractography algorithms. The definitions of stream-
line, fascicle and bundle, as employed throughout this paper,
are as follows. A streamline is a curve composed of a finite,
ordered and connected sequence of 3D points. The distance
between connected points is not assumed to be constant. The
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number of points may vary between two different streamlines.
A fascicle is an ensemble of streamlines with similar pathway
and whose extremities are close to each other. A bundle
is a group of streamlines with a consistent orientation and
connecting two specific ROIs defined by the user. Every bundle
is composed of one or more fascicles.

II. RELATED WORK

In the last years, there has been a great effort to compactly
represent a fiber bundle. A pragmatic strategy is to randomly
choose a smaller subset of streamlines. The sampling is not
driven by the minimisation of an approximation error and it
is not possible to control the selection of the streamlines.
This can cause the loss of the smallest fascicles of the
bundle which might be important for the purpose of the study.
More sophisticated solutions have been proposed and they
can be divided into two categories. The first group gathers
computational models conceived to compactly represent single
streamlines. The second category assembles instead strategies
focused on simplifying the representation of the entire fiber
bundle.

A. Compact representation of streamlines
Streamlines are composed of contiguous variable-length

segments whose number might also vary among fibers. Dif-
ferent computational models have been proposed whose goal
is to concisely parametrise a streamline. A widely employed
method consists of defining point-to-point correspondence
among streamlines parametrising them as sets of points [13]
or with cubic B-splines [14] for instance. This technique eases
the computations but it can be applied only if streamlines
have a similar length and the definition of corresponding
points can be very challenging. Other authors proposed to
characterise a streamline using only its extremities [15] or
its connectivity signature [16], namely the probabilities to be
linked to a defined set of ROIs. These methods have been
used for clustering, visualisation and interpretation purposes
but they do not take into consideration the shape of the stream-
lines which is important for registration and morphometry.
Conversely, different authors proposed to evaluate only the
geometry of the fibers, without taking into consideration their
extremities. A first example is given by the methods based
on Fourier descriptors [17], [18], which result in a concise
parametrisation useful for clustering and shape analysis. In
these models the number of descriptors needs to be fixed
though and the optimal number depends on the length and
shape of the streamlines, which might vary even within a
single bundle. Lately, other authors proposed to represent
a streamline as a blurred indicator function modelled as a
Gaussian process [19], [20]. This representation can be easily
employed to compare and average streamlines. However, it
is not a geometric primitive and it is therefore difficult to
use in multi-object registrations together with other geometric
primitives such as 3D surface meshes.

B. Compact representation of the whole bundle
The second category is composed of methods which approx-

imate the entire fiber bundle. The most common strategy is to

divide the fiber bundle into subsets, usually called clusters,
which are then characterised by representative fibers (i.e.
prototypes.) These fibers represent the average trajectory of
the streamlines of the clusters. They can be computed as
the mode [21] or mean [22] of the streamlines, if there is
a point-correspondence, or according to a fiber dissimilarity
measure [23], [24]. Representative fibers are mainly used
to ease the interpretation and visualisation of a bundle and
to reduce the memory footprint and computational time for
shape analysis and registration. A first approach to speed
up affine registration with prototype fiber representations was
the one proposed in [25]. Other authors have also employed
isosurfaces to represent the spatial variation of the clusters
[26]. This representation can be used only for tubular-shaped
bundles that can be modelled as convex envelopes. Other
bundles, such as the corpus callosum and the rostral part of
the corticospinal tract, have a different topology and they are
defined as sheet-like bundles. In [27] the authors proposed to
represent those bundles as 3D surface meshes whereas in [28]
it was suggested to use deformable medial models (cm-reps).
In both cases, the medial surface representations are employed
only for visualisation and clustering and to provide statistics
about diffusion coefficients. A different representation, which
can be employed for any kind of bundle, is the tract probability
map [19], [29], [30]. It indicates the probability of a voxel to
belong to a given bundle. This method is very concise but it
is not based on a geometrical primitive and it has been used
for visualisation, interpretation and clustering. A last example
is the sparse representation based on the matching pursuit
algorithm for currents presented in [11]. In the framework of
currents [31], a bundle is considered as a single mathematical
object composed of disconnected oriented points which model
the local orientation of the streamlines. The approximation
presented in [11] represents a bundle with a sparse set of
oriented points. This representation is very concise but it
has the drawback to accurately approximate only the areas
of the bundle characterised by a high density of streamlines,
like the central mass of the bundle. Thus, the small fascicles
may not be well approximated. Moreover, the framework
of currents does not take into account the extremities of
the streamlines. This prevents the analysis of the structural
connectivity, namely the areas of the gray matter connected
by the bundle.

III. OUR CONTRIBUTION

In this paper, extending [32], we propose to approximate any
fiber bundle with a set of weighted prototypes. Prototypes are
chosen among the streamlines and they represent ensembles
of similar fibers. Their weights are related to the number of
streamlines approximated. Both prototypes and streamlines are
modelled as weighted currents, an extension of the framework
of currents. This computational model takes into consideration
both the pathway of the fiber/prototype and the anatomical lo-
cation of its extremities. Two fibers/prototypes are considered
similar if their endpoints are close to each other and if their
trajectories are similar. The space of weighted currents is a
vector space with an explicit and easily computable metric.
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This implies that the approximation error of the proposed
scheme can be easily controlled. The resulting parsimonious
representation, up to a reasonable approximation level, pre-
serves both the shape and the structural connectivity (com-
puted as streamlines density) of the original bundle. Moreover,
the framework of weighted currents inherits from the one of
currents [33] the fact that it does not need either point-to-point
or streamline-to-streamline correspondences. Nevertheless, it
requires the definition of the starting and ending point of each
streamline. The uncertainty of tractography algorithms near
the grey/white matter boundaries is taken into account by a
Gaussian smoothing kernel. Prototypes are visualised as tubes
whose constant radii are proportional to their weights. This
concise representation can be easily combined in multi-object
studies with other geometric primitives such as surface meshes
modelled as landmarks, currents or varifolds [34], [35].

The paper is organised as follows. In Section IV, we
first present the framework of weighted currents and then
the different steps of the proposed approximation scheme.
After that, we demonstrate the effectiveness of our algorithm
on deterministic and probabilistic fiber bundles from both a
qualitative and quantitative point of view.

IV. METHOD

A. Weighted currents

The framework of weighted currents is an extension of the
one of currents [31] [36, Chapter 2]. In this framework, a
streamline is considered as a set of disconnected oriented
points which are weighted by the spatial coordinates of the
streamline extremities. In this way, every oriented point en-
codes not only the local orientation of a streamline, as with
currents, but also its connectivity. It is an adaptation of the
framework of functional currents [37].

A streamline X is a polygonal line of N segments. The
coordinates of the two extremities fa and f b are two 3D
vectors defined in the space Q=R3xR3. The fiber X is
modelled as a 1-weighted current CX via a line integral of
a vector field ω:

CX(ω) =

∫
X

w(x, fa, f b)Tα(x)dx ≈
N∑
i=1

ωT(xi,fa,fb)(αi)

≈
N∑
i=1

δαi

(xi,fa,fb)
(ω)

(1)

where xi and αi are respectively the center and the tangent
vector of segment i which is approximated by a Dirac delta
weighted current δ. It can be shown that the approximation
error tends to zero as the sampling becomes more accurate
i.e. the length of the segments decreases [38]. The vector field
ω belongs to a reproducing kernel Hilbert space (RKHS) W
defined on the product space R3xQ. The space of weighted
currents is a continuous linear form on W and every weighted
current CX belongs to its dual space W ∗. As a space of
mappings, the space of weighted currents is a vector space.
A natural way to build a kernel K associated to the product

Fig. 1. Two 2D streamlines X and Y are compared using both the framework
of currents and the one of weighted currents. In the three figures only
the position of the extremities change, the overall pathway remains almost
unchanged. The framework of weighted currents is more sensitive to the
distance between the extremities which explains why the two streamlines X
and Y are almost orthogonal in the last figure on the right. The bandwidths
of all kernels employed in both frameworks are equal to 5.

space W is as tensor product of two kernels defined separately
in R3 (Kg) and in Q (Kf ): K=Kg ⊗ Kf . Since even Q
is a product space, Kf is also defined as a tensor product
between two kernels Ka and Kb. Thus, the kernel K results:
K((x, fa, f b), (y, ta, tb))=Kg(x, y)Ka(fa, ta)Kb(f

b, tb). All
kernels Kg , Ka and Kb are defined as Gaussian and
they are parametrised by their bandwidths λg , λa and
λb. Using these kernels, the inner product in the frame-
work of weighted currents between two Diracs is de-
fined as: 〈δα(x,fa,fb), δ

β
(y,ta,tb)

〉W∗ = Ka(fa, ta) Kb(f
b, tb)

(αTKg(x, y)β). By linearity, the inner product between two
streamlines X and Y (CY (ω) ≈

∑M
j=1 ω(yj ,ta,tb)(βj)) is:

〈CX , CY 〉W∗ = Ka(fa, ta)Kb(f
b, tb)

N∑
i=1

M∑
j=1

αTi Kg(xi, yj)βj

= exp

(
−||fa − ta||22

λ2
a

)
exp

(
−||f b − tb||22

λ2
b

)
(2)

N∑
i=1

M∑
j=1

exp

(
−||xi − yj ||22

λ2
g

)
αTi βj

The framed part would be the inner product between X
and Y if modelled as currents. It measures overall differences
between the geometry of their trajectories where the degree
of detail is determined by the scale λg , which is in distance
unit. If the average distance between the segments of X and
Y is definitely greater than 3 times λg , the two streamlines
are considered orthogonal (〈CX , CY 〉W∗ ∼ 0). The two other
terms evaluate how far the streamline extremities are from each
other and they are parametrised by λa and λb respectively.
If fa and ta (resp. f b and tb) are spaced more than 3
times λa (resp. λb) apart, the two streamlines are considered
orthogonal. This means that two streamlines are considered
orthogonal if they do not share either the pathway or the
ending areas. As shown in Fig.1, the framework of currents is
almost “blind” to a change of the positions of the end-points.
Even if the extremities of the two streamlines are far from
each other, with respect to the kernel bandwidth λg , the angle
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(cos−1 〈CX ,CY 〉W∗
|CX |W∗|CY |W∗ ) between the two streamlines varies by

only few degrees. On the contrary, the streamlines become
almost orthogonal in the framework of weighted currents when
their extremities are spaced out. This makes the definition of
similarity twofold in the framework of weighted currents. Two
streamlines are considered similar if their pathways are alike,
as in currents, but also if their endpoints are close to each
other. In Fig.2 we show the most similar fibers to the red
streamline in the framework of currents (green) and in the one
of weighted currents (blue). The green fibers share a similar
pathway with the red one but some of them connect different
anatomical areas. On the contrary, the blue fibers are similar to
the red streamline both in terms of geometry and connectivity.

As currents, the framework of weighted currents does not
need point-to-point correspondence, except for the extremi-
ties. This can be obtained, for instance, by tracing all the
streamlines of a bundle from one ROI to another one, as it
is done for the bundles considered in this paper. Moreover,
every streamline Si is considered as a vector in a Hilbert
space. Thus, a fiber bundle, which is the union of many
fibers B = ∪ni Si, is represented as a sum in this framework:
CB =

∑n
i CSi

. The difference between two streamlines,
modelled as weighted currents, is defined as their sum with
the orientation of the second fiber inverted. If two fibers are
equal, their difference cancels out. Furthermore, it is also
possible to compute the average weighted current S̄ of a
fiber bundle as: CS̄ = 1

n

∑n
i CSi

. Given the inner product
defined in Eq.2, the squared norm of the difference between
two bundles CB =

∑n
i=1 CSi

and CB′ =
∑m
p=1 CS′p is

equal to: ||CB − CB′ ||2W∗ =
∑n
i=1

∑n
j=1〈CSi

, CSj
〉W∗ +∑m

p=1

∑m
q=1〈CS′p , CS′q 〉W∗ - 2

∑n
i=1

∑m
p=1〈CSi

, CS′p〉W∗.
A bundle B composed of two streamlines, X and Y , is

modelled as CB = CX+CY in the framework of weighted
currents. If the two streamlines X and Y are similar in this
framework, their sum can be well approximated by CB=2CX
or CB=2CY . This is crucial for the scope of this paper since
an ensemble of streamlines can be represented with a single
weighted prototype where the weight is related to the number
of streamlines approximated. In the previous example both X
and Y could be chosen as prototype and the weight would be
2. A weighted prototype can be visualised as a tube where
the streamline chosen as prototype is the central axis and the
constant radius is proportional to the weight (see Fig.3). In the
following, we will describe how to use this idea to approximate
a complex bundle stemming from a tractography algorithm.
We will also assume that both streamlines and bundles are
modelled as weighted currents writing simply S (resp. B)
instead than CS (resp. CB).

B. Approximation scheme
The goal of the proposed approximation scheme is to

represent a fiber bundle B with a set of weighted prototypes
{τkPk}. The resulting parsimonious representation should
preserve both the shape and the structural connectivity (stream-
lines density on the grey matter surfaces) of the original
bundle. The proposed algorithm is based on a greedy approach
where we first subdivide the bundle into fascicles and then
select the prototypes in each fascicle independently.

Fig. 2. Streamlines that have an angle smaller than 45 degrees with the
red one using currents (green, #118) and weighted currents (blue, #8).
Green streamlines are more spread than the blue ones, connecting anatomical
locations far from the ones of the red fiber. The concept of similarity in the
framework of weighted currents is more stringent than using currents.

Fig. 3. Weighted prototype visualised as a red tube. It approximates the
fascicle of streamlines coloured in green. The streamline chosen as prototype
is the central axis of the tube and it is coloured in black. The radius of the
tube is proportional to the weight of the prototype and it does not represent
the spatial coverage of the prototype. The spatial coverage is the same for all
prototypes and it depends on the three bandwidths λg , λa and λb.

a) Fascicles detection: A fascicle is a group of stream-
lines which are considered similar in the framework of
weighted currents, namely they have a similar pathway and
end-points close to each other. The subdivision of a bundle into
fascicles is based on the maximization of a quality function
called modularity [39]:

Q =

NF∑
F=1

‖∑
i∈F

Si‖2W∗‖
∑
j /∈F

Sj‖2W∗ − (
∑
i∈F

∑
j /∈F

〈Si, Sj〉W∗)
2


(3)

where F is a fascicle, NF is the number of fascicles and
it is constrained by

∑NF

F=1

∑
i∈F Si = B. In the simple case

of NF=2, Eq.3 can be rewritten as: Q = ‖S̄1‖2W∗‖S̄2‖2W∗ −〈
S̄1, S̄2

〉2
W∗

where S̄1 and S̄2 are the averages of the two
fascicles. Maximizing Q means therefore dividing the bundle
into two fascicles such that their averages have a similar norm
and tend to be orthogonal to each other. In the general form
of Eq.3, one looks for NF fascicles with balanced norms and
which tend to have streamlines orthogonal to the streamlines
of the other fascicles and parallel to the streamlines of their
own fascicle.

Modularity is often employed in the field of complex
networks to detect densely connected communities of nodes
within a network [39]. It has been demonstrated that exact
modularity optimization is strongly NP-complete [40]. Several
approximation schemes exist in the literature and one of the
state-of-the-art methods is the “Louvain” algorithm [39]. It
is a greedy solution where every fascicle is considered as a
vertex of a graph. Two vertices F1 and F2 have a weighted
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edge equal to the sum of the inner products between the
streamlines of the fascicles

∑
i∈F1

∑
j∈F2

〈Si, Sj〉W∗ . At the
beginning, every streamline is considered as an independent
fascicle. The algorithm is divided into two parts which are
repeated iteratively. The first part consists of moving all the
streamlines of a vertex to its neighbour vertices finding the
relocation that leads to the greatest increase in modularity. If
none movement produces a positive gain in modularity, the
streamlines remain in their initial vertex. This part is repeated
until no change would produce an increase in modularity. In
the second part, one redefines the graph by discarding the
empty vertices and recomputing the weighted edges between
the new vertices. The two steps are repeated until no change
would produce an increase in modularity. At the end, the fiber
bundle is separated into different fascicles without fixing in
advance neither the number of fascicles nor the number of
streamlines per fascicle.

Remark: This step could be seen as a clustering. How-
ever, the word “clustering” is often employed in the literature
with a connotation of “segmentation”, namely the subdivision
of a white matter tractogram into tracts reproducible across
subjects. Here, the goal is not to create anatomically relevant
clusters but to subdivide the multi-modal distribution of fibers
into different fascicles (modes). In order not to create ambi-
guity about this step, we avoided the word “clustering”.

b) Prototypes Streamline Selection (PSS): Once the fas-
cicles are defined, a PSS is performed in each fascicle in-
dependently. We propose an iterative algorithm in the spirit
of orthogonal matching pursuit [41]. Let F be a fascicle
with L streamlines modelled as weighted currents, the first
prototype P1 is chosen as the streamline minimising the
residual squared error, namely: P1 = argminSi

||F−τ1Si||2W∗ .
Since the space of weighted currents is a vector space,
we can easily minimize it. The optimal weight is: τ1 =
〈F,P1〉W∗
||P1||2W∗

and the prototype is: P1 = argmaxSi〈F, Si

||Si||W∗
〉2W∗

= argmaxSi
L2〈S̄, Si

||Si||W∗
〉2W∗ with i=1,...,L. The prototype

is therefore the most parallel streamline to the average S̄ of
the fascicle.

Once the first prototype is selected, we remove from each
streamline Si its orthogonal projection onto the prototype,
resulting in the residual: r(Si) = Si−π(Si) = Si− 〈Si,P1〉W∗P1

||P1||2W∗
.

We keep therefore only the components of the streamlines
orthogonal to the prototype P1. In this new space, we select the
second prototype as: P2 = argmaxr(Si)〈r(F ), r(Si)

‖r(Si)‖W∗
〉2W∗ .

In this way, P1 and P2 should be very different as well as the
streamlines they approximate. We iterate this process until:
||F −

∑K
k=1 τkPk||W∗ ≤ γ||F ||W∗ where ||F ||W∗ is the norm

of the fascicle, K is the number of prototypes and γ indicates
the required approximation level. At each iteration t, the set of
weights {τk}k=1,...,t is computed as the orthogonal projection
of all the streamlines of F to the space spanned by the selected
set of prototypes {Pk}k=1,...,t. The final number of prototypes
depends on the chosen approximation level γ and on the kernel
bandwidths of the framework of weighted currents.

It is important to notice that the computations are based on
the Gram matrix Γ of the fascicle F which has size [LxL].
Thus, instead of computing directly r(Si), we simply update

Γ as: 〈r(Si), r(Sj)〉W∗ = 〈Si, Sj〉W∗ −
〈Si,P 〉W∗ 〈Sj ,P 〉W∗

||P ||2W∗
=

Γ(i,j) −
Γ(i,P )Γ(j,P )

||Γ(P,P )||22
. A sketch of the algorithm can be found

in Algorithm 1 where Γ(i,j) indicates the value of the matrix
Γ at row i and column j, Γ(K,L) refers to the submatrix of Γ
containing the K rows of the prototypes and all the L columns,
Γ(K,K) is the square submatrix with the rows and columns of
the K prototypes and 1(L,1) is a L-dimensional vector of ones.

Algorithm 1 Prototype Fiber Selection

Input: Fascicle F with L streamlines Si: F =
∑L
i=1 Si ;

threshold γ ; pre-computed matrix Γ ; K=1
1: P1 ← argmaxSi

〈F, Si

||Si||W∗
〉2W∗

2: τ1 ← 〈F,P1〉W∗
||P1||2W∗

3: for i = 1 to L do
4: for j = 1 to L do
5: 〈Si, Sj〉W∗ ← 〈Si, Sj〉W∗ − 〈Si,P1〉W∗ 〈Sj ,P1〉W∗

||P1||2W∗
6: end for
7: end for
8: while ||F −

∑K
k=1 τkPk||W∗ ≤ γ||F ||W∗ do

9: K ← K + 1

10: PK ← argmaxi
(Γ(i,L)1(L,1))

2

Γ(i,i)

11: {τk}k=1,...,K ←
Γ(K,L)1(L,1)

Γ(K,K)

12: for i = 1 to L do
13: for j = 1 to L do
14: Γ(i,j) ← Γ(i,j) −

Γ(i,PK )Γ(j,PK )

||Γ(PK,PK )||22
15: end for
16: end for
17: end while
Output: {τk}, {Pk} k=1,...,K

After selecting the prototypes of each fascicle indepen-
dently, they are all gathered into a single bundle of prototypes
BP . The weights are then recomputed as the orthogonal
projection of the whole bundle B to the entire set of pro-
totypes BP in order to retrieve the correct values also for the
weights of the prototypes close to the boundary between two
different fascicles. Moreover, before the PSS algorithm, we
also perform an outlier detection step in every fascicle. The
streamlines characterised by an average angle with the other
streamlines between 88◦ and 90◦ are considered as outliers
and discarded from the analysis.

In Fig.4, we show a sketch of the entire approximation
scheme. A fiber bundle is first divided into fascicles. The sub-
division is not meant to be related to anatomy. Its goal is purely
algorithmic. It permits the detection and the approximation of
all fascicles, even the small ones. This is crucial, for instance,
when registering two bundles in order to correctly align all the
fascicles and not only the central and bigger ones. The size
and number of fascicles is determined by the bandwidths λg ,
λa and λb. The smaller the bandwidths, the greater the number
of fascicles. In fact, by decreasing these values we make the
definition of similarity between two streamlines more strin-
gent. For instance, if their extremities are more distant than
3 times λb, they will be considered orthogonal (i.e. far from
each other). At the end of the PSS step, if the approximation
level is sufficiently small, the resulting weighted prototypes
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Fig. 4. Sketch of the approximation scheme on a toy bundle composed of blue
streamlines and a black cortex. The first row shows the structural connectivity
computed as the density of the streamlines extremities onto the grey matter.
The second row presents the results of the two steps. At the end of the first
step, the bundle is divided into different fascicles. Streamlines considered as
outliers (i.e. the yellow one on the right) are discarded before the PSS step.
The resulting weighted prototypes preserve the original structural connectivity.

should preserve both the shape and the structural connectivity
of the original bundle. Structural connectivity is computed as
the density of the streamlines/prototypes extremities onto the
grey matter surface. When using the prototypes, we also take
into account their weights. We use kernel density estimation
with a Gaussian kernel.

Remark: Performing the PSS in each fascicle indepen-
dently allows us to distribute the computations to different pro-
cessors, reducing therefore the computational time. Moreover,
it also decreases the chance to select as prototype a streamline
which might be considered an outlier. This is explained in
Fig.5 where every dot represents a streamline of a bundle
modelled as weighted current. We oversimplify this space
assuming it is simply R2. In this space, it is likely that
a tractography bundle has a multi-modal distribution, where
every mode is a fascicle. If we wanted to approximate the
whole bundle with a single prototype, it would be the most
parallel streamline to the average of the bundle. In Fig.5, we
would choose the streamline represented by the green cross.
This fiber is far from almost all the other streamlines and
it could be considered as an outlier. Instead, if we applied
the same selection process in each fascicle independently,
we would obtain the three prototypes highlighted in red.
These streamlines are more representative than the green fiber
and they better approximate the bundle. Obviously, an actual
fascicle does not lie in a 2D space and therefore we may need
more than one prototype to explain its variability.

V. EXPERIMENTS AND RESULTS

In this section, we first describe the dataset used in the
following experiments and some technical details about the
implementation of the proposed algorithm. Then, we present
the approximation of two probabilistic bundles and we show
that their structural connectivity is similar to the one of the
original bundles. Furthermore, we evaluate from a qualitative
point of view how a variation in the parameters of the
algorithm affects the approximation of a deterministic bun-
dle. Eventually, we assess the effectiveness of our algorithm
showing that the registration between two approximated fiber

Fig. 5. Visual explanation of the bundle subdivision into fascicles (modes).
Dots and crosses represent the streamlines of a fiber bundle in the space
of weighted currents. The green cross is the most similar streamline to the
average of the bundle. It is far from almost all the other streamlines and it
could be considered as an outlier. The three circles represent the fascicles
(modes) composed by similar fibers. The red crosses are the prototypes of the
fascicles considered independently. These fibers are more representative than
the green cross and they better approximate the fiber bundle.

bundles is definitely faster than using the original bundles for
the same registration accuracy.

A. Materials

We test the proposed approximation scheme on 25 subjects.
Diffusion-weighted (DW) scans are acquired with sequences
of 50 directions with a B-factor of 1000 and a voxel size of
2x2x2 mm3. We use the Spherical Deconvolution Transform
(SDT) model [42] to estimate the local underlying orientation
distribution function (ODF). Whole brain connectivity is then
inferred within an anatomy-based tractography mask [24]
using both a deterministic (1 seed per voxel) and a proba-
bilistic (8 seeds per voxel) tractography algorithm available in
BrainVISA/Connectomist-2.0 [43]. In this paper, we consider
three distinct fiber bundles connecting the left hemisphere of
the cortical surface to the left thalamus, putamen and caudate
respectively. We extract them from both the deterministic and
probabilistic whole brain tractography as explained in [44].
All bundles also include the commissural fibers which are
truncated at the inter-hemispheric plane. The other streamlines
are cut at the intersection with their respective sub-cortical
structure and at the border between white and gray matter
of the cortex. Sub-cortical structures are segmented with FSL
[45] from 3D T1-weighted images (voxel size: 1x1x1 mm3)
and we merge the segmentations of nucleus accumbens and
caudate in order to consider them as a single structure. The
3D meshes are created using the marching cubes algorithm
of BrainVISA v4.4.0. The cortical surface is segmented using
FreeSurfer v5.3 [46]. More information about acquisition and
preprocessing of both T1-w and DW images can be found in
[44].

B. Numerical aspects

The parameters needed to be fixed by the user are the
bandwidths of the three kernels of weighted currents λg , λa
and λb and the approximation level γ. In the following, λg
refers to the kernel of currents, λa to the end-point on the
nuclei and λb to the end-point on the cortical surface.
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Fig. 6. Weighted prototype approximations of two probabilistic bundles: a cortico-putamen and a cortico-thalamus. As it is possible to notice, our approximation
alters neither the global shape of the bundle nor the densities of the endpoints onto the cortical surface. We use: γ=0.13, λg=7mm, λa=5mm and λb=10mm.

All experiments shown in this paper are computed on a Intel
Xeon, 8 cores, CPU E5-1620, 3.60 GHz with a memory of
16Gb and a graphic card NVIDIA Quadro K4000.
The computational times for the approximations of the fiber
bundles shown in Fig.6 and in Fig.8, composed of 80.000 and
35.674 streamlines, were of 150 and 19 minutes respectively.

C. Weighted prototypes representation

We present in Fig.6 the weighted prototype approximations
of two probabilistic bundles using γ= 0.13, λg=7mm, λa=5mm
and λb=10mm. The proposed representation preserves the
global shape of the bundle and it approximates thoroughly
all the fascicles. We also show the densities of the endpoints
(i.e. structural connectivity) on the cortical surface computed
using either the streamlines of the original bundles or the
weighted prototypes. The two densities are very similar from
a qualitative point of view and the Kolmogorov-Smirnov test
fails to show statistically significant differences between them
at the 5% level. Probability densities are computed using
Gaussian kernels, taking into account the weights of the
prototypes for the proposed approximation. Furthermore, we
use the same parameters to approximate all the bundles of
our data-set (75 deterministic and 75 probabilistic) and in no
case the density of the endpoints is statistically significantly
different from the one of the original bundle at the 5% level.
The average compression ratios 100(1- K/N), where N is
the number of streamlines of the original bundles and K
is the number of prototypes, are shown in Table I and II
for the deterministic and probabilistic bundles respectively. In
Fig.7, we also show the evolution of the average compression
ratio and number of prototypes for different approximation
levels. These results show that our algorithm leads to a much
more compact representation than the original bundle while
preserving the overall structural connectivity.

D. Qualitative evaluation of the parameters influence

In Fig.8 we evaluate the influence of the parameters
of our algorithm on the approximation of a deterministic

TABLE I
AVERAGE COMPRESSION RATIO (%) OF ALL THE BUNDLES OBTAINED

FROM THE DETERMINISTIC TRACTOGRAPHY ALGORITHM

Deterministic
Bundle Cortex-caudate Cortex-putamen Cortex-thalamus

N (Streamlines) 17079±4881 28056±5247 28371±6806
K (Prototypes) 344±58 409±55 341±87
Compression 97.85 % 98.49 % 98,77 %

TABLE II
AVERAGE COMPRESSION RATIO (%) OF ALL THE BUNDLES OBTAINED

FROM THE PROBABILISTIC TRACTOGRAPHY ALGORITHM

Probabilistic
Bundle Cortex-caudate Cortex-putamen Cortex-thalamus

N (Streamlines) 75389±4646 78125±2223 68640±8568
K (Prototypes) 1182±358 1411±393 1000±319
Compression 98,41 % 98,19 % 98,54 %

Fig. 7. Evolution of the average number of prototypes and compression
ratio at different approximation levels for 5 deterministic and 5 probabilistic
cortico-putamen bundles. Bars represent one standard deviation.

cortico-putamen bundle. In the first row we employ λg=5mm,
λa=4mm, λb=6mm and in the second row λg=7mm, λa=5mm,
λb=10mm. Every column corresponds to a different approx-
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Fig. 8. Weighted prototype representations (in red) at different approximation levels of a deterministic cortico-putamen bundle (in blue). Each row is based
on a different set of kernel bandwidths. The letters N and K refer respectively to the number of streamlines of the bundle and to the number of prototypes.
The compression ratios are indicated in brackets.

Fig. 9. Results of the fascicles detection step applied to the bundle shown in
Fig.8 using the two sets of kernel bandwidths. The number of fascicles are
respectively: 65 (left) and 35 (right). Colours are chosen randomly.

imation level. It can be noticed that at γ=0.05 and γ=0.13
all fascicles are well approximated, whatever the set of pa-
rameters. At γ=0.25 and higher values of γ (not shown here)
only the denser parts of the fascicles are well approximated.
Moreover, the results based on the first row use almost twice
the prototypes than in the second row. This is expected
since the bandwidths of the kernels are smaller and therefore
the definition of similarity between two streamlines is more
stringent. Thus, for a given γ, one needs more prototypes to
approximate the same number of streamlines. Furthermore,
this also influences the number/size of the fascicles, as shown
in Fig.9. The fascicles obtained with the first set of parameters
are smaller in size and greater in number than the ones
obtained using the second set of parameters.

E. Registration-based evaluation of the algorithm

Here we evaluate the impact of the proposed approxima-
tion scheme on the quality of a registration between two
deterministic cortico-putamen bundles of different subjects.
We use the diffeomorphic transformation implemented in the
software Deformetrica (www.deformetrica.org). It is based on
a control points formulation [35] of the Large Deformation

Diffeomorphic Metric Mapping (LDDMM) framework [47].
In the following experiments, we use a diffeomorphic kernel
bandwidth equal to 10mm and 1309 control points. The source
bundle BS is the one shown in Fig.8. First, we approximate
both BS and the target bundle BT , composed of 35674
and 25916 streamlines respectively, at different approximation
levels using λg=7mm, λa=5mm, λb=10mm. Then, for each
level, we register the approximation of BS onto the one
of BT . After that, we apply the obtained deformation to
the original bundle BS and we compute the residual error
between the transformed original source bundle φ(BS) and
the original target bundle BT : ||φ(BS) − BT ||2W∗ in the
framework of weighted currents. Ideally, we would compare
this residual error with the one resulting from the registration
of the original fiber bundles. Unfortunately, the computational
time would be too long (see Table III). Thus, we decide to
register smaller sub-samples of the original fiber bundles and
then to use the resulting residual errors for comparison. In
Fig.10, we apply two different deformations to the original
source bundle. The first one results from the registration of
the prototype approximations with γ=0.13. The second one
is instead obtained by matching the sub-samples of 5000
streamlines of the original bundles. It is possible to notice
that the results look very similar. This is confirmed in Table III
where we show that the difference between their residual errors
is very small. We can conclude that the registration based
on the approximation at γ=0.13 is as accurate as using the
sub-sample of 5000 streamlines but 93 times faster! We also
present the results for other approximation levels. Compared
to γ=0.13, the other registrations are either less accurate or
slower and with a similar accuracy.

Remark: It is important to highlight that the proposed
approximation scheme is general and that it could have been
tested with other registration approaches (i.e. affine transfor-
mation [13], [21], [48]). We use the LDDMM framework as
one possible example. We expect similar results with other
registration methods.

www.deformetrica.org
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Fig. 10. On the left: registration between the green source bundle and the red target bundle approximated with weighted prototypes. On the right top:
original fiber bundles. On the right bottom: deformed original fiber bundle. The deformation applied on the left results from the registration of the prototype
approximations with γ=0.13. The deformation applied on the right results from the matching of the sub-samples of 5000 streamlines of the original bundles.
Black arrows highlight the areas where the alignment is more noticeable.

TABLE III
REGISTRATION ERROR AND COMPUTATIONAL TIME USING DIFFERENT
APPROXIMATION LEVELS AND SAMPLES OF THE ORIGINAL BUNDLES.

Registration Error Computational Time
γ=0.40 1.75e+09 2h 39min
γ=0.25 1.42e+09 4h 34min
γ=0.13 9.88e+08 5h 51min
γ=0.05 9.79e+08 18h 35min

1000 streamlines 9.96e+08 23h 12min
5000 streamlines 9.94e+08 547h 32min
8000 streamlines - ∼ 1120h

15000 streamlines - ∼ 4484h
30000 streamlines - ∞

VI. DISCUSSION AND CONCLUSIONS

We presented an algorithm to approximate a fiber bun-
dle with a small and scattered set of weighted streamlines
prototypes. We tested it on 150 bundles resulting from both
deterministic and probabilistic tractography algorithms. The
number of prototypes was on average 2% of the number of
streamlines of the original bundles. We showed that such a
parsimonious representation preserves the shape of the bundles
and it can be used to reconstruct their original structural
connectivity, for sufficiently small approximation levels (γ).
It is interesting to notice that the density of streamlines on
grey matter surfaces could be also stored in a connectivity
matrix. This would provide an efficient encoding of the
structural connectivity but it would discard the trajectory (i.e.
geometry) of the streamlines. Moreover, it would also require
the definition of a parcellation scheme for grey matter surfaces.
This might be a tricky task since, to date, there is still not
a globally accepted parcellation of the grey matter in the
scientific community. On the contrary, our approach could be
used to drive an adapted parcellation in future works.

The streamlines considered in this paper have been truncated

at the intersection between gray and white matter which is an
area usually characterised by a low Signal to Noise Ratio. This
means that the estimates of the end-points of the streamlines
are not very robust. To account for this uncertainty, we
use Gaussian kernels for measuring the dissimilarity between
two streamlines. Theoretically, the greater the uncertainty,
the greater the bandwidths of the kernels. In the proposed
algorithm, these bandwidths (i.e. λa and λb) are considered
as parameters fixed by the user. Their values are chosen by
looking at how much the streamlines fan out when approaching
to the boundary between white and grey matter. Streamlines
deviate more when they are close to the cortex than to the sub-
cortical nuclei, which explains why λb is always greater than
λa in our experiments. It would be of interest to automatically
estimate these parameters taking into consideration the type
of bundle, the SNR of the diffusion image, the tractography
algorithm and the diffusion model.

Another parameter fixed at the beginning of the algorithm
is the approximation level γ. It defines the stopping criteria
and the value (1− γ) is the minimal percentage of the norm
of the fascicle explained by the prototypes. In fact, thanks to
the triangle inequality, we can rewrite the stopping criteria ob-
taining (1−γ)||F ||W∗ ≤ ||

∑K
k=1 τkPk||W∗ ≤ (1+γ)||F ||W∗ .

This means that, using γ=0.13, the norm of the prototypes will
be at least 87% of the norm of the fascicle at the end of the
algorithm. Furthermore, we noticed that between γ=0.5 and
γ=0.01 the number of prototypes grows exponentially (see
Fig.7). The first prototypes to be estimated approximate the
parts of the fascicle with an higher density of streamlines (i.e.
greater redundancy). Thus, their weights have a great value and
few prototypes can explain a considerable percentage of the
norm of the fascicle. Instead, between γ=0.1 and γ=0.01, most
of the streamlines have already been approximated and every
new prototype can explain only a few of the remaining fibers.
We found that a value of γ=0.13 results in a parsimonious
representation which exhaustively approximates all the fasci-
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cles. An interesting improvement would be to automatically
estimate the value of γ taking into consideration both the
approximation error and the number of prototypes.

The proposed algorithm does not take into account any mi-
crostructure measurement such as FA (Fractional Anisotropy).
This means that there is no certainty as to whether the
approximation would not change the microstructural properties
of a bundle. A possible solution would be to augment the
framework of weighted currents with a “functional signal”
describing the microstructure architecture of the bundle in the
same spirit of [49]. Based on this new computational model,
we could use analyses such as “tractometry” [50] to investigate
the quality of the approximation with respect to microstructure
measurements such as FA. In this work, we focused on the
ability of the proposed method to preserve the fiber density in
specific ROIs, which encodes the structural connectivity.

We showed that our representation can approximate not only
the central and denser mass of a bundle, as with currents, but
also its smaller fascicles and extremities. We demonstrated
its usefulness by registering two approximated bundles where
we correctly matched the entire pathway of the weighted
prototypes, including their extremities (see Fig.10). Further-
more, bundle registrations based on our approximation scheme
present a lower computational time and memory footprint than
using the original fiber bundles. This makes thus possible
population studies, like the atlas construction [51], based
on multiple template-to-subject non-linear registrations, which
would be very time-consuming - or even unfeasible - with the
original fiber bundles.

APPENDIX A
INTERPRETATION OF τ

We show here that the weight τ of a prototype P is related
to the number of fibers approximated by P . Given a bundle B
composed of 3 fibers: B =

∑3
i=1 Si we want to approximate

it with one prototype P . Let assume that S1 is the prototype
P (the reasoning does not change modifying the prototype),
the value of its weight τ is 1 +

||S2||2W∗
||P ||2

W∗
cos(P, S2)W∗ +

||S3||2W∗
‖P‖2

W∗
cos(P, S3)W∗ . This means that if S1 is parallel to the

other fibers and their norms are similar, the value of τ will be
about 3. Instead, if either S2 or S3 is orthogonal to S1, the
prototype will not approximate that fiber and the weight will
be smaller than 3. This shows that τ is related to the number
of fibers approximated by the prototype or, more precisely,
to the “amount of similarity” between the prototype and the
other fibers of the bundle. When dealing with more prototypes,
every τ also depends on the inner product between prototypes.
Since we project at each iteration all the streamlines onto the
orthogonal space of the last estimated prototype, the inner
product between prototypes should be small.

APPENDIX B
MODULARITY BASED ON WEIGHTED CURRENTS

The definition of modularity in [39] is:

Q =

NC∑
c=1

[
Wc

m
−
(
Sc
2m

)2
]

(4)

where NC is the number of modules (fascicles),
Wc=1/2‖

∑
i∈c Si‖2W∗ is the sum of the weights (inner

products) of all the edges joining only the vertices (fibers)
of module c, Sc=

∑
i∈c
∑N
j=1 〈Si, Sj〉W∗ is the sum of the

weights of the edges between the vertices in c and the N
vertices in the graph (bundle) and m=1/2‖

∑N
i=1 Si‖2W∗

is the sum of the weights of all edges in the graph.
Substituting these equations in Eq.4 and noting that
m is a constant term and that it can be rewritten as
2m=‖

∑
i∈c Si‖2W∗+‖

∑
j /∈c Sj‖2W∗+2

∑
i∈c
∑
j /∈c 〈Si, Sj〉W∗ ,

one obtains Eq.3.
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[37] N. Charon and A. Trouvé, “Functional Currents: A New Mathematical
Tool to Model and Analyse Functional Shapes,” Journal of Mathematical
Imaging and Vision, vol. 48, no. 3, pp. 413–431, Jan. 2013. 3

[38] J. Glaunès, “Transport par difféomorphismes de points, de mesures et
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[39] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, Oct.
2008. 4, 10

[40] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “Maximizing Modularity is hard,”
arXiv:physics/0608255, Aug. 2006, arXiv: physics/0608255. 4

[41] J. A. Tropp and A. C. Gilbert, “Signal Recovery From Random
Measurements Via Orthogonal Matching Pursuit,” IEEE Transactions
on Information Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. 5

[42] M. Descoteaux, R. Deriche, T. Knosche, and A. Anwander, “Determinis-
tic and Probabilistic Tractography Based on Complex Fibre Orientation
Distributions,” IEEE Transactions on Medical Imaging, vol. 28, no. 2,
pp. 269–286, Feb. 2009. 6

[43] M. Perrin, C. Poupon, Y. Cointepas, B. Rieul, N. Golestani, C. Pallier,
D. Rivière, A. Constantinesco, D. L. Bihan, and J.-F. Mangin, “Fiber
Tracking in q-Ball Fields Using Regularized Particle Trajectories,” in
Information Processing in Medical Imaging, G. E. Christensen and
M. Sonka, Eds. Springer Berlin Heidelberg, 2005, no. 3565, pp. 52–63.
6

[44] Y. Worbe, L. Marrakchi-Kacem, S. Lecomte, R. Valabregue, F. Poupon,
P. Guevara, A. Tucholka, J.-F. Mangin, M. Vidailhet, S. Lehericy,
A. Hartmann, and C. Poupon, “Altered structural connectivity of cortico-
striato-pallido-thalamic networks in Gilles de la Tourette syndrome,”
Brain, vol. 138, no. 2, pp. 472–482, Feb. 2015. 6

[45] B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, “A
Bayesian model of shape and appearance for subcortical brain segmen-
tation,” NeuroImage, vol. 56, no. 3, pp. 907–922, Jun. 2011. 6

[46] B. Fischl, A. v. d. Kouwe, C. Destrieux, E. Halgren, F. Ségonne, D. H.
Salat, E. Busa, L. J. Seidman, J. Goldstein, D. Kennedy, V. Caviness,
N. Makris, B. Rosen, and A. M. Dale, “Automatically Parcellating the
Human,” Cerebral Cortex, vol. 14, no. 1, pp. 11–22, Jan. 2004. 6

[47] M. I. Miller, A. Trouve, and L. Younes, “On the Metrics and Euler-
Lagrange Equations of Computational Anatomy,” Annual Review of
Biomedical Engineering, vol. 4, no. 1, p. 375, Aug. 2002. 8

[48] E. Garyfallidis, O. Ocegueda, D. Wassermann, and M. Descoteaux,
“Robust and efficient linear registration of white-matter fascicles in the
space of streamlines,” NeuroImage, vol. 117, pp. 124–140, Aug. 2015.
8

[49] B. Charlier, N. Charon, and A. Trouvé, “The fshape framework for the
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