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Abstract

Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the 

pancreas. Unlike the brain which is protected by the skull, the pancreas can be significantly 

deformed by its surrounding organs. Consequently, the tumor shape differences observable from 

images at different time points arise from both tumor growth and pancreatic motion, and tumor 

growth model personalization may be compromised if such motion is ignored. Therefore, we 

incorporate pancreatic motion information derived from deformable image registration in model 

personalization. For more accurate mechanical interactions between tumor growth and pancreatic 

motion, elastic-growth decomposition is used with a hyperelastic constitutive law to model the 

mass effect, which allows growth modeling while conserving the mechanical properties. 

Furthermore, a way of coupling the finite difference method and the finite element method is 

proposed to greatly reduce the computation time. With both 2-[18F]-fluoro-2-deoxy-D-glucose 

positron emission tomographic and contrast-enhanced computed tomographic images, functional, 

structural, and motion data are combined for a patient-specific model. Experiments on synthetic 

and clinical data show the importance of image-derived motion on estimating pathophysiologically 

plausible mechanical properties and the promising performance of our framework. From seven 

patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average 

surface distance between the personalized tumor growth simulations and the measurements were 

83.2±8.8%, 86.9±8.3%, 84.4±4.0%, 13.9±9.8%, and 0.6±0.1 mm, respectively.
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I. Introduction

Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the 

pancreas [1], [2]. These are rare tumors with only about 1000 new cases in the United States 

per year. They are slow growing with tumor doubling times more than 500 days, and are 

usually not treated until reaching a certain size such as 3 cm in diameter. If patient-specific 

tumor growth can be accurately predicted, treatment or surgical planning can be improved, 

so that the risk of metastatic disease, operative resection, and unnecessary testing can be 

better managed. For example, accurate prediction of tumor doubling time can help decide 

between nonoperative or surgical treatments for these tumors [1].

Tumor growth prediction can be achieved by pathophysiological modeling and model 

personalization from clinical measurements. As tumor growth modeling is particularly 

applicable for tumors that are unresectable or not removed until reaching a certain size [3], 

[2], image-based personalization has been actively researched [4], [5], [6], [7], [8], [9], [10]. 

An image-based tumor growth prediction framework typically requires several key 

components, including pathophysiological models, image-derived measurements, and 

model-measurement coupling. Models provide the pathophysiology and thus the prediction 

capability of tumor growth. Image-derived measurements provide patient-specific 

information for model personalization. Model-measurement coupling describes how models 

are personalized using measurements.

Unlike the brain which is protected by the skull, the pancreas can be significantly deformed 

by its surrounding organs. Consequently, the tumor shape differences observable from 

images at different time points arise from both tumor growth and pancreatic motion, and 

model personalization may be compromised if such motion is ignored. As existing 

frameworks do not account for such motion, this paper investigates how pancreatic motion 

can be incorporated for more pathophysiologically plausible model personalization. This 

involves extracting motion information from images, and adopting an appropriate 

biomechanical model for more accurate interactions between tumor growth and pancreatic 

motion.

A. Macroscopic Tumor Growth Model

Tumor growth is associated with cell invasion and mass effect [11]. For cell invasion, tumor 

cells migrate as a cohesive group and penetrate the surrounding tissues. Mass effect is the 

outward pushing of the growing tumor mass which displaces the tumor cells and the 

surrounding tissues. Cell invasion and mass effect are mutually reinforcing [11]. Because of 

the computational complexity of model personalization and the macroscopic nature of 

imaging data, macroscopic models are mostly used for image-based personalization. Most 

macroscopic tumor growth models account for cell invasion [4], [5], [6], [7], [8], [9], [10]. 

Some models, including ours in this paper, also account for mass effect [4], [5], [8], [9], 

[10]. Cell invasion is mostly modeled by reaction-diffusion equations [4], [5], [6], [7], [8], 

[9], [10]. The differences among models are usually the choices between isotropic and 

anisotropic diffusion, Gompertz and logistic cell proliferation, or with and without treatment 

effects. Because of the highly deformable nature of the pancreas, we focus on the mass 

Wong et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect in this paper. We also study the numerical approach for more efficient simulation and 

thus model personalization.

B. Mass Effect Modeling

Mass effect modeling includes active growth and passive material properties. Active growth 

properties provide the stress or strain boundary conditions to simulate tumor growth. Passive 

material properties govern mechanical behaviors such as deformation when active growth 

properties are applied. For passive material properties, because of simplicity or limitation of 

imaging data, almost all image-based frameworks use isotropic materials which give 

identical properties in all directions [4], [12], [5], [8], [9], [10]. For stress-strain relations, 

most models use simpler linear elastic models [4], [5], [8], [9] and some use more realistic 

but complicated hyperelastic models [12], [10]. For active growth properties, most 

frameworks model mass effect by explicitly enforcing tumor size change or by exerting 

tumor-density-induced forces to an elastic mechanical model. In [4], the volume change of 

the bulk tumor of a brain glioma was modeled as an exponential function, which was 

imposed by a penalty method via homogeneous pressure. For the edema, tumor-density-

induced forces proportional to the negative gradients of the local tumor densities were 

introduced to displace the tumor and its surrounding structures. In [12], the expansive force 

of the bulk tumor was approximated by constant outward pressure acting on the tumor 

boundary, and the growth of the edema was modeled by a constant isotropic expansive 

strain. In [5], the tumor-density-induced forces were applied to the entire brain glioma. The 

forces were converted to velocities by a linear mechanical model, which displace the tumor 

cell densities in a reaction-advection-diffusion equation. The tumor-density-induced forces 

were also used in [9] for breast cancer response prediction, and in [8], [10] for pancreatic 

tumor growth prediction.

Despite the promising results, there are several limitations of the above frameworks. As 

discussed, the pancreas can be greatly deformed by its surrounding abdominal organs [13]. 

Nevertheless, no frameworks have considered such motion. Furthermore, for the approaches 

using only the tumor-density-induced forces [5], [8], [9], [10], the tumor volume change 

could not be explicitly modeled. These approaches, together with those converting the 

volume change into pressure [4], [12], modeled the tumor growth by stress-strain relations in 

continuum mechanics. Firstly, this contradicts the nearly incompressible nature of most soft 

tissues [14], and thus the tissue incompressibility of the model has to be compromised. 

Secondly, for the mechanical models with nonlinear constitutive laws, the elastic volume 

change of the tumor increases its stiffness regardless of the underlying pathophysiology, and 

this reduces the model accuracy especially when pancreatic motion is considered. Therefore, 

we adopt a more appropriate model for mass effect modeling with pancreatic motion 

incorporated.

C. Numerical Approach

Because of the complicated model formulations, numerical approaches of temporal and 

spatial integrations are necessary for tumor growth simulation. In [8], the reaction-

advection-diffusion equation was used to account for both the cell invasion and mass effect, 

and the system equation was solved by the finite difference method (FDM) with explicit 
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time integration. In [6], as only the evolution of the tumor delineation was considered, the 

reaction-diffusion equation was approximated by a modified anisotropic Eikonal model and 

was solved by a modified fast marching method. For the frameworks using more 

sophisticated biomechanical models [4], [12], [10], the finite element method (FEM) has 

been used to handle more complicated boundary conditions and provide more accurate 

results with implicit time integration [15].

Nevertheless, using FEM for both the reaction-diffusion and biomechanical models may not 

be optimal. Firstly, FEM is computationally more expensive than other simpler methods, 

such as FDM which can properly handle the reaction-diffusion equation [16]. Secondly, the 

requirements of the mesh resolution of the models are different. The reaction-diffusion 

model usually requires a denser mesh for higher resolution front propagation, while 

mechanical deformation is usually smooth and requires fewer elements [15]. Thus, using the 

same mesh may reduce the accuracy and/or increase the computation time. Therefore, we 

propose a way of coupling the FDM and FEM simulations for more efficient model 

personalization.

D. Contributions

To properly incorporate pancreatic motion for tumor growth prediction, we propose a 

framework comprising the multiplicative elastic-growth decomposition for the mass effect 

and FDM-FEM coupling for the numerical approach (Fig. 1). The pancreatic motion 

information is extracted from contrast-enhanced computed tomographic (CT) images at 

different time points using nonrigid image registration to provide the image-derived motion. 

The elastic-growth decomposition was initially introduced to study residual stresses in soft 

tissues, which decomposes the continuous deformation field of a body after growth into its 

elastic and growth parts [17] (Fig. 2). With this decomposition, tumor growth can be 

modeled separately from elasticity. This preserves the accuracy of the elastic response and 

thus the accuracy of incorporating the pancreatic motion. For the FDM-FEM coupling, we 

use FDM for the reaction-diffusion model and FEM for the biomechanical model, which can 

be combined for the tumor growth simulation by our proposed information exchange 

method.

In this paper, the tumor growth model is personalized using longitudinal imaging data. The 

mass effect is modeled by the elastic-growth decomposition, with the elastic part modeled 

by a hyperelastic constitutive law, and the growth part modeled as logistic growth. The cell 

invasion is modeled by a reaction-diffusion equation. The tumor growth personalization is 

achieved by model parameter estimation with derivative-free global optimization. Following 

[10], 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomographic (FDG-PET) images 

are used to provide the proliferation rates, and contrast-enhanced CT images are used to 

provide the local tumor cell densities. Different from [10], the CT images are also used to 

provide image-derived pancreatic motion. Experiments were performed on synthetic and 

clinical data to evaluate the performance.

Therefore, assuming the shape differences of a tumor among different time points are solely 

caused by tumor invasion, mass effect, and motion exerted by its surrounding organs, our 

overall goal is to obtain a personalized model using image information to accurately predict 
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the tumor growth. This goal is mainly achieved by incorporating the elastic-growth 

decomposition which eliminates the contradiction between tumor size change and tissue 

incompressibility for the mass effect. The use of image-derived pancreatic motion enables 

more accurate comparisons of tumor shapes between simulations and measurements during 

model personalization [13].

This manuscript is substantially different from our previous publications in [10] and [18] as 

follows:

1. Unlike [10] which used tumor-density-induced forces for the mass effect, here 

we use elastic-growth decomposition. Preliminary results were published in [18].

2. For image measurements, pancreatic motion was not considered in [10]. In [18], 

such motion was only applied as the boundary conditions of the biomechanical 

model, and the model personalization was sensitive to the ranges and initial 

values of the model parameters. In this paper, the motion information is also used 

in the objective function. This provides more precise and pathophysiologically 

plausible mechanical parameter estimation.

3. Unlike [10] and [18], here we present a new FDM-FEM coupling method which 

reduces hours of computation especially when intratumor heterogeneity is 

considered.

4. As the framework of this manuscript is substantially different from [18], all 

experiments were redone. More experiments were also added to illustrate the 

properties and performance of the framework.

II. Macroscopic Tumor Growth Model

The macroscopic tumor growth model is used as the central link to combine several imaging 

data. It also provides the prediction capability when personalized. We emphasize the 

modeling of mass effect as it is our main contribution.

A. Mass Effect

Mass effect comprises the tumor mass growth and its mechanical interactions with the 

surrounding tissues [11]. In most image-based tumor growth personalization [12], [5], [8], 

[9], [10], the active growth has been modeled by stress-strain relations in continuum 

mechanics. This contradicts the tissue incompressibility of most tumors, and is undesirable 

when passive tumor deformation exerted by the surrounding tissues needs to be considered. 

Furthermore, the effects of mass growth on the passive mechanical properties of the tumor 

have not been considered.

In the biomechanics community, a well-known approach for growth and remodeling is the 

multiplicative elastic-growth decomposition, which has been applied to model the growth of 

cardiac muscle, skin, and tumor [19], [20], [21], [22]. By adopting this decomposition, the 

deformation of a tumor can be decomposed into its elastic and growth parts which can be 

modeled separately. This allows the tumor growth to be modeled independently from the 

elastic response, and thus the tissue incompressibility can be preserved. This also 
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systematically handles the effects of the tumor growth on the stress-strain relations. The 

decomposition, passive mechanical model, and tumor growth model are presented next.

1) Hyperelastic Biomechanical Model with Elastic-Growth Decomposition—Let 

X and x be the coordinates in the original configuration (ℬ0) and the final (deformed) 

configuration (ℬt), respectively (Fig. 2). In solid mechanics, the deformation gradient F = ∂x/

∂X maps the original configuration to the final configuration as dx = FdX [15]. F can be 

decomposed multiplicatively into its elastic (Fe) and growth (Fg) parts as F = FeFg [17]. 

Inhomogeneous growth, such as the growth of a tumor but not its surrounding tissues, can 

result in gaps or overlaps in the intermediate configuration (ℬg). This configuration is 

physically impossible and the system equation cannot be solved therein. Therefore, although 

the elastic response is from ℬg to ℬt, we need to reformulate the quantities in ℬg in terms of 

those in the compatible configuration ℬ0 for the total-Lagrangian formulation [15].

In the decomposition, the elastic part is governed by a strain energy function. The Green-

Lagrange strain tensor  and its elastic part  and growth part 

 are related as [17]:

(1)

With tissue growth, the change of mass needs to be considered for accurate stress-strain 

relations. Let tm be the grown mass, and 0V and gV be the volumes in ℬ0 and ℬg, 

respectively. The densities of the grown mass with respect to different configurations are 

given as  and , with relation 

indicates the volume ratio). Therefore, the second Piola-Kirchhoff (PKII) stress tensor in ℬg 

is:

(2)

where ψ is the strain energy per unit grown mass, and thus  and  are the strain energy 

per unit intermediate and original volume, respectively. As we model Fg independently of F 
(Section II-A2), the PKII stress tensor in ℬ0 is:

(3)

and the corresponding fourth-order elasticity tensor is:
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(4)

with non-standard dyadic product [A⊗̄B]ijkl = [A]ik [B]jl and ℂe = ∂Se/∂εe. If no growth, S = 

Se and ℂ = ℂe.

Modeling the highly deformable pancreas requires finite strains and incompressibility under 

large deformation. Furthermore, an isotropic material model is used as tissue structure is 

unavailable in our data. Therefore, the modified Saint-Venant-Kirchhoff (hyperelastic) 

constitutive law is adopted [23]:

(5)

where Je = det Fe. The tensor  is the isovolumetric part of εe, with 

 and det F̄
e ≡ 1. Therefore, the first and second term of (5) account for the 

volumetric and isochoric elastic response, respectively, and λ is the bulk modulus and μ is 

the shear modulus. The larger the value of λ, the more incompressible the tissue.

Given Fg from a growth model, and F the existing deformation, εe can be computed by (1). 

Se and ℂe can then be computed using (5) and converted to S and ℂ by (3) and (4) for the 

total-Lagrangian formulation [15].

2) Tumor Volumetric Growth Model—The growth deformation Fg can be modeled as 

the general form [17], [22]:

(6)

with ϑ1, ϑ2, and ϑ3 the stretch ratios along the orthonormal vectors v1, v2, and v3, 

respectively. All ϑi > 0.

There are different ways to model the stretch ratios. Stress-induced growth was used to 

model arterial wall thickness in response to stenting [19], and stretch-induced growth was 

used to model skin expansion in reconstructive surgery [21]. In our case, pancreatic tumor 

growth is neither stress- nor stretch-induced. Furthermore, the initially fast tumor growth 

slows down when reaching a certain size as nutrients are limited. Therefore, we model the 

stretch ratios as logistic functions:

(7)
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with ϱi the proliferation rate, ϑi(t0) the initial stretch ratio, and ϑī the maximum stretch ratio. 

As ϑi(t0) is relative and cannot be measured from a single image, we assume ϑi(t0 = 0) = 1 

at the first measurement time point. The maximum stretch ratio is computed as the 

maximum allowable tumor size to the initial tumor size. In [24], the largest pancreatic 

neuroendocrine tumor size without metastasis is about 5 cm.

As tissue structure is unavailable, the isotropic version of (6) is used. By using ϑ = ϑ1 = ϑ2 

= ϑ3 and the standard basis as the orthonormal vectors, we have Fg = ϑI. This reduces the 

number of parameters to be estimated.

In the experiments, we set λ = 5 kPa empirically for tissue incompressibility. Therefore, μ 

and ϱ are the parameters to be estimated for the biomechanical model.

B. Tumor Cell Invasion by Reaction-Diffusion Equation

To facilitate the complicated inverse problem, the macroscopic reaction-diffusion equation is 

usually used for image-based model personalization [5], [6], [25], [8]:

(8)

with N the number of tumor cells, D the diffusion tensor characterizing the invasive 

property, and R the reaction term accounting for cell proliferation. As the pancreatic tumor 

grows slowly, we use the logistic growth as the reaction term:

(9)

where c = (N/K) ∈ [0, 1] represents the normalized tumor cell ratio, with K the carrying 

capacity. ρ is the proliferation rate which can be computed from FDG-PET images for better 

subject-specificity (Section III-C). As the number of cells is proportional to the space they 

occupy, we represent c by the intracellular volume fraction (ICVF), which is the local ratio 

of the intracellular space to the tissue volume. ICVF can be computed from contrast-

enhanced CT images to provide the initial conditions of (9) (Section III-B), and can be used 

as the measurements for model personalization. D can be a diagonal matrix with 

components Dx, Dy, Dz, but we use D = DI as the tissue structure is unavailable.

III. Image-Derived Information

Image information is necessary for patient-specific tumor growth prediction. As tumor 

growth involves morphological and physiological functions [11], both structural, functional, 

and motion data are used to improve the patient-specificity.

A. Image-Derived Pancreatic Motion

The tumor shape change observable from images is caused by both the tumor growth and the 

deformation of the pancreas. To incorporate such deformation for more realistic model 
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personalization, the region of interest (ROI) around the tumor covering the boundaries of the 

pancreas is extracted from each post-contrast CT image. ROIs of consecutive time points are 

registered using deformable image registration with mutual information to provide the 

displacements of the salient features [26] (Fig. 3(b)). B-spline transform is used with linear 

interpolation, and the L-BFGS optimizer is adopted. The Insight Segmentation and 

Registration Toolkit (ITK) is utilized. The displacements are enforced as boundary 

conditions to deform the grown tumor through the biomechanical model in Section II-A1, 

and this allows more accurate comparison with the measurements during model 

personalization. To avoid interfering with the tumor growth, a 3D FEM mesh is constructed 

from the ROI with three zones: the tumor, its surroundings for growth, and the outer zone for 

enforcing the image-derived pancreatic motion (Fig. 3(a)). The surrounding (blue) zone is 

defined so that it can contain the tumor after growth. The outer (red) zone contains the 

pancreatic boundaries around the tumor so that the pancreatic motion can be captured. As 

image registration relies mostly on salient features such as the boundaries of the pancreas, 

only the displacements of pixels with large enough gradient magnitudes are used.

B. ICVF from Contrast-Enhanced CT Images

ICVF is the local ratio of the intracellular volume to the tissue volume, which can be 

computed using contrast-enhanced CT images [10](Fig. 4). Contrast enhancement is 

achieved by intravenous administration of an iodine-based contrast agent. The enhancement 

level is proportional to the extracellular space of a given type of tissue at a given phase, and 

is related to the delivery, retention, and elimination of the contrast agent, as well as the 

timing of image acquisition [27]. To compute the ICVF of the tumor, the pre- and post-

contrast CT images are first registered using deformable image registration [26], and the 

difference image is computed to provide the enhancement in Hounsfield units. A known 

reference of contrast enhancement per extracellular space is required. The reference we use 

is the hematocrit (Hct), which is the ratio of the volume of red blood cells to the volume of 

blood. Hematocrit is measurable from a patient’s blood samples. However, as such records 

are not always available, the Hct value of 0.45 is used [28]. By using also the contrast 

enhancement at blood pools such as the aorta, the ICVF (c ∈ [0, 1]) of the tumor can be 

computed as [10]:

(10)

where HUpost_tumor, HUpre_tumor, HUpost_blood, and HUpre_blood are the Hounsfield units of 

the post- and pre-contrast CT images at the segmented tumor and blood pool (aorta), 

respectively. E[•] represents the mean value. Therefore, the ICVF of the tumor is computed 

using the ICVF of the blood (Hct) as a reference. The computed ICVF can be used as the 

initial conditions in simulation, or as the measurements in personalization.

C. Proliferation Rates from FDG-PET Images

FDG-PET images provide functional information of increased glucose uptake and glycolysis 

of cancer cells for metabolic abnormalities [29]. Thus they can be used to infer the 
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proliferation rate (ρ) in (9). To compensate for the variation of injected FDG dose and the 

patient’s weight, the standardized uptake value (SUV) is usually used (Fig. 4):

(11)

The SUV can be related to the proliferation rate through a quantitative model of metabolic 

energy allocation [30]. Some energy maintains existing cells and some creates new cells. 

Thus the rate of energy flow (B) can be modeled as:

(12)

where Bc is the metabolic rate of a single cell and Ec is the metabolic energy to create a cell. 

With the assumption of logistic proliferation, the second term of (9), , can be 

substituted into (12), and the equation becomes:

(13)

As SUV is directly proportional to glucose metabolism [29], B can be inferred from SUV, 

and we can rewrite (13) as:

(14)

where α > 0 and β > 0 are unknown scalars to be estimated. B = αEcKSUV indicates that 

the overall metabolic rate is proportional to SUV. Given SUV and c from PET and CT 

images, (14) is a linear function of α and β. Therefore, α and β cannot be uniquely 

identified, and we set β = 0.02 day−1 according to [30]. Hence, the proliferation rate (ρ) can 

be approximated from PET and CT images with the estimation of α using the patient’s 

longitudinal data.

IV. Model Personalization

The prediction capability of the model is achieved by the personalization of the model 

parameters. The objective function and optimization algorithm need to be properly 

considered for more subject-specific and accurate personalization.

A. Objective Function

Complementary data improve the subject-specificity of the personalized model [31]. 

Therefore, our objective function accounts for the ICVF, volume, and deformation 
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differences. The simulated ICVF and displacements with model parameters θ are rasterized 

into images by referencing the CT image at the same time point, and the following objective 

function is computed:

(15)

where TPV is the true positive volume, the overlapping volume between the simulated tumor 

volume (Vs) and the measured (segmented) tumor volume (Vm). In the rasterized ICVF 

image, we define the tumor voxels as those with ICVF larger than 50% as almost all image-

derived ICVF are larger than this value (Table I). c̄ and c(θ) are the respective measured and 

simulated ICVF within TPV. ū and u(θ) are the respective measured and simulated 

displacement vectors outside of the displacement-enforcing zone, the measured tumor, and 

the simulated tumor, i.e. within a subset of the blue region in Fig. 3(a). u(θ) is obtained by 

mechanical simulation, and ū is obtained by the procedure described in Section III-A. 

Therefore, the objective function accounts for both the ICVF root-mean-squared error 

(RMSE), Dice coefficient (Dice), and mean displacement difference (disp), and wRMSE, 

wDice, and wdisp control their respective contributions. In our experiments, we set wRMSE = 

wDice = wdisp = 1. The maximum values of the RMSE and the Dice terms are 1, so the same 

weight can be used. The displacement term does not have a theoretical bounding value, 

however, it is mostly smaller than 5 mm in the clinical data, and the parameters can be 

accurately estimated in the synthetic data with wdisp = 1.

B. Derivative-Free Global Optimization

The analytical gradient of the objective function (15) is difficult to derive. We also found 

that local optimization may converge to local minima and could not accurately identify the 

parameters in most synthetic data. Therefore, a derivative-free global optimization method is 

required.

In our previous work [10], the global optimization algorithm DIRECT (DIviding 

RECTangles) was used [32]. DIRECT is a deterministic sampling algorithm which 

systematically divides the search domain into smaller hyperrectangles, and is designed to 

explore the variable space for the global minimum. Nevertheless, DIRECT could not 

accurately estimate the model parameters of the synthetic data in our current framework. 

Therefore, we use the multilevel single linkage (MLSL) global optimization instead [33], 

which provides satisfactory results on the synthetic data. MLSL is a multistart algorithm 

which performs local optimizations from random or low-discrepancy sampling points. Using 

the idea of single-linkage clustering, MLSL reduces the number of local searches and avoids 

repeated searches of the same local optima.

MLSL requires a local search method. As the shape of the objective function is unknown, 

methods based on quadratic shape assumption should not be used. In this work, we have 

adopted the subplex method (SUBPLEX) as it is derivative-free and has no shape 

assumption [34]. SUBPLEX is a generalization of the Nelder-Mead simplex method (NMS) 

[35]. A simplex in n-dimensional space is a convex hull of n + 1 points, such as a triangle in 
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2D. In NMS, a simplex moves through the objective function space, changing size and 

shape, and shrinking near the minimum. SUBPLEX improves NMS by decomposing the 

searching space into subspaces for better computational efficiency. We found that using 

MLSL with SUBPLEX can give satisfactory results on synthetic data.

Fig. 5 shows an example of objective function evolution on synthetic data (Section VI-C). 

For DIRECT, the large fluctuation of the objective function value indicates its global search 

pattern. Although it had a trend to approach the optimal objective function value of zero, it 

failed with the given number of iterations (2000). For MLSL, the large fluctuation at the 

beginning indicates the evaluations of the sampling points, followed by the local search 

patterns. The best result was achieved in the fourth local search.

V. Numerical Approach

As analytical solutions are unavailable for sophisticated models, numerical methods are 

necessary. Reaction-diffusion models are usually solved by FDM [16], while mechanical 

models are mostly solved by FEM [15]. FDM is computationally efficient if explicit time 

integration is used, but it cannot handle complicated geometry and boundary conditions. In 

contrast, FEM is computationally more expensive, but it can better handle complicated 

geometries and boundary conditions. Therefore, frameworks with biomechanical models 

usually use FEM regardless of the reaction-diffusion models [4], [12], [25], [10]. 

Nevertheless, using FEM to solve the reaction-diffusion equation may unnecessarily 

increase the computational complexity, especially with model personalization that requires 

thousands of simulations. Hence, we use FDM for the reaction-diffusion model and FEM for 

the biomechanical model, and propose a way to combine their results for model 

personalization.

A. FDM-FEM Coupling

For the FDM implementation of the reaction-diffusion equation, we use the image pixels, 

which are resampled to be isotropic, as the FDM grid. Explicit time integration is used with 

central difference, and the Von Neumann stability analysis is used to ensure the appropriate 

time step size [16]. For the FEM implementation of the biomechanical model, the linear 

tetrahedral elements are used to solve the total Lagrangian formulation with Newton-

Raphson iterations [15]. As the tumor growth is slow [1], quasi-static assumption is used and 

thus time integration is unnecessary.

The reaction-diffusion equation (9) governs the propagation of ICVF. ICVF is required by 

the mechanical model to define the current tumor geometry caused by tumor invasion, so 

that Fg in Section II-A2 can be properly defined. To achieve this purpose, the Visualization 

Toolkit (VTK) is used to interpolate the ICVF from the FDM grid to the FEM nodes [36]. 

With the ICVF available, the tumor region can be defined and the corresponding Fg can be 

computed.

The biomechanical model in Section II-A1 provides the deformation of the tumor and the 

surrounding tissues. To compute the objective function (15), the simulated ICVF from FDM 

needs to be transformed by the deformation to account for the mass effect. The idea of 
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nonrigid image deformation is used to achieve this purpose. The deformation field of the 

FEM simulation is interpolated to the FDM grid using VTK. With this deformation field 

image available, the simulated ICVF can be deformed using a similar approach for nonrigid 

image registration.

By iterating FDM and FEM with this coupling method, the resulted ICVF image comprises 

information from both the reaction-diffusion and biomechanical models. Illustrated in Fig. 6, 

the FDM-FEM coupling has the largest tumor growth as it comprises both tumor invasion 

and mass effect from the individual simulations.

VI. Experiments and Results

Different frameworks were tested on synthetic and clinical data to study the importance of 

including image-derived motion, and of the choice of using either elastic-growth 

decomposition or tumor-density-induced forces:

• EG-IM: the proposed framework with elastic-growth decomposition (EG) and 

image-derived motion (IM).

• EG: EG-IM framework without image-derived motion.

• F-IM: using tumor-density-induced forces (F), fb = −γ∇c, for the mass effect, 

with γ a scalar to be estimated [10]. Image-derived motion was used.

• F: F-IM framework without image-derived motion.

• RD: using the reaction-diffusion (RD) model alone without mass effect.

• EG-IM-FEM: EG-IM framework using FEM for both the reaction-diffusion and 

biomechanical models. Tested on clinical data only.

wdisp in (15) was set to zero for non-IM frameworks. The tumor growth models in the F-IM 

and F frameworks are the same as that in [10]. The tumor growth model in the RD 

framework is similar to the ones in [6], [7].

Each experiment used measurements at three time points. The first time point provided the 

initial tumor geometry from the post-contrast CT image, the initial conditions of ICVF in 

(9), and also the proliferation rate from SUV. The second time point was used to provide 

measurements for model personalization. Deformation between the first and second time 

point was computed for the pancreatic motion, which was used for both the simulation and 

objective function. Prediction was performed by simulation using the personalized model, 

with the measurements at the second time point as inputs, and the prediction performance 

was evaluated using the measurements at the third time point. For a more meaningful 

comparison with the measurements, the deformation between the second and third time 

point was enforced to the prediction to account for the pancreatic motion. The prediction 

performance was represented by recall, precision, Dice coefficient, relative volume 

difference (RVD), average surface distance (ASD), and ICVF root-mean-squared error 

(RMSE). RMSE and Dice coefficient are defined in (15). For ASD, the absolute distance 

between each node on the simulated tumor surface and its nearest node on the measured 
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tumor surface is computed, and ASD is the average of them. Recall, precision, and RVD are 

defined as:

(16)

Not all parameters were estimated. Given SUV and c, (14) is a linear function of α and β, 

and thus α and β cannot be uniquely identified. In consequence, we set β = 0.02 day−1 

according to [30]. For λ in (5), we set its value to 5 kPa empirically for tissue 

incompressibility. Therefore, the parameters to be estimated were θ = {D, α, μnormal, μtumor, 

ϱ} (Table II). For the F-IM and F frameworks, the force scaling parameter γ was estimated 

instead of ϱ.

A. FDM and FEM Representations

As uniform grids are required by FDM, we used the ICVF images for the FDM 

representations. The pixel size was resampled to 1.0×1.0×1.0 mm3, and the numbers of 

pixels ranged from 114 to 493×103. For the FEM representations, the tumors were 

segmented from the post-contrast CT images by a semiautomatic level set algorithm [37]. 

Linear tetrahedral FEM meshes (23 to 36×103 elements) were constructed.

B. Computation Time Comparison

Experiments were performed to compare the computation times between using FDM and 

FEM. Simulations were performed on seven patient geometries from the second to the third 

time point (Table I), with the time step size as one day using the reaction-diffusion model 

alone. For the FEM simulations of the reaction-diffusion equation, implicit time integration 

was used [15]. Two settings were tested. For the homogeneous setting, the entire geometry 

was one zone, and the FEM system matrices did not need to be updated for each time step. 

For the heterogeneous setting, the tumor and its surroundings were different zones. As the 

zones changed during tumor growth, the FEM system matrices were updated. For the FDM 

simulations, explicit time integration was used and no system matrices were formed. A 

computer with a 2.4-GHz Intel Xeon processor was used with a single core.

For FDM, the average times for the heterogeneous and homogeneous settings were almost 

the same (21.3 ± 11.1 s vs. 21.5 ± 11.2 s, p = 0.037) as the processes were identical (Table 

III). For FEM, the average time for the heterogeneous setting was almost double that of the 

homogeneous setting (52.8 ± 19.2 s vs. 28.8 ± 9.4 s, p = 0.002) because of the 

recomputations of the system matrices. Comparing FDM and FEM, the average time 

difference for the homogeneous setting was about seven seconds (p = 0.022), which means a 

four-hour difference for a model personalization with 2000 iterations. For the heterogeneous 

setting, the difference can reach 17 hours (p = 0.003). In our experiments on clinical data 

(Section VI-D), the average personalization time for 2000 iterations with the homogeneous 

setting and the FDM-FEM coupling was about 24 hours. Thus, the reduction in computation 

time was significant.
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C. Synthetic Data

1) Experimental Setups—Using the FDM and FEM representations, SUV, and ICVF 

images of Patient 4 (Table I) at the first time point (Day 0, Fig. 7(a)), the second time point 

(Day 300) was simulated with the ground-truth model parameters (Table IV) to provide the 

measurements for model personalization (Fig. 7). The estimated parameters were then used 

to predict the tumor at the third time point (Day 600) and compared with the simulated 

ground truth.

Simulations with different parameters (ground-truth parameters) were used to study the 

parameter estimation capability. The baseline parameters were D = 0.5×10−3 mm2/day, α = 

1.3 mm3/g/day, μnormal = 1.0 kPa, μtumor = 5.0 kPa, and ϱ = 1.0×10−3 day−1. As α and ϱ are 

the respective sources of cell proliferation and mass effect, we simulated ground truths with 

α = {1.1, 1.3, 1.5} mm3/g/day and ϱ = {0.6, 0.8, 1.0}×10−3 day−1 (Table IV).

For the model personalization, MLSL requires a bounded parameter space (Section IV-B). 

We used D ∈ [0.0, 5.0]×10−3 mm2/day, α ∈ [0.0, 5.0] mm3/g/day, μnormal ∈ [0.5, 20.0] kPa, 

μtumor ∈ [0.5, 20.0] kPa, ϱ ∈ [0.0, 5.0]×10−3 day−1, and γ ∈ [0.0, 20.0] kPa. For the local 

optimization SUBPLEX, the convergence criterion was that every parameter change in an 

iteration is less than 0.01. The maximum number of function evaluations was 2000 for each 

personalization.

2) Results—Fig. 7 shows the simulations with different ground-truth parameters, and Fig. 

8 shows the corresponding strain components at day 600. εxx and its elastic (εxx(e)) and 

growth (εxx(g)) parts are shown for illustration. Fig. 7 shows that the tumor growth increased 

with α and ϱ. Fig. 8 shows that εxx(g) was positive and homogeneous inside the tumor 

because of the growth model (Section II-A2). As μtumor was five times of μnormal, there was 

relatively small elastic deformation (εxx(e)) within the tumor, while deformation was more 

significant at the boundary between the tumor and the normal tissues. εxx indicates the 

actual deformation by combining εxx(e) and εxx(g). These show that the tumor size changes 

were mainly caused by the growth part of the elastic-growth decomposition, and the tumor 

elastic incompressibility was preserved.

Table IV shows the estimated parameters and the prediction performances. α was well 

estimated by different frameworks except the RD framework. Comparing between the EG-

IM and EG frameworks, without using the image-derived motion, the EG framework 

overestimated μnormal and underestimated μtumor. Furthermore, the EG framework also 

overestimated the mass effect proliferation rate ϱ. Similar patterns can be observed between 

the F-IM and F frameworks. For example, the F-IM framework estimated μnormal to be less 

than μtumor for all cases, while the F framework overestimated μnormal. The F framework also 

found a larger force scaling parameter γ than the F-IM framework. For the RD framework, 

both D and α were larger than the ground-truth values and those estimated by the other 

frameworks in general.

For the overall performance, the EG-IM framework, which incorporated both the ground-

truth model and the image-derived motion, had the best results. The F-IM and F frameworks 

performed worse than the EG framework. These two frameworks, especially the F-IM 
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framework, underpredicted the tumor size as indicated by the small recalls and large 

precisions. For the RD framework, although it had the second-best overall performance, it 

also had the largest variance and contributed to the worst performance (e.g. maximum RVD 

= 57.4%).

D. Clinical Data

1) Experimental Setups—Seven diagnosed pancreatic neuroendocrine tumors from 

seven patients (five males and two females) were studied. In this IRB approved protocol for 

investigation of disease nature, there were no treatments to the tumors until they reached 3 

cm in diameter. The average age and weight of the patients at the first time point were 48.6 

± 13.9 years and 88.1 ± 16.7 kg, respectively. Each set of data had three time points of 

contrast-enhanced CT and FDG-PET images, and the pixel sizes were less than 0.94 × 0.94 

× 1.00 mm3 and 4.25 × 4.25 × 3.27 mm3, respectively. The tumor information is shown in 

Table I.

The ranges of some model parameters were larger than those of the synthetic data because of 

the larger variation in reality. with D ∈ [0.0, 5.0] × 10−3 mm2/day, α ∈ [0.0, 5.0] mm3/g/day, 

μnormal ∈ [0.1, 50.0] kPa, μtumor ∈ [0.1, 50.0] kPa, ϱ ∈ [0.0, 5.0] × 10−3 day−1, and γ ∈ [0.0, 

50.0] kPa. Other settings were the same as those of the synthetic data.

2) Results

Fig. 9 shows the predicted strains of Patient 1 and 4. The overall deformation of Patient 1 

was larger because of the larger deformation of the pancreas. Although Patient 1 had larger 

growth strain (εxx(g)), as the estimated μtumor was smaller than μnormal, the tumor was 

compressed in the prediction as indicated by the negative values of (εxx(e)). Therefore, the 

combined strain (εxx) was smaller than the growth strain. In contrast, as the tumor of Patient 

4 was stiffer than its surroundings, it was not compressed much. Thus, the combined strain 

was larger than that of Patient 1. These show how the mechanical parameters interact in our 

model.

Fig. 10 shows the prediction results of Patient 1. In this example, the RVD of the EG-IM, 

EG-IM-FEM, and F-IM frameworks were small and much better than those of the EG and F 

frameworks. Although the Dice coefficients of all frameworks were similar, the EG and F 

frameworks had recalls larger than the precisions, which indicates the tumor was 

overpredicted. The RD framework underestimated the tumor volume and had the worst RVD 

value.

Table V shows the overall estimated parameters and the prediction performances. Although 

the ground-truth parameters are unavailable, some characteristics similar to those of the 

synthetic data can be found. For the EG-IM and F-IM frameworks, the tumors were stiffer 

than the normal tissues on average. In contrast, the EG framework had similar stiffness for 

the normal tissues and tumors, and the F framework even had the normal tissues stiffer than 

the tumors. Tumors are known to be stiffer than their surroundings in general [38]. For the 

RD framework, similar to the synthetic data, the estimated values of diffusion parameter D 
were larger than those of the other frameworks. For the prediction performances, Table V 
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shows that the EG-IM and EG frameworks outperformed the F-IM and F frameworks. 

Comparing predictions with and without using image-derived motion, the performances 

were similar. The RD framework had the worst RVD values. The EG-IM-FEM framework 

had the overall best performance, and the tumors were also stiffer than the normal tissues. 

Nevertheless, the values of parameter D were zeros.

VII. Discussion

As mentioned in the introduction, pancreatic neuroendocrine tumors are rare with only about 

1000 new cases in the United States per year [2]. Furthermore, the proposed framework 

requires FDG-PET and contrast-enhanced CT images at multiple time points. Therefore, 

there were only seven patient data sets available. Although the results may not be 

statistically sound, they proved the concept of incorporating image-derived pancreatic 

motion for more pathophysiologically plausible biomechanical parameter estimation. 

Nevertheless, the pathophysiologically plausible model may under-perform due to the 

limited data. For example, if a larger and more diverse data set is available, parameters such 

as the ICVF threshold can be refined. Therefore, we expect better performance given a larger 

data set.

For the model personalization, because of the complexity of the overall framework, the 

optimal weights of different measurements in (15) were not systematically studied. As the 

weights are provided to increase the flexibility and potentially the accuracy through 

parameter optimization, the prediction performances could be improved with a systematic 

exploration such as sensitivity analysis.

For the synthetic data, the EG-IM framework had the best performance. This is because it 

had the same model as the ground truth, and the most complete set of measurements 

including ICVF, tumor volume, and image-derived motion. Nevertheless, having these does 

not necessarily provide accurate parameter estimation, and experiments were performed on 

synthetic data for the framework development. During the initial development, local 

optimization methods were studied and they did not usually provide accurate results. Image-

derived motion was only used for the FEM simulation but not the objective function, and 

this led to suboptimal mechanical parameter estimation. Therefore, the use of synthetic data 

is important for framework development and for demonstrating the parameter estimation 

capability of the framework under ideal situations. On the other hand, the lower 

performances of the other frameworks were expected. The experiments on these frameworks 

were to study the effects of different model components and measurements on the parameter 

estimation.

The results show the importance of incorporating image-derived motion. For the synthetic 

data, the EG-IM framework had more accurate mechanical parameter estimations than the 

EG framework. For the clinical data, the frameworks with image-derived motion had the 

tumors stiffer than the normal tissues, which is consistent with the literature [38]. This is 

reasonable as motion is directly related to the biomechanical properties. Therefore, although 

the prediction performances of the EG and EG-IM frameworks were similar on the clinical 

Wong et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data (e.g. 13.3% vs. 13.9% on RVD), the EG-IM model can provide a more 

pathophysiologically plausible mechanical model.

Comparing elastic-growth decomposition and tumor-density-induced forces, the latter 

tended to underpredict the tumor sizes especially for the synthetic data which had larger 

growths. A possible explanation of the underprediction is the use of a pure elastic model. 

When a tumor volume increased elastically, its volumetric stiffness in (5) also increased. As 

γ was constant during prediction, the forces could not catch up with the logistic growth. In 

contrast, with the elastic-growth decomposition, the tumor growth did not affect its 

volumetric stiffness, and logistic growth could be explicitly modeled. These show the 

potential advantages of using the elastic-growth decomposition.

For the RD framework, it had the largest estimated values of D and α for both synthetic and 

clinical data in general to compensate for the missing mass effect. For the synthetic data, the 

RD framework had the second-best overall performance. This means that the simulated mass 

effect can be partially accounted by adjusting D and α, though this may also lead to the 

worst prediction of the tumor size (see Table IV). For the clinical data, the RD framework 

had the worst RVD and ASD values. This means that using the reaction-diffusion model 

alone may be less capable to capture the underlying pathophysiology of the actual tumor 

growths.

The EG-IM-FEM framework had the best performance on clinical data. Similar to the EG-

IM framework, the estimated mechanical parameters were pathophysiologically plausible. 

Nevertheless, the estimated diffusion parameters were zeros, which means that the tumor 

growths were completely driven by the mass effect and this may be pathophysiologically 

less plausible. As the diffusion parameters characterize the invasiveness and thus the 

malignancy of the tumors [11], more accurate estimation could aid better surgical or 

treatment planning [1]. A probable reason for the zero diffusion is the relatively low 

resolution of the FEM meshes. Reaction-diffusion equations usually require high spatial 

resolutions. The spatial resolutions for FDM were 114 to 493×103 pixels, while for FEM 

were 23 to 36×103 elements (Section VI-A). Therefore, the reaction-diffusion simulations 

were less accurate with FEM. Increasing the FEM mesh resolutions can improve the 

accuracy, but the computation time will also increase. Therefore, as stated in Section I-C, 

using FEM for both reaction-diffusion and biomechanical models may not be optimal.

The computation of ICVF uses the ratio between the contrast enhancements of the tumor 

and the blood pools. Thus, the effects of injection doses and X-ray energy levels can be 

alleviated. Nevertheless, since the ratio depends on the time between injection and imaging 

[27], CT images acquired at the same phase should be used for consistent ICVF 

interpretation at different time points.

For simplicity, nonrigid image registration is used to compute the image-derived motion, and 

the gradient magnitude is used as an indicator of salient features. For more accurate 

enforcement of image-derived motion, segmentation of the pancreas is required. As manual 

segmentation is tedious, this approach will not be considered until automatic segmentation 

of tumorous pancreas is available.
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With FDM, the simulation time of the reaction-diffusion model can be greatly reduced. 

Nevertheless, FEM with implicit time integration is required for accurate mass effect 

simulation. This becomes the bottleneck of the computational efficiency and thus the 

average time for model personalization on clinical data was about 24 hours. To further 

reduce the computation time, less computationally expensive numerical approaches or better 

optimization methods will be investigated.

The numerical accuracy of the FDM-FEM coupling is not evaluated in this paper. For a 

proper evaluation, an analytical solution of a problem is required, and the accuracy is 

evaluated as the difference between the analytical and numerical solutions [39]. 

Nevertheless, such analytical solutions are only available for very simple geometries, 

models, and problems. As our model is complicated and comprising both reaction-diffusion 

equation and biomechanical model, this approach is very difficult if not impossible. Other 

possible ways of evaluation are under investigation.

VIII. CONCLUSION

We have proposed a pancreatic tumor growth prediction framework with elastic-growth 

decomposition, image-derived motion, and FDM-FEM coupling. With the elastic-growth 

decomposition, the growth and elastic parts can be modeled separately. This avoids 

compromising the realism of the models. Using the FDM-FEM coupling, the simulation and 

thus personalization time can be greatly reduced. Experiments on synthetic and clinical data 

showed that, with the use of image-derived motion, more pathophysiologically plausible 

biomechanical parameters can be estimated. Experiments on synthetic data showed that the 

optimization framework can properly identify the model parameters, and the experiments on 

clinical data showed that the proposed framework can achieve promising prediction 

performance.
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Fig. 1. 
Flow diagram of the proposed framework. Measurements at the first time point provide the 

tumor geometry and boundary conditions for the growth simulation. Measurements at the 

second time point are compared with the simulation to personalize the model parameters 

through global optimization.
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Fig. 2. 
Elastic-growth decomposition. The original configuration ℬ0 comprises the tumor (cyan) and 

its surroundings (blue). The growth deformation gradient Fg leads to an intermediate 

incompatible configuration ℬg. The elastic deformation gradient Fe is then applied for the 

compatible configuration ℬt.
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Fig. 3. 
(a) A FEM mesh and its middle slice. The green zone is the tumor, which can grow into the 

blue zone. The red zone is for enforcing image-derived motion. (b) Image-derived motion. 

Left: ROIs of the post-contrast CT images at the earlier (top) and later (bottom) time points. 

Right: deformation field from the earlier to the later time point overlapping with the gradient 

magnitude at the earlier time point.
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Fig. 4. 
SUV and ICVF computed from FDG-PET and contrast-enhanced CT images. ICVF 

represents the normalized tumor cell ratio which provides the initial conditions for 

simulation or the measurements for model personalization. The proliferation rate in the 

reaction-diffusion equation can be computed by combining SUV and ICVF.
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Fig. 5. 
An example of objective function evolution. For DIRECT, the large fluctuation indicates its 

global search pattern. It failed to converge to the minimal objective function value with the 

given number of iterations (2000). For MLSL, the large fluctuation at the beginning 

indicates the evaluations of the sampling points, followed by the local search patterns. The 

best result was achieved in the fourth local search.
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Fig. 6. 
FDM-FEM coupling. Top and bottom: FDM and FEM representations. (a) ICVF and 

geometry before simulation. (b) FDM simulation of tumor invasion without mass effect 

(top), and the interpolated FEM representation (bottom). (c) FEM simulation of mass effect 

without tumor invasion (bottom), and the transformed FDM representation (top). (d) The 

FDM-FEM coupling with the combined simulations of (b) and (c), which had the largest 

tumor growth as invasion and mass effect are mutually reinforcing.
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Fig. 7. 
Synthetic data. Tumor growth simulations with different model parameters. Left to right in 

each box: the simulated ICVF and tumor volume. (a) Before simulation. (b)–(c) Simulations 

with different values of α and ϱ. The tumor growth increased with α and ϱ.
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Fig. 8. 
Synthetic data. The ground-truth strains along the x-axis (εxx) and their elastic (εxx(e)) and 

growth (εxx(g)) parts at Day 600. Negative and positive values correspond to compression 

and expansion, respectively. (a) and (b) correspond to simulations with different parameters. 

The small magnitudes of εxx(e) inside the tumors indicate the tumor size changes were 

mainly caused by the growth part, and the tumor elastic incompressibility was preserved.
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Fig. 9. 
Clinical data. EG-IM framework. Comparisons of the predicted strains along the x-axis (εxx) 

between Patient 1 and Patient 4, and their elastic (εxx(e)) and growth (εxx(g)) parts. The 

negative values of εxx(e) inside the tumor of Patient 1 indicate elastic contraction, thus the 

resulted tumor size change was small even εxx(g) was large.

Wong et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Clinical data. Patient 1. (a) The post-contrast CT image at Day 0 with the tumor highlighted. 

(b) The segmented tumor volumes at different time points, and the corresponding contours 

overlapping with the post-contrast CT images. (c) The prediction results at the third time 

point, with red and green represent measurements and predictions, respectively. The 

definitions of the frameworks can be found in Section VI.
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TABLE II

The preset parameters and their values, and the parameters to be estimated.

Preset parameters β = 0.02 day−1, λ = 5 kPa

Parameters to be estimated D, α, µnormal, µtumor, ϱ
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TABLE III

Computation time comparison between FDM and FEM. Average computation times (seconds) of tumor rowth 

simulations using the reaction-diffusion model alone on seven patient data. Format: mean±std [min,max].

FDM FEM

Heterogeneous 21.3±11.1 [10.0, 40.5] 52.8±19.2 [24.3, 79.8]

Homogeneous 21.5±11.2 [10.1, 40.9] 28.8±9.4 [13.7, 42.3]
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