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Abstract

We describe an efficient gradient computation for solving inverse problems arising in magnetic 

resonance elastography (MRE). The algorithm can be considered as a generalized ‘adjoint 

method’ based on a Lagrangian formulation. One requirement for the classic adjoint method is 

assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, 

we show this property is no longer a necessary condition in our algorithm, but the computational 

performance can be as efficient as the classic method, which involves only two forward solutions 

and is independent of the number of parameters to be estimated. The algorithm is developed and 

implemented in material property reconstructions using poroelastic and viscoelastic modeling. 

Various gradient- and Hessian-based optimization techniques have been tested on simulation, 

phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the 

proposed scheme for gradient calculation.

Correspondence to: Keith D. Paulsen.

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2017 January ; 36(1): 236–250. doi:10.1109/TMI.2016.2604568.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index Terms

adjoint method; inverse problem; MR elastography; poroelastic modeling; viscoelastic modeling

I. Introduction

The mechanical properties of tissue are affected by a wide range of diseases. Fibrosis of the 

liver increases tissue stiffness proportional to its severity, which has proven to be an 

excellent diagnostic [1], [2], [3]. Measurements of the stiffness and viscosity of breast 

cancer can aid in classification of benign and malignant lesions [4], [5]. More recently, 

measurements of the viscoelastic and poroelastic properties of brain tissue have been 

associated with Alzheimer’s disease [6], Multiple sclerosis [7] and hydrocephalus [8], [9]. 

The emerging field of mechanobiology has demonstrated the fundamental importance of the 

mechanical environment to the function of cells [10]. For example, cancer cells grown on a 

stiff substrate are more likely to migrate (i.e. metastasize) than those on a softer template 

[11]. In order to understand and utilize these processes, accurate measurement and imaging 

of in vivo tissue mechanical properties is important.

Ex vivo mechanical testing is of limited practical utility due to significant post-mortem 

changes in tissue properties, as well as the requirement that the tissue of interest be removed 

from the body. In vivo measurements are preferable, and have been demonstrated using MRI 

[12], [13], [14], ultrasound [15], [16], [17] and optics [18]. Of these modalities, MRI is most 

capable of producing accurate images of entire organs; whereas ultrasound and optical 

methods usually provide mechanical property estimates in a more localized region and at 

smaller spatial scales.

Magnetic Resonance Elastography (MRE) is underpinned by a parameter recovery inverse 

problem, where a set of discretized, spatially varying mechanical properties within an 

assumed tissue mechanical model are estimated from MRI-generated full volume 

displacement measurements acquired during a mechanical stimulus. The stimulus is usually 

an externally applied vibration at around 50Hz [12], [13], but can also be the intrinsic 

pulsation of tissues during the cardiac cycle [19]. Two classes of algorithms are commonly 

used to recover property estimates from displacement data: direct inversion (DI) and 

nonlinear inversion (NLI).

DI estimates mechanical properties directly by processing and differentiating the motion 

data [20], [13]. Model-based approaches include local frequency estimate (LFE) [21], [12], 

algebraic inversion of the differential equation (AIDE) [22], curl-based direct inversion (c-

DI) [20], [23] and variational method (VM) [24], [25]. LFE estimates the local spatial 

frequency of the shear wave propagation pattern using a series of multiscale filters and 

solves the Helmholtz equation for the shear modulus under the assumption of no motion 

attenuation. AIDE estimates both Lamé’s constants by solving locally homogeneous 

viscoelastic differential equations with local derivative filters. c-DI applies a curl operator on 

a homogeneous form of the differential equation in order to mathematically eliminate the 

longitudinal wave component. VM is similar to AIDE, but uses a weak (variational) form 

and appropriately chosen test functions to shift the derivative operations from the noisy 
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motion data to the smooth test functions. DI approaches are relatively simple to implement 

and have proven successful in a range of clinical applications. However, they usually involve 

viscoelastic characterization of tissues at higher frequencies, and typically invoke 

assumptions of locally homogeneous properties (which limit the spatial resolution of the 

mechanical property estimates). FEM-based DI schemes that eliminate the local 

homogeneity assumption have also been described [26], [27].

Alternatively, NLI, which refers to a class of iterative schemes, recovers a set of unknown 

properties by minimizing an objective function defining the least-squares difference between 

the computed displacement field and measured data, and functions well across a wider range 

of frequencies than DI [28], however, at the expense of significantly increased computational 

cost. NLI has been demonstrated in MRE by Van Houten et. al., in which the subzone 

process was introduced to mitigate the computational burden associated with mechanical 

property updates in 3D geometries through a parallelized subdivision scheme [29], [30].

This original NLI presentation was based on an undamped linear elastic model and the 

Gauss-Newton (GN) method to compute parameter updates. Selecting an appropriate model 

is important to avoid model-data mismatch [31], and NLI has been extended and modified to 

incorporate other mechanical models, including viscoelastic [32], incompressible [33], 

Rayleigh damped [34], [35] and poroelastic [36], [28] governing equations. Computing one 

GN update involves calculation of a Jacobian matrix that requires one forward solution per 

unknown property value, and a costly inversion of a large, full Hessian matrix. 

Regularization is required (e.g. Marquardt [37] and Joachimowicz [38]) to maintain stability 

which degrades some of the fast convergence which can be gained from the second 

derivative information contained in the Hessian matrix. More recent Rayleigh damped and 

viscoelastic nonlinear inversion algorithms use the conjugate gradient (CG) method (which 

requires only first derivatives through the gradient of the objective function). Quasi-Newton 

methods also only incorporate gradient information, and can converge faster than CG at the 

expense of increased instability in the property updates [39].

All of these methods (GN, QN, CG) involve gradient calculations and the adjoint method is 

an efficient algorithm that only requires two forward solutions independently of the number 

of unknown property estimates [40], [41]. In the classic adjoint method, the discretized 

system of equations representing the MRE model must be self-adjoint which is often (e.g. 

viscoelasticity) but not always (e.g. poroelasticity) the case. In this paper, we develop and 

implement a generalized adjoint method based on a Lagrangian that no longer requires the 

stiffness matrix to be self-adjoint, but reverts back to the classic adjoint scheme when the 

stiffness matrix is self-adjoint. We present the details of implementation via the finite 

element method in a common mathematical framework for three widely used mechanical 

models in MRE: compressible viscoelasticity [42], [34], incompressible viscoelasticity [32], 

[43] and poroelasticity [44], [45]. Numerical experiments with data from simulations, tissue 

mimicking phantoms and in vivo brain data show that the generalized adjoint algorithm 

preserves efficiency of the gradient calculation.
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II. Theory

A. Forward Problem

The forward problem is defined as follows: given

1. the material property distributions, which include the Lamé’s parameters, μ and 

λ, in viscoelastic materials, and the additional hydraulic conductivity, κ, in 

poroelastic materials,

2. the displacement and/or pressure boundary conditions (type I) and

3. the traction and/or flux boundary conditions (type II),

find the displacement and/or pressure fields, denoted by uc and p, respectively, that satisfy 

the balance of linear momentum equations associated with the material models. Three 

models - viscoelastic compressible, viscoelastic incompressible and poroelastic - are 

considered in this work. The forward problem can have different while equivalent forms: 

strong form, weak form and discrete form for numerical compuation. The strong and weak 

forms of these models will be presented in Section II-D. A general discrete form using the 

Finite Element Method (FEM) is given as

(1)

where K and f are, respectively, the stiffness matrix and forcing vector. θ represents the 

material property distributions in association with the material models. U is typically the 

displacement field, uc, to be computed, but can include other dependent variables such as the 

pressure field, p, in some mechanical models such as viscoelastic incompressible and 

poroelastic models, in which U represents (uc, p).

B. Nonlinear Inversion

Nonlinear inversion technique (NLI) involves a computational model of the dynamical 

response of heterogeneous materials under external excitation (the forward problem), and 

estimates material properties, represented by vector, θ, containing M parameters defining 

their spatial property distribution in an iterative fashion, by ensuring the resulting model 

displacements are as close as possible to the measured motion data (the inverse problem). In 

MRE, NLI is posed as a constrained optimization problem that minimizes the difference Π 
between measured data and values computed from the forward problem, i.e.,

(2)

subject to the constraint that uc satisfies the model equations. In (2), um and uc are both 3n × 

1 complex-valued displacement vectors supported by a 3D basis, which places each entry in 

um and uc in the appropriate voxel location in 3D space, among which, um is acquired from 

MRI measurement, and uc(θ) is computed from the forward model based on the current 
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estimate of the material properties, θ. n is the node number and the superscript H denotes the 

complex conjugate transpose.

To find θ that minimize (2), three iterative algorithms - Gauss-Newton (GN) [46], Conjugate 

Gradient (CG) [47] and Quasi-Newton (QN) [48], [49], [50] - are available and widely used 

to update the material properties at the k-th iteration by

(3)

where pk denotes the ‘search direction’ and αk is some step size to promote reduction of the 

objective function. In this section, selection of the search direction in each iterative method 

is described. Information on scaling and linesearch can be found in [51], [52], [53], [54].

1) Gauss-Newton (GN)—GN can be derived from a second order Taylor expansion of the 

objective function to determine the search direction, which is given by

(4)

where He is the exact Hessian matrix of second derivatives and g is the gradient vector. In 

[30], [55], [51], the gradient vector and an approximate Hessian matrix are calculated as

(5)

where J = ∂uc/∂θ is a 3n × M Jacobian matrix, in which 3n and M denote the number of 

entries in uc and the number of unknowns in θ, respectively. The i-th column of the Jacobian 

is obtained by solving the forward system

(6)

where K is the stiffness matrix in the forward problem (1). Thus, calculating a N × M 
Jacobian requires M forward solves of a N-dimensional sparse linear system. The Gauss-

Newton method theoretically converges faster than gradient-based algorithms since it uses 

second derivative information; however, it suffers from increased computational cost per 

iteration from Jacobian construction and factorization of the Hessian. The Hessian matrix 

calculated from (5)2 is normally ill-conditioned, and in practice, regularization is added to 

ensure positive definiteness, i.e.
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(7)

When the regularization factor is considerably larger than the scale of H, GN acts more like 

a steepest descent method where the search direction is proportional to −g. Therefore, the 

regularized GN method achieves numerical stability with a trade-off in the convergence rate 

of the original GN.

2) Conjugate Gradient (CG)—CG stems from the steepest descent approach but 

incorporates a set of search directions from the gradient which eventually form a conjugate 

basis set, i.e.,

(8)

where βk is given by the Polak-Ribére formula. For linear problems, CG converges super-

linearly, i.e., a M-parameter linear optimization problem completely converges in M-

iterations. In practice, the super-linearity is not achieved in nonlinear problems. Nonetheless, 

CG can be more efficient than GN because of its parameter-size independence and use of 

simple vector-vector operations. Moreover, the memory storage requirements for one 

iteration only involve 4 vectors of length M, i.e., gk−1, gk, pk−1 and pk.

3) Quasi-Newton (QN)—QN updates an approximation of Hessian matrix as the iteration 

progresses, rather than re-computing it using current information, as in GN. The inversion of 

the Hessian is given by

(9)

where sk = θk − θk−1 and yk = gk − gk−1. The inverted Hessian approximation can then be 

used to compute an update of the search direction as

(10)

QN converges super-linearly in most cases, however, the memory storage requirement of 

inverse Hessian H−1 is (N2) as in GN. An established limited memory BFGS algorithm 

[48], [49], [50] was implemented which computes the Hessian implicitly and only requires a 

number of most recent pairs of {sk, yk}.

For these iterative methods, the final results are not gauranteed to converge to a local 

minimum. One necessary condition for convergence is the directional derivative of the error 

along pk should be negative, i.e. . In CG, this requirement is enforced by line 

searches to find an acceptable step size, α, to guarantee a reasonable descent in the error 
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function. For Newton-type methods, the condition is equivalent to the positive definite 

property of the Hessian. In GN, the constraint is realized by adding a comparable regularized 

diagonal matrix. In QN, we restart the L-BFGS-B update with the identity matrix when 

 is not sufficiently positive. Table I summarizes various computational features of each 

algorithm.

C. Gradient Calculation

An efficient algorithm for gradient calculation is essential to improve computational 

performance. A straightforward calculation of the gradient vector, g, via (5)1 and (6) (i.e. by 

differentiating Π in (2) with respect to θ), requires M + 1 solves of a forward problem of size 

N [56], where N denotes the degrees of freedom in the discretized finite element equations. 

The adjoint method proposed in [56], [40] uses a Lagrangian to derive a set of forward 

equations, and the gradient calculation is based on two forward solutions. For viscoelastic 

models studied in the literature [56], [41], [57], [58], [40], the classic approach works well 

owing to the self-adjoint property of the forward problem in which the variational 

formulations of the adjoint equations only differ by the right-hand-side driving terms. 

However, the poroelastic model has non-self-adjoint functionals, and the classic approach 

can not be directly applied. In this section, the Lagrangian approach is used to formulate a 

generalized adjoint method for gradient calculation that does not require the computational 

model to be self-adjoint. The resulting forward solutions are referred to as the force-driven 

and difference-driven forward problem, respectively.

The weak form of the forward problem (1) is denoted by

(11)

where U and W represent the variables in the trial solution space  and the weighting 

function space , respectively. Note U usually represents the displacement field, u, only; but 

may also include pressure, U = (u, p)T, for example, in poroelasticity. The functional A 
depends on θ explicitly in addition to U and W, while U is implicitly related to θ when u 
and p are computed by solving the forward problem in NLI-based MRE. Specific derivations 

of weak forms relevant to MRE are described in Section II-D. The classic adjoint approach 

developed by Oberai et al. [56] is described for a forward model with self-adjoint functional 

A, i.e.,

(12)

where A⋆ denotes the adjoint of A, which occurs in viscoelastic models. A is no longer self-

adjoint in poroelastic models because of addition of the pressure variable associated with the 

penetrating poro fluid. Here, a general, equivalently efficient scheme is presented essentially 

placing no constraint on A, thus broadening application of the method. The objective 

function (2) is augmented to include the forward problem (11) through use of the 

Lagrangian
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(13)

where the functionals A(W, U; θ) and b(W) in (13) take specific forms associated with the 

forward problem model equations under consideration (e.g. (25) and (23) in the viscoelastic 

compressible case; (29) and (30) in the viscoelastic incompressible case; and (40) and (41) 

in the poroelastic case). Since W is defined as a variable in weighting function space 

multiplied on both sides of the strong form of the forward problem, it can be viewed as a 

Lagrange multiplier [56].

By taking the first variation of each argument, i.e.

(14)

with D being the partial derivative operator, a generalized scheme for gradient calculation is 

given below:

Step 1: Setting DW ℒ · δW = 0, ∀ δW ∈  yields the force-driven forward problem

(15)

Step 2: Setting DU ℒ · δU = 0, ∀ δU ∈  yields the difference-driven forward 

problem

(16)

with S being a 3n × N matrix defined as ∂uc/∂U and u satisfying (15).

Step 3: With W and U computed from (16) and (15), respectively, the first variation 

of ℒ becomes

(17)

The gradient vector g of the objective function with respect to the material properties 

θ is given by

(18)

Thus, g can be calculated as

(19)
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Note that the approach described above is quite general since the self-adjoint property of A 
is not imposed. This approach suits viscoelastic models as well as poroelastic and 

poroviscoelastic models based on biphasic theory.

D. Weak Forms

Efficient gradient computations are considered for inversion of two mechanical models - 

viscoelasticity and poroelasticity and their weak forms are presented here. Previous studies 

[28] show that the viscoelastic model produces better reconstructions at higher frequencies 

as the viscous effects of the solid tissue become significant, while the poroelastic model is 

better at low frequency intrinsic actuations since the motion attenuation is negligible, and the 

flow of the interstitial fluid becomes a driving force of brain deformation. In the viscoelastic 

model, the material properties of interest are the Lamé’s parameters, μ and λ. In the 

poroelastic model, the hydraulic conductivity, κ, is also an important factor that is likely to 

be relevant to a wide range of neurological conditions.

1) Viscoelastic Model: Compressible Case—The governing equation for solids under 

time-harmonic motion, together with the boundary conditions is given as

(20)

where ω denotes the actuation frequency; ρ is the density of the solid; u is the complex-

valued time-harmonic displacement field with components u1, u2 and u3; σE is the Cauchy 

stress tensor defined over the body Ω. u0 is the prescribed displacement on the surface 

denoted by Γu and f0 is the traction acting on the rest of the surface denoted by Γσ with n 

being the unit outward surface normal. Here,  is the surface over the volume of 

interest. In most numerical implementations, the weak form of the governing equation is 

used to relax the smoothness requirements on the solution. With test functions υ, where υ = 

0 on Γu, the weak formulation of (20) becomes

(21)

where the double dot operator indicates the inner product of two tensors. The forward 

problem in its weak form becomes

(22)

where

(23)
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For linear elastic isotropic materials, the Cauchy stress tensor can be expressed as

(24)

where ε represents an infinitesimal strain tensor; λ and μ are the Lamé’s material parameters 

(μ is the shear modulus), which are the material parameters θ to be reconstructed in the 

elastography problem. In the linear elastic case,

(25)

The corresponding strong form is given as

(26)

Note that the damping effect is proportional to the elastic forces in the material, which is 

equivalent to assuming the shear modulus μ is complex-valued with its imaginary part 

representing the loss modulus. Damping effects proportional to inertial forces can also be 

considered through the Rayleigh damping formulation [51], [34], [59].

2) Viscoelastic Model: Incompressible Case—For nearly incompressible materials 

where ∇ · u → 0 and λ → ∞, numerical instabilities can occur when solving (26) since λ 
becomes much larger than μ. In this case, a mixed displacement-pressure formulation [60] 

can be used to replace (20) in which

(27)

where the bulk modulus K = (2μ + 3λ)/3 and a scalar pressure term p are introduced, and 

tr(ε) → 0 as in perfectly incompressible materials. Let U = (u, p) and W = (υ, q) be the trial 

and test functions, respectively. By weighting (27)1 with υ and (27)2 with q/K, and 

combining the results, the weak form of the forward problem in (27) can be written as

(28)
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where

(29)

and

(30)

3) Poroelastic Model—In the poroelastic model considered here, tissue is regarded as a 

biphasic continuum which consists of a porous compressible solid matrix and a viscous 

incompressible penetrating fluid. The resulting partial differential equations describing the 

dynamical response of the tissue under time-harmonic excitation are [61], [45]

(31)

where

(32)

In (31), σE represents the elastic stress tensor; ρ and ρf refer to the solid and fluid densities, 

respectively; p is the complex-valued time-harmonic pore-pressure; and q is the 

corresponding fluid flow with flux q · n. As in the viscoelastic case, u and ω denote the 

three-dimensional displacement field and the actuation frequency. The parameter β is given 

as

(33)

where ϕp, κ and ρa denote the porosity, hydraulic conductivity and apparent density, 

respectively. Note that the hydraulic conductivity is taken as a spatially varied parameter in 

elastography [62], [45]. The problem is closed with essential and natural boundary 

conditions, prescribed as
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(34)

Let Γ denote the entire boundary of the body, thus  and n is the unit 

outward normal on Γ. Substituting (32) into (31) leads to

(35)

a mixed displacement-pressure formulation for poroelastic materials. Let  and  be the 

trial solution and weighting function spaces, respectively, such that

(36)

then multiplying (35)1 and (35)2 with test functions υ and q, respectively, and applying the 

divergence theorem give rise to

(37)

Assuming small deformations and σE in its linear elastic form, (24), (37) becomes
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(38)

with the concomitant weak formulation

(39)

where

(40)

(41)

The material properties of interest include the Lamé parameters associated with the solid 

phase as well as the hydraulic conductivity κ of the penetrating fluid medium, i.e. θ = (μ, λ, 

κ).

Remarks

1. For viscoelastic models, the self-adjoint property of A can be exploited to show 

that the difference-driven forward problem, (16), is equivalent to

(42)

Thus, in the finite element implementation, the corresponding stiffness matrix 

takes the same form as the force-driven forward problem (15). However, in the 

poroelastic case, A is no longer self-adjoint. Instead, the discrete system 

associated with the difference-driven forward problem (16) needs to be derived.

2. The corresponding strong form of (16) in the poroelastic case can be obtained 

from the divergence theorem and is given by
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(43)

Here, σE is the stress tensor for υ and uc is the computed displacement field from 

the force-driven forward problem (39). The second term in (43)1 and the first 

term in (43)2 are altered when compared with (35).

E. Finite Element Implementation

The Finite Element Method (FEM) is widely applied to solve elasticity problems. A linear 

system of equations is obtained with a non-singular stiffness matrix and a unique set of 

displacement fields can be calculated. Finite element implementations of the model 

equations described in Section II-D are summarized in the appendices. Specifically, the 

discrete equations of the force-driven and the difference-driven forward problems in the 

viscoelastic compressible and incompressible cases are given in Appendix A and B, 

respectively. The gradients of the objective function with respect to λ and μ are presented in 

(A.22), and a general algorithm for gradient calculation in viscoelastic models is 

summarized at the end of Appendix A. Appendix C includes the finite element equations of 

the force-driven forward problem in the poroelastic case, as given in (C.4–C.8).

Here, the generalized difference-driven forward problem (16) in the poroelastic model is 

described in more detail. First the variables in the trial solution space  and the weighting 

function space  are denoted as

(44)

From (40), the right-hand-side term in (16) becomes

(45)

and the left-hand-side term can be written as
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(46)

Some of the terms in (45) are self-adjoint and are discussed in the Appendix C; thus only the 

discrete forms of the non-self-adjoint terms are presented, i.e.

(47)

The generalized difference-driven forward problem (16) after finite element discretization 

can be written as

(48)

Most of the components in [K⋆] are the same as in the stiffness matrix [K] in the force-driven 

forward problem (C.4) except

(49)

(50)
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(51)

The forcing term, f⋆, takes the same form as in the viscoelastic incompressible case, which is 

given in (B.6) in the Appendix B.

In the poroelastic model, hydraulic conductivity κ, is an important physical parameter of 

interest, and is implicitly contained in β. In practice, θ = (μ, λ, β) is estimated, where a third 

term is added to the gradient vector (A.22), given as

(52)

Eqs. (C.4) and (48) lead to an efficient algorithm to calculate the gradient vector, g, which 

requires only two forward solutions and is independent of the number of material 

parameters. This efficient gradient calculation can be applied to the iterative process in (3) 

for updating the material property distributions by any of the methods outlined in Section II-

B (i.e. GN, CG, QN). The algorithm for gradient calculation at the iteration step k is given as

Step 1: Solve (C.4) using θk to evaluate Uk.

Step 2: Solve (48) using θk to evaluate Wk.

Step 3: Calculate the gradient vector, gk, using (A.22) and (52), given Uk and Wk 

from (C.4) and (48), respectively.

The search direction, pk, can be computed using either CG, i.e. (8) or QN, i.e. (9) and (10), 

given the current estimate of the gradient vector, gk. The material property distributions, 

θk+1, can then be updated using (3). This process is repeated until the convergence of θ.

Remarks

1. Both K and K⋆ are well-conditioned given appropriate boundary conditions, thus 

ensuring unique solutions to the forward problems given material property 

distribution θ.

2. The self-adjoint property of A is not equivalent to the symmetry of the associated 

stiffness matrix K in the discretized system. For example, in the viscoelastic 

models, A is self-adjoint and K is symmetric in the compressible case whereas A 
is also self-adjoint but K is not necessarily symmetric in the incompressible 

model.
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3. From (45), the non-self-adjoint terms arise from the pressure equation only. 

Thus, the standard adjoint method is suitable for most viscoelastic models.

4. Since solutions to the inverse problems are not unique, various regularization 

techniques are normally applied to the reconstruction algorithm in order to prefer 

solutions that conform to a-priori information. For example, Tikhonov 

regularization ensures the material property solution does not vary wildly from 

an initial or previous material property estimate. The modified objective function 

(2) is then given as

(53)

Total variation minimization is another regularization technique that avoids a 

large degree of spatial variation in the material property distributions, where (2) 

takes the form

(54)

The generalized adjoint approach is suitable for regularized optimization 

functions as well. In the results presented in section III, total variation was used 

with a weighting factor, αtv = 10−10.

F. Computational Costs

Here, four different iterative methods for solving the inverse problem are considered: (1) a 

gradient-based method where the classic adjoint approach is used for gradient calculation; 

(2) a gradient-based method where the generalized adjoint approach is used for gradient 

calculation; (3) a gradient-based method where the straightforward approach is used for 

gradient calculation and (4) the Gauss-Newton method.

According to [41], the cost of solving the forward problem using Gaussian elimination is 

(N7/3) for LU factorization and (N5/3) for back-substitution, where N denotes the number 

of unknowns in the forward problem. Although the stiffness matrices in the force-driven and 

difference-driven equations take different forms, their sparse structures (thus the 

bandwidthes) are the same. In both the classic and generalized adjoint approaches, two 

forward solves are required. However, the LU factorization is carried out only once for the 

stiffness matrix K in the classic approach, while in the non-self-adjoint functional case, both 

K and K⋆ need to be factorized. In the straightforward approach, the gradient vector g is 

estimated using (5)1, which requires M + 1 forward solves. In addition, for the GN method, 

a linear system with a dense Hessian matrix H (4) needs to be solved in order to update the 

search direction, which costs (N3). A summary of the computational cost for each iterative 

method is given in Table II. The straightforward approach requires M − 1 more back 

substitutions compared with the classic adjoint method. In both viscoelastic and poroelastic 

models studied in this work, M is the same order as N, thus the classic adjoint method takes 
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(N5/3(N − 1)) fewer back-substitution operations than the straightforward approach. In FE 

implementation of phantom and human brain, N is between 103 and 106, implying 

substantial computational savings. The generalized adjoint approach requires factorization of 

both K and K⋆, thus takes one more (N7/3) operation compared to the classic adjoint and 

straightforward methods. However, only two back-substitution steps are needed as in the 

classic adjoint approach, which leads to total savings of (N5/3(N − N2/3 − 1)) operations 

compared with the straightforward calculation. Figure 1 shows theoretical estimates of the 

computational costs for the classic and generalized adjoint approaches compared with the 

straightforward calculation. Based on Table II, the values along the y-axis are

(55)

for the classic and generalized approaches, respectively, which converge to  and 

as N tends to +∞. At N = 103, the computational costs for the classic and generalized 

approaches are about 10% and 20% of that for the straightforward calculation, while at N = 

106, both approaches take less than 2% of the time in the straightforward approach.

G. Parallel Computation

In this work, a sub-zone approach [29] is utilized in which the domain is divided into 

multiple overlapping sub-regions. Each processor is fully responsible for a small, complete 

iterative reconstruction task. This parallel scheme is easy to implement and has been shown 

to significantly reduce computational time. An iterative, reconstruction algorithm was 

developed with the Message Passing Interface (MPI) protocol in order to facilitate 

interprocess communication. Numerical studies presented in the following sections were 

performed on a 2600+ core Beowulf/Linux cluster. Forward problems were solved using 

multifrontal massively parallel sparse direct solver (MUMPS) [63], [64] owing to the sparse 

nature of the stiffness matrices.

III. Verification of the Generalized Adjoint Method

A. Phantom Study: Viscoelastic Modeling

A silicon phantom [65] was used in this study and consisted of a 50% A341 material 

background with cylindrical inclusions of four diameters - 29, 20, 15 and 10mm and four 

stiffness contrasts - 55, 60, 65 and 70% A341. All of the inclusions had an approximate 

thickness of 20mm and were arranged in three layers (16 inclusions in total). The cylindrical 

phantom had a slight taper from 90mm diameter at the base to 96mm at the top, and a height 

of 85mm. Displacement data were collected using a Philips 3T Achieva scanner (Philips 

Medical Systems Best, the Netherlands) with a single-shot, spin-echo echo-planar imaging 

sequence modified for MRE with motion sensitizing gradients and voxel size of 
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2mm×2mm×2mm. The phantom was vibrated using a piezoelectric actuator at 50Hz. Both 

viscoelastic models - (20) and (27) - and three optimization techniques - CG, QN and GN - 

were used to reconstruct the elastic properties of the phantom. Eqs. (20) and (27) are two 

equivalent forms of viscoelasticity; however, (27) provides a stabilized finite element form 

for the nearly incompressible case. In (20), λ estimates can be inaccurate since they are 

driven by the divergence term, ∇ · u, which is noisy in MR measurements. In order to 

implement (20), an upper bound on λ needs to be imposed for numerical stability. Previous 

studies [42], [34] have shown that both viscoelastic approaches are able to recover accurate 

shear moduli provided the longitudinal wave is modeled accurately.

T2 image cross-sections and the corresponding reconstructed shear moduli are shown in 

Figure 2. The real and imaginary shear moduli are normally referred to as the storage and 

loss modulus, G′ and G″, respectively, in the dynamic modeling of complex materials 

where the loss modulus is related to the motion attenuation in the viscous case. The phantom 

was constructed from non-viscous silicon material; thus, only the real shear modulus was 

reconstructed in the inversion. Mechanical testing results of different A341 silicone 

concentrations given in [43] indicate that the storage modulus is essentially constant under 

different actuation freqencies, and varies from 3.3kPa for 50% A341 silicon gel and up to 

11kPa for 100% A341 silicon gel. Our simulations predict reasonable ranges of shear 

moduli compared to these mechanical testing results.

Figure 3 shows the averaged real shear modulus and a non-dimensionalized error function, 

γ, defined as

(56)

for all iterations. QN converges slightly faster than CG, but the difference is small. The 

slower GN convergence is due to the added regularization of the Hessian.

B. Brain Study: Viscoelastic Modeling

The brain has more complex microstructure relative to a phantom, and regions and structures 

can exhibit distinct mechanical properties. Here, externally actuated brain data was collected 

from a 24 year old healthy volunteer using a Siemens 3T Allegra scanner. Motion was 

applied at 50 Hz using a head rocker system, and a multishot, variable-density, spin-echo 

spiral MRE sequence was used to measure 3D displacements for 20 axial slices with voxel 

size of 2mm×2mm×2mm [32], [66]. Brain tissue is assumed to consist of viscoelastic solids 

and the elastic properties are reconstructed from MRE data using the same numerical 

methods as in the phantom study. The T2 weighted image of a healthy human brain is shown 

in Figure 4(a). The shear modulus images reconstructed with the compressible and 

incompressible models are presented in Figures 4(b–m). Similar to the findings from the 

phantom study, QN converges faster in general, compared to CG. Figure 5 shows the 

averaged shear modulus and error function convergence for the various method. 
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Theoretically, GN converges faster because it incorporates second-order information. 

However, it suffers from a number of drawbacks:

• GN converges very slowly in practice because the Hessian matrix is heavily 

regularized to maintain numerical stability.

• GN increases computational time due to the inversion of a dense Hessian matrix, 

which is (N3).

• GN requires memory storage of (N2) for the dense matrix, which is one order 

of magnitude more than that for the gradient-based approaches.

For these reasons, only CG and QN were applied in further in vivo studies. Lastly, to test the 

robustness of the numerical algorithm, five repeated MRI scans of the same subject were 

acquired. The averaged real shear moduli from CG are presented in Figure 6, where the 

computed shear moduli agree between 10–20% among the five scans.

C. Phantom Study: Poroelastic Modeling

A simulated phantom with a single inclusion and a homogenous background was studied. 

The inclusion was located at the top of the homogenous matrix, as shown in Figure 7. The 

phantom was cube-shaped with edge length being 0.06m. The boundary conditions were set 

to be u=υ=w=0 on the top face, u=υ=0 and w=1e-4m on the bottom face, n · σ=0 on the rest 

of the faces and p=0 over all surfaces of the domain. The actuation frequency was set to be 

1Hz, as used in intrinsic actuation MRE studies. By assuming a set of material properties 

including the shear modulus, the Lambda modulus, the hydraulic conductivity and the 

porosity for both the inclusion and the matrix (see Table III), a global forward problem was 

solved which computes the displacement and pressure fields based on the time-harmonic 

poroelastic model (31). The computed displacement values were then taken as measured 

data um, and an inverse problem was solved for material property distributions of μ, λ and κ. 

The reconstructed shear modulus and hydraulic conductivity images using CG, QN and GN 

methods are presented in Figure 8. The gradient calculation required in CG and QN was 

based on the generalized adjoint approach, while GN involves the conventional computation 

of the gradient vector. Consistency can be generally observed among the three iterative 

methods, indicating the feasibility of the proposed approach.

An experimental phantom was then investigated, in which a soft tofu inclusion was placed in 

an extra firm tofu background near the bottom of the background tofu. The phantom was 

vibrated at 50Hz with a piezoelectric actuator and the motion data were acquired on a 

Philips 3T Achieva MRI with voxel size 2mm×2mm×2mm. The displacement images of six 

components (i.e. the real and imaginary parts of u1, u2 and u3) are presented in Figure 9. 

Figure 10 shows the reconstructed shear modulus and hydraulic conductivity images from 

implementing CG, QN and GN. The results from CG and QN are consistent with those from 

GN. The inclusion has relatively lower stiffness and higher hydraulic conductivity. These 

findings agree well with poroelasticity-based dynamic mechanical analysis (DMA) results 

[67] reported in the literature.
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D. Brain Study: Poroelastic Modeling

At low actuation frequencies, the viscous effect is small and the tissue deformation is mainly 

driven by bulk flow of interstitial fluid. Here, a multiphase, phase contrast, gradient echo, 

angiographic sequence recorded intrinsically generated displacements at 1Hz for a healthy 

volunteer corresponding to eight cardiac phases using retrospective gating synchronized to a 

pulse oximeter placed on the subject’s finger [19]. The acquired voxel size was 

3mm×3mm×3mm, and 3D displacements for 16 slices centered around the ventricles were 

collected. Figure 11 shows representative displacement images from MRI acquisition. A 

poroelastic model was then adopted to estimate elastic brain tissue parameters with CG and 

QN reconstruction. Three parameters were reconstructed: the shear modulus μ; the Lambda 

modulus λ; and the hydraulic conductivity κ. Note that the imaginary parts of these 

parameters were set to be much lower than the magnitudes of the real parts in order to 

minimize viscous effects, although a more sophisticated poroviscoleastic model can be used 

at higher actuation frequencies.

The T2 weighted image and material property reconstructions are shown in Figure 12. Both 

CG and QN methods capture the distinct features of the real shear modulus images very 

well, as given in Figure 12 (b–c). The real shear moduli images exhibit softening in the 

ventricular spaces due to the fluid components and bilateral periventricular increases in 

stiffness similar in structure to the viscoelastic patterns in Figure 4. The real Lambda moduli 

reconstructed from CG and QN are low and vaguely reconstructed, as shown in Figure 12 

(d–e). The maximum values of λR are around 0.4kPa and 0.7kPa, respectively. These results 

are not unexpected due to the insensitivity of the measured displacements to this parameter. 

The hydraulic conductivity images in Figure 12 (f–g) show fairly uniform values around 

1e-5.5 except for two ‘dark’ regions nearly symmetric with respect to the ventricles probably 

due to the presence of thalamus and putamen.

Convergence results of CG and QN are given in Figure 13. As in the viscoelastic case, QN 

converges faster than CG to a mean shear modulus around 2kPa in both cases, which is 

lower than the mean values (between 2.5kPa and 3.5kPa) found at 50Hz. This observation is 

consistent with the frequency dependence of human brain shear modulus reported in [68]. 

However, the poroelastic reconstruction takes an order of magnitude more iterations to 

converge than the externally actuated viscoelastic model. The longer convergence may be 

due to the more difficult task of matching the measured motions while maintaining a 

reasonable pressure gradient distribution within the model. Repeatability tests using MRI 

scans were also evaluated and the averaged shear moduli from three scans of the same 

subject agree well with one another, as shown in Figure 14, indicating that some stable 

absolute shear modulus value has been achieved in the low frequency regime.

E. Simulation Time

In this section, the relation between the numerical simulation time using the generalized 

adjoint approach and the size of the forward problem, N, is investigated, and compared with 

the theoretically estimated values in Section II-F. Here, CG is applied for updating the 

material properties of the experimental phantom in Section III-C. The forward problem size, 

N, is controlled by the size of subzones. A number of different problem sizes varying from 
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240 to 2000 were studied. The results are given in Figure 15. Theoretically, the 

computational time is proportional to N7/3+N5/3. The corresponding data for the 

straightforward approach are shown in Figure 16. In this case, the number of parameters to 

be reconstructed is M=3N/4; therefore, the computational cost is (3/4N8/3+N7/3+N5/3). The 

actual simulation times follow the theoretical trends in both cases.

IV. Conclusions

Efficient algorithms for gradient calculation in the MRE inversion process are presented in 

this study. The approach is based on a Lagrangian method to derive a difference-driven 

forward problem without requiring a self-adjoint functional, A(δW, U; θ), from the force-

driven forward problem. Thus, this method can be regarded as a generalized ‘adjoint 

method’ that is applicable to a wide range of inverse problems. The gradient computation is 

as efficient as in the classic self-adjoint approach, using only two sparse matrix solutions 

which are independent of the number of estimation parameters. Numerical implementation 

of the approach in poroelastic MRE is also demonstrated, including a linear system of 

adjoint finite element equations and discrete forms of the gradient vector with respect to the 

parameters to be reconstructed.

Our results show that by applying the generalized adjoint method in gradient-based 

optimization algorithms, reasonable material property distribution images can be generated 

in phantom and brain tissue. Moreover, the relationship between the numerical simulation 

time in the generalized approach and the forward problem size is consistent with the 

theoretical estimation. Our approach is readily extended to other medical imaging problems 

in which the non-self-adjoint form arises, either from the nonlinearity of the problem [69] or 

from the coupling of different physical fields [70].
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Appendix A

Viscoelastic Model: Compressible Case

First we derive the discrete system for the force-driven forward problem (22). Let us denote 

the finite element approximated functions to be

(A.1)

where (u1, u2, u3) and (δυ1, δυ2, δυ3) indicate the three components of the displacement 

field in the trial function and test function spaces, respectively. The finite element 

discretization gives
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(A.2)

The discretized terms in A (u, δυ; θ) are

(A.3)

(A.4)

(A.5)

(A.6)

From (15) and (A.3), we can derive a linear system

(A.7)

with the elements of the stiffness matrix K and the forcing vector f being

(A.8)
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(A.9)

and

(A.10)

We denote the difference-driven forward problem as

(A.11)

where we can simply check that K⋆ = K, with forcing terms

(A.12)

Now let us look at the calculation of the gradient vector. In the compressible case, the 

material properties, θ, include Lamé’s first and second parameters, λ and μ. The reader is 

referred to [57] for more detail. Let us denote
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(A.13)

where Nθ represents the number of material properties, θj indicates the j-th number of the 

material property and ej is a unit vector in j-th direction. In our case, Nθ is equal to 2; λ and 

μ are denoted by θ1 and θ2, respectively. The discrete form for each θj is given by

(A.14)

In the above equation, Nnodes denotes the total number of nodes in the finite element mesh; 

ϕn(x, y, z) refers to the shape function of the n-th node and bjn is the value of the j-th 

material property at the node n. Similarly, the variations in θ can be written as

(A.15)

From (A.13) and (A.15), we have

(A.16)

Using the above equations, we shall find the discrete formulation of (17). From (A.13), we 

can write

(A.17)

Substituting (A.17) and (25) into (17) leads to

(A.18)

Furthermore, substituting (A.16) into (A.18) gives rise to
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(A.19)

where δ1j and δ2j are the Kronecker’s delta functions. Based on the definition of the gradient 

vector, we also have

(A.20)

Therefore, the gradient vector is taken to be

(A.21)

Alternatively,

(A.22)

We present the numerical algorithm for gradient calculation below:

1. Solve the force-driven forward problem (A.7);

2. Solve the difference-driven forward problem (A.11);

3. Compute the gradient using (A.22).

Appendix B

Viscoelastic Model: Incompressible Case

We only present the extra terms in (29) compared to the compressible case, which are

(B.1)

Tan et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The 3 × 3 sub-matrix in the stiffness matrix K as in the compressible case is given by

(B.2)

(B.3)

The rest of the components are
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(B.4)

The forcing term f and the adjoint forcing term f⋆ are

(B.5)

and

(B.6)
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Note that in the incompressible case, only the shear modulus needs to be reconstructed, thus 

we take (A.22)2 as the gradient vector.

Appendix C

Poroelastic Model

First, the discrete system of the force-driven forward problem in (15) is derived by denoting 

the finite element approximation through

(C.1)

where (u1, u2, u3) and (δυ1, δυ2, δυ3) are the three components of the displacement field 

defined in  and , respectively. The finite element discretization yields

(C.2)

where the terms that are new in the poroelastic model are

(C.3)

As in the viscoelastic case, a linear system is given as
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(C.4)

results in elements of the stiffness matrix, K, and the forcing vector, f, consistent with [44], 

[45]. Diagonal terms in the stiffness matrix are given by

(C.5)

the sub-matrix elements from elasticity are symmetric, thus the off-diagonal contributions 

can be written as

(C.6)

whereas the off-diagonal entries from the pressure equation become
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(C.7)

Finally, the forcing vector is given by

(C.8)

Note that 〈·〉 indicates volume integration over the local element; nx, ny and nz refer to the 

unit vector outwardly normal to the surface in the x, y and z direction, respectively.
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Fig. 1. 
Theoretical cost estimates of the classic and generalized adjoint approaches compared with 

the straightforward gradient calculation based on LU decomposition and back substitution.
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Fig. 2. 
Representative slices of reconstructed phantom properties. (a) T2 weighted image. (b–d) 

Real shear modulus in the compressible case using CG, QN and GN, respectively. (e–g) Real 

shear modulus in the incompressible case using CG, QN and GN, respectively. The shear 

modulus is displayed in units of kPa.
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Fig. 3. 
Convergence results for compressible and incompressible viscoelastic models using CG, QN 

and GN methods in the Figure 2 phantom
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Fig. 4. 
Representative slices of reconstructed in vivo brain properties. (a) T2 weighted image. (b–d) 

Real shear modulus in the compressible case using CG, QN and GN, respectively. (e–g) Real 

shear modulus in the incompressible case using CG, QN and GN, respectively. (h–m) 

Imaginary shear moduli corresponding to their real counterparts in (b–g). The shear modulus 

is displayed in units of kPa.
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Fig. 5. 
Convergence results. Same as Figure 3, but for in vivo brain tissue MRE data from Figure 4.
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Fig. 6. 
Repeatibility tests of the reconstructed shear moduli from five MRE acquisitions (S1–S5) of 

the same subject. (a) Compressible Model; (b) Incompressible Model.
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Fig. 7. 
Illustrative picture of the simulated phantom consisting of a homogeneous background and a 

single inclusion.
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Fig. 8. 
Representative slices of reconstructed material properties. (a–c) Real shear modulus using 

CG, QN and GN, respectively. (d–f) Real hydraulic conductivity using CG, QN and GN, 

respectively. The shear modulus is displayed in units of kPa, and the hydraulic conductivity 

is in units of m3s/kg and is presented in Logarithm scale.
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Fig. 9. 
Representative slices of displacement images of the experimental tofu at 50Hz.
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Fig. 10. 
Representative slices of reconstructed tofu properties. (a) T2 weighted image. (b–d) Real 

shear modulus using CG, QN and GN, respectively. (e–g) Real hydraulic conductivity using 

CG, QN and GN, respectively. The shear modulus is displayed in units of kPa, and the 

hydraulic conductivity is in units of m3s/kg and is presented in Logarithm scale.
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Fig. 11. 
Representative slices of displacement images of instrinsically activated brain.
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Fig. 12. 
Representative slices of reconstructed in vivo brain properties. (a) T2 weighted image. (b–c) 

Real shear modulus using CG and QN, respectively. (d–e) Real Lambda modulus using CG 

and QN, respectively. (f–g) Real hydraulic conductivity using CG and QN, respectively. All 

of the results are based on poroelastic model under intrinsic actuation. The shear and 

Lambda moduli are displayed in units of kPa, and the hydraulic conductivity is in units of 

m3s/kg and is presented in Logarithm scale.
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Fig. 13. 
Convergence results. Same as Figures 3 and 5, but for intrinsic MRE data from Figure 12.
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Fig. 14. 
Repeatibility tests of the reconstructed shear moduli from three intrinsic MRE acquistions 

(S1–S3) of the same subject.
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Fig. 15. 
Comparison of computational costs from theoretical estimation and numerical simulation vs. 

size of the forward problem using the generalized adjoint approach in the poroelastic model.
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Fig. 16. 
Comparison of computational costs from theoretical estimation and numerical simulation vs. 

size of the forward problem using the straightforward approach in the poroelastic model.
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Tan et al. Page 52

TABLE I

Computational considerations for CG, QN and GN.

method CG QN GN

sparse solves per iteration 2 2 M + 1

dense solves per iteration 0 0 1

convergence rate super-linear super-linear quadratic

memory storage (N) (N) (N2)
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Tan et al. Page 53

TABLE II

Computational costs per iteration.

method computational cost

Gradient-based
(classic adjoint)

(N7/3) + 2 (N5/3)

Gradient-based
(generalized adjoint)

2 (N7/3) + 2 (N5/3)

Gradient-based
(straightforward)

(N7/3) + (M + 1) (N5/3)

Gauss-Newton (N3) + (N7/3) + (M + 1) (N5/3)
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TABLE III

Material properties used in simulated phantom study.

material property μ λ κ

matrix 3kPa 4.5kPa 1e–7m3s/Kg

inclusion 6kPa 9kPa 1e–5m3s/Kg
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