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Abstract

We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a 

regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic 

tissue modeling with numerical virtualization of an MRI system and scanning experiment to 

enable assessment of a broad range of MRI approaches including advanced quantitative MRI 

methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue 

microstructure is achieved in MRiLab by employing the generalized tissue model with multiple 

exchanging water and macromolecular proton pools rather than a system of independent proton 

isochromats typically used in previous simulators. The computational power needed for simulation 

of the biologically relevant tissue models in large 3D objects is gained using parallelized execution 

on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the 

ability of the new simulator to accommodate a wide variety of voxel composition scenarios and 

demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in 

previous simulators. GPU execution allowed ∼200× improvement in computational speed over 

standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual 

MRI experiments, MRiLab streamlines the development of new MRI methods, especially those 

aiming to infer quantitatively tissue composition and microstructure.
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I. Introduction

Simulations constitute an essential part of the practice of magnetic resonance imaging (MRI) 

development as they allow for rapid prototyping and evaluation of MRI techniques in 

controlled conditions. Initially, analytical signal expressions based on simplifie descriptions 

of MRI processes for proton isochromats were commonly used for pulse sequence 

optimization and image contrast manipulation. Over the years, increasing complexity of 

MRI systems, emergence of novel acquisition and reconstruction methods, and exploration 

of advanced MRI contrast mechanisms necessitated more realistic MRI simulations based on 

numerical modeling [1, 2]. In turn, this stimulated development of dedicated software 

solutions that take advantage of growing availability of high-performance computing to 

increase fidelit of MRI simulations. The existing simulators comprise largely distinct sets of 

functionalities including basic MRI simulations [3], simulations in the presence of various 

imaging system imperfections [4-6], and evaluation of object-fiel interactions for 

optimization of specifi absorption rate (SAR), and multichannel transmission [7]. Several 

simulators feature graphical development interface for pulse sequence design [5, 8-10] and 

MRI technique prototyping [11]. Overall, the developed software solutions have contributed 

to a notable progress toward more accurate simulations of MRI hardware and imaging 

processes in acceptable time, though several important limitations still exist.

The major limitation of existing MRI simulators is the use of simplifie tissue representations 

based on a model where all protons reside in a single compartment instead of a more 

realistic biological model where protons interact in multiple compartments. As a result, even 

for basic MRI pulse sequences, the MRI signal and contrast in tissues cannot be fully 

described by the single compartment models. Instead, more sophisticated tissue models with 

multiple exchanging proton pools are generally required for adequate tissue representation 

[12]. The multi-pool modeling becomes especially important for advanced MRI techniques 

that move beyond pathology visualization and aim to characterize tissue composition, 

microenvironment, and microstructure in a quantitative fashion [13]. Examples of these 

approaches include quantitative magnetization transfer (MT) imaging (qMTI) [14-17], 

multi-component spin-lattice (T1) and spin-spin (T2) relaxometry [18-20], and chemical-

exchange saturation-transfer (CEST) techniques [21]. Typically, these methods acquire 

several MR images with modulated contrast and utilize them to create quantitative or semi-

quantitative parametric maps that characterize the tissue compartments. These parametric 

maps can often provide more biological or clinical information than conventional anatomical 

MRI images or basic quantitative MRI methods such as single-component T1/T2 maps. For 

example, multi-compartmental modeling of fat and water provides a quantitative indicators 

of fatty liver infiltratio [22], while quantitative dynamic contrast-enhanced MRI 

characterizes permeability changes often present in cancerous lesions [23]. The multi-pool 

representations can also be applied to model and correct macroscopic effects such as partial 

voluming of cerebrospinal flui (CSF) and neural tissues in brain imaging [24] or synovial 

flui and cartilage in knee imaging [25]. While specialized software [26] is available for 

general analysis of some models, there is a lack of tools for full-scale MRI simulations with 

generalized models. Hence, realistic MRI simulations with such models can provide 
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valuable means to facilitate development, evaluation, and understanding of quantitative MRI 

approaches.

Excessive computational burden of full-scale three-dimensional (3D) MRI simulations is 

already a pressing need in the area of MR simulations today. Extra computational load 

associated with the desired multi-pool modeling is expected to further exacerbate this issue. 

Currently, the most commonly used approach to address the high computational burden is to 

parallelize computations on computer clusters [4-6, 27] which are expensive and not widely 

available.

To meet the need to simulate more biologically relevant tissue models with realistic 

computational loads, we present a comprehensive MRI simulator, MRiLab, equipped with 

the generalized multi-pool exchange model for accurate MRI simulations. Inspired by an 

initial promise of Graphical Processing Units (GPU) to accelerate MRI simulations in a 

relatively inexpensive manner [28], we hypothesize that the computational complexity 

associated with the use of the generalized tissue model and realistic digital objects may be 

efficientl addressed by the GPU programming to allow simulating the complex phenomena 

on a personal computer (PC). To demonstrate the importance of advanced tissue modeling, 

we apply the new simulator to assess several quantitative MRI methods. Additionally, we 

evaluate the effects of simplifie treatment of several such techniques by single-pool-based 

simulations. Finally, we utilize multi-pool modeling capabilities of MRiLab to simulate 

effects of fat-water interference in macromolecular-rich tissues and validate them in a 

physical phantom. The MRiLab software is available at http://mrilab.sourceforge.net/ for 

free open-source access.

II. Theory

A. Generalized Multi-Pool Exchange Model

Realistic modeling of MRI signal from a given volume element (voxel) requires taking into 

account multiple sources of protons with measurable magnetization and their interaction 

with protons with non-measureable (rapidly decaying) magnetization within a particular 

tissue type, as well as presence of several tissue types within the voxel. To accommodate the 

wide variety of the voxel composition scenarios, we propose to employ a generalized multi-

pool exchange model shown in Fig. 1. The model consists of NF free proton pools, all 

interconnected by the magnetization exchange pathways, and NB bound proton pools 

exchanging with the free proton pools. The free proton pools represent compartments with 

measurable transverse magnetization (e.g., water, fat, solute proton exchange compounds), 

while the bound proton pools are used to model semi-solid tissue macromolecular content 

non-visible on standard MRI (e.g., myelin, muscle fibers collagen). A particular configuratio 

of the generalized model (i.e., number of the pools, their type, and exchange pathways 

between them) can be chosen along with its parameters (relative fractions of the proton 

pools, T1/T2 relaxation times, chemical shift spectra, and exchange rates) to represent a 

given tissue type.

The response of the multi-pool spin system to the sequence of radiofrequency (RF) pulses 

and imaging gradients (i.e., MRI pulse sequence) can be described using the finit differential 
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Bloch-McConnell equations in the rotating frame [29] for free proton pools, and MT 

saturation formalism [30] for bound proton pools. The full system of the equations can be 

written as:

(1)

(2)

Here, the ith free and lth bound spin pools are each characterized by the equilibrium 

magnetization M0,i and M0,l, and by the magnetization vectors M⃑
i and M⃑

i = [Mx,i, My,i, 

Mz,i], respectively. M⃑
l = [0, 0, Mz,l] denotes an effective magnetic fiel experienced by the ith 

free spin pool, γ is the gyromagnetic ratio, and Ki,j is the rate of magnetization exchange 

from ith to jth pools. Next, W stands for the time-dependent saturation rate of a bound proton 

pool:

(3)

Here, B⃑
1eff is an effective transmit fiel in the transverse plane, Ω is RF offset frequency, g(Ω, 

T2) is macromolecular proton saturation line given in biological tissues and phantom media 

(e.g., agar, gelatin) by a super-Lorentzian

(4)

and a Gaussian,

Liu et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

respectively [31].

We construct the terms B⃑
i in Eq. (1) to describe the applied magnetic fields macroscopic/

microscopic fiel variations, off-resonance saturation, and chemical shifts (CS) of individual 

pools. The terms are specifie on a per-pool basis and composed of multiple sub-field as 

follows:

(6)

Here, r⃑ = (x, y, z) is the spatial position of the voxel to which the model is assigned, t is time 

location in the pulse sequence, z⃑ is the unit vector in z direction, G is a time-varying imaging 

gradient term, and ΔBma is a local macroscopic fiel offset that characterizes the main fiel 

imperfection within the voxel. The term Ci (r⃑) accounts for variations in the ith compartment 

response due to its chemical shift. To allow for fl xible modeling of chemical shift effects 

(e.g., multi-peak fat spectra [32]), we represent this term by a discretized spectral model

(7)

Here, Δci, k and mi, k are kth spectral offset and amplitude, respectively. The last term in Eq. 

(6), δBmi, is a local microscopic fiel deviation with respect to ΔBma introduced for stochastic 

modeling of  decay along the lines of [5, 33, 34]. In this approach Eqs (1)(2) are solved 

several times for the same voxel, with a value of δBmi(r⃑) randomly drawn from the inverse 

Cauchy-Lorentz cumulative distribution as

(8)

where N (r⃑) is a random variable uniformly distributed in [0…1], and . 

The macroscopic voxel signal is calculated as an average of all such signals.

B. Design of Anatomical Objects

The generalized exchange model introduced in the previous section enables fl xible 

modeling of signal from a single volume element. For imaging simulations, the anatomy of 

interest can be represented as a collection of such elements. In MRiLab, a particular tissue 

type (e.g., in case of brain white/gray matter, lesions, cerebrospinal flui (CSF), etc.) is 
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related to a given voxel in the digital object by assigning the voxela tissue-specifi 

configuratio of the generalized model and model parameter values. Partial voluming (PV) 

effect can be simulated by discretizing the object at fine levels than the image resolution 

targeted by the simulations. Alternative approach to simulate PV is to assign to the given 

voxel an aggregate model corresponding to all intra-voxel tissues.

C. Simulation of Imaging Experiment

In addition to tissue and anatomical models, the realistic simulations require setting up a 

virtual MRI system and a pulse sequence which conform to the existing physiological and 

technical limits of MRI scanning. MRiLab parameters specifying the scanning environment 

include the maps of main magnetic (B0), transmit, and receive fields and parameters of 

imaging gradients. The pulse sequence is built graphically (Fig. 2) to defin time-varying RF 

pulses and imaging gradients (all checked against the prescribed limits of the virtual MRI 

system) to obtain the desired image contrast, resolution, and acquisition trajectory. The pulse 

sequence can be augmented by programmable external events that can be activated at any 

prescribed time point to adjust the Bloch equation solution (e.g., setting transverse 

magnetization to zero to simulate spoiling) and to model real-time processes such as motion-

induced object changes and changes in model parameters (e.g., due to contrast agent 

propagation, respiration-induced B0 variations, etc.).

Once the digital object, scanner environment, and pulse sequence are set up, the simulator 

begins by performing the solution of the multi-pool exchange ordinary differential equations 

(ODE) (Eqs. (1)(2)). Our approach is to utilize a discrete time solution of the Bloch equation 

by means of rotation and exponential scaling matrices at each time point throughout the 

prescribed pulse sequence [35]. Such approach was also employed in several single-

component simulators [4],[28]; it does not require the use of dedicated CPU-optimized 

numerical ODE solvers that were engaged in Ref [5]. As the solutions for the elements in the 

digital object are independent of each other, the performance of such simulations benefit 

significantl from the remarkable parallelization capabilities of a GPU. Therefore, we utilized 

Compute Unifie Device Architecture (CUDA) model (Nvidia Inc, Santa Clara, CA, USA) to 

gain computational power sufficien for manipulation of a large spin matrix of the 

generalized multi-pool exchange model for a large number of the digital object voxels 

simultaneously. In MRiLab, GPU runtime setup is optimized based on the object size and 

GPU card specifications Namely, several computational blocks are created to allow 

maximized usage of GPU streaming multi-processers. Each block is configure to contain the 

maximum possible number of threads (one thread performing calculations for only one 

voxel) for the block's register pool of a given CUDA compilation (63 registers/thread in our 

case, which led to 20-65 blocks with 483-500 threads each in the simulations presented in 

the paper). GPU global memory is reserved to store object information and current spin 

status. In each step, the central processing unit (CPU) loads the GPU shared memory of each 

block with the next pulse sequence segment until the memory is fille or pulse sequence 

external event is detected. The equations are then solved for the given segment for all voxels 

assigned to the block's threads. Upon completion, the GPU blocks are updated with new 

voxels, and the process continues until ODEs are solved for all voxels. At this point, if the 

current pulse sequence segment ends by an external event, CPU updates GPU global 
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memory to reflec the changes specifie by the event, and the algorithm proceeds to the next 

sequence segment. The cumulative signal from all the voxels forms a simulated k-space 

dataset which can be further processed to reconstruct fina images using built-in or external 

image reconstruction modules.

III. Methods and Results

The frontend of MRiLab (main console, design and visualization tools) was implemented in 

Matlab (MathWorks Inc, Natick, MA, USA). The computational kernels were implemented 

in C++ and interfaced with Matlab functions. All simulations were performed on a desktop 

computer (Intel Xeon W3520 quad-core CPU with 12 GB DDR3 RAM and Nvidia Quadro 

K4200 graphic card (1344 CUDA cores, 4GB GDDR5 RAM)) running a 64-bit Windows 7 

operation system. In the simulations, the number of realizations in Eq. (8) was set to 100. 

All experiments were performed with identically independently distributed, complex-valued 

Gaussian noise added to the simulated k-space data.

We applied the multi-pool simulator to assess several quantitative methods which either 

cannot be evaluated or can be evaluated only approximately by single-component MRI 

simulators. These simulations entailed several non-trivial configuration of the generalized 

exchange model (Fig. 3) described in the next sections.

A. Multicomponent T2 Relaxometry

In the firs study, we evaluated the effects of simplifie modeling of multi-component T2 

relaxometry on tissue microstructure characterization. Multi-component T2 relaxometry 

separates MRI signal into slow and fast relaxing components, which are often related to 

biologically important microstructural features. For example, in neural tissues, the short T2 

(T2,s) signal originates from water trapped in bi-layers of myelin (the protective sheath 

critical for neural fibe functioning), and the long T2 (T2,l) signal corresponds to intra/

extracellular (IC/EC) water [18]. The ratio of short T2 component to the total water signal, 

the myelin water fraction (MWF), can be used for assessment of myelin, which is a major 

site for pathology in a variety of disorders [36].

MWF imaging can be accurately modeled using two water proton pools connected by a 

diffusion-driven magnetization exchange (Fig. 3a), whose rate depends on the thickness of 

myelin sheath [37]. The single-component simulators can implement this model only 

approximately by specifying two isolated (non-exchanging) spins with different T2 values in 

a voxel. To illustrate the importance of multi-pool modeling implemented in our simulator, 

we evaluated the effect of this simplificatio on MRI signal and MWF quantification The 

simulations were performed using the full (Fig. 3a) and the simplifie (two water pools, no 

exchange) models in a cylindrical object for multiple spin echo sequence (see Appendix for 

sequence and model parameters).

Figure 4a demonstrates that the spin echo signal obtained by the approximate model 

(isolated spins with exchange rate K = 0) deviates significantl from the signal obtained with 

consideration of inter-compartmental exchange (Fig. 3a). The deviation grows with K. 

Figure 4b demonstrates that ignoring the magnetization exchange in standard simulators 
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adversely affects estimation of T2 components and MWF. In this simulation, the simplifie 

(no-exchange) model was fi to signals generated with the full model. MWF and T2 of both 

water pools become underestimated, with relative bias growing together with inter-

compartmental exchange. The relative MWF errors of the non-exchanging model are [-8, 

-28, -67] % for K = [2, 4, 25] s−1, which is in agreement with the previously reported MWF 

errors [37]. Therefore, the use of simplifie (no exchange) model realized in standard 

simulators can neither represent variations in the image contrast due to variations in the 

exchange rate (e.g., with myelin thickness [37]) nor accurately simulate MWF mapping 

experiments.

B. Quantitative MT Imaging (qMTI)

In this numerical experiment, we evaluated the ability of MRiLab to simulate quantitative 

MT-based assessment of tissue macromolecules with non-measurable (i.e., rapidly decaying) 

transverse magnetization. MT effect is observed in MR images when magnetization of 

macromolecular protons is selectively saturated by off-resonance RF pulses. The saturation 

propagates to water protons through magnetization exchange thereby causing attenuation of 

measurable MRI signal. Consequently, the tissue in the MT experiment can be represented 

as exchanging macromolecular (bound) and free (water) proton pools (Fig. 3b) [30]. The key 

parameter of the model, macromolecular proton fraction (MPF), is highly sensitive to many 

types of macromolecules including myelin and collagen, which can be affected by pathology 

in a variety of diseases (e.g., myelin in multiple sclerosis [38, 39], collagen in osteoarthritis 

[40]). Simulating the MT phenomenon requires dedicated modeling of macromolecular 

(bound) protons and their interaction with tissue water (Eq. (2)) which is not possible in 

standard simulators based on single-component models.

We simulated MPF mapping using a fast qMTI protocol known as modifie cross-relaxation 

imaging (mCRI) [16]. The mCRI estimates MPF from a series of MT-weighted, variable fli 

angle (VFA) spoiled gradient echo (SPGR) images using approximate analytical 

expressions. The protocol also acquires a fli angle map using Actual Flip Angle (AFI) pulse 

sequence [41] for correction of local excitation fli angle and MT saturation power in the 

model fit All acquisitions were simulated at 3T for a brain template with MS lesions [42] 

(Fig. 5) at two resolutions, one with the acquisition matrix matching that of the digital model 

(200×160×60), and the other with a coarser acquisition matrix (128×96×20) to simulate PV 

effects (see Appendix for the full list of simulation parameters). B1 fiel was simulated by an 

MRiLab module for an eight-channel transmission coil composed of Biot-Savart linear 

filaments Flip angle and MPF maps were calculated fittin AFI [41] and mCRI [16] equations 

using in-house software.

Figure 6 shows ground truth fli angle (FA) map, and the map estimated from MRiLab-

simulated AFI sequence. The maps agree well with each other resulting in normalized root-

mean-square-error = 0.9% over the brain area, which is consistent with the previously 

observed fli angle mapping errors due to approximations inherent to the AFI technique [41]. 

Figure 7 shows results of simulated MPF mapping, which provides a measure of 

macromolecular protons invisible with conventional MRI techniques. The macromolecular 

proton modeling implemented in MRiLab yielded MPF estimation highly consistent with 
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ground truth. The values demonstrated minor biases (0.6%, 1.0%, 0.5% errors in gray matter 

(GM), white matter (WM), and lesions, respectively), partially due to analytical 

approximations used in mCRI method and propagation of the FA estimation error. Partial 

voluming of WM and GM cause their MPF histogram peaks (Fig. 7b) to deviate significantl 

from the true values. Remarkably, partial voluming between GM and CSF manifests itself as 

a long histogram tail in the lower MPF range, which is consistent with artificia reduction of 

MT-based parameters in the outer GM cortex observed experimentally [43]. The errors are 

also elevated in the voxels corresponding to PV between CSF and brain (MPF error image in 

Fig. 7a) indicating that models even more complex than two-pool MT model are required to 

account for partial voluming with CSF [24].

C. Glycosaminoglycan CEST Imaging

Glycosaminoglycan CEST (gagCEST) imaging is a method to assess cartilage for the 

presence of glycosaminoglycan molecules [44], whose depletion is an early marker of 

osteoarthritis (OA). The protons in hydroxyl (-OH) groups of the glycosaminoglycan 

molecules are chemically shifted by +1 ppm with respect to the main water resonance. The 

off-resonance saturation can be applied at the shifted frequency to selectively saturate 

protons in OH-groups, which in turn saturate water protons through the chemical exchange. 

The presence of the molecules can be detected by analyzing the chemical-shift induced 

asymmetry of the signal (S) at positive (+σ) and negative (−σ) off-resonance saturation 

frequencies (Z-spectrum) calculated as

(9)

To investigate the formation of gagCEST asymmetry, we simulated in MRiLab gagCEST 

imaging at 7T The model configuratio consisted of three exchanging pools (Fig. 3c) 

representing bound protons in collagen, tissue water protons, and free protons in the 

hydroxyl groups (see the Appendix for simulation parameters). Additionally, we simulated 

the gagCEST asymmetry using an approximate model consisting of two non-exchanging 

free proton pools (-OH and water), which can be implemented in standard simulators.

The simulations with the three pool gagCEST model (Fig. 3c) yielded Z-spectra and its 

asymmetry plot typical for experimental gagCEST data [44]. All spectra have slight 

asymmetry around 1 ppm (Fig. 8a), especially pronounced on the asymmetry plot (Fig. 8b), 

which signifie the presence of hydroxyl protons exchanging with the free water. The 

maximum value of the asymmetry is remarkably different between the models ranging from 

∼1% (simplifie two-pool model) to ∼23% (full model). Simulating the phenomenon using 

the simplifie model is equivalent to direct detection of -OH groups, which is not feasible in 

vivo due to their scarcity (200-300mM) [44,45]. Full modeling of the saturation transfer in 

MRiLab simulates their effect on much more abundant, and hence detectable, water protons, 

and creates a more realistic estimation of asymmetry levels observed for -OH experimentally 

[44-47].
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D. MT Imaging in the Presence of Fat

In this experiment, we coupled advanced multi-pool modeling capabilities of MRiLab with a 

physical phantom measurements to elucidate effects of fat-water interference in 

macromolecular-rich tissues, which were experimentally shown to obfuscate interpretation 

of MT-weighted MRI signal [48]. The pure fat and water mixtures (e.g., in breast and liver 

tissues) can be represented in single-component simulators thanks to the absence of efficien 

mechanisms of magnetization exchange between fat and water protons [49]. Similarly, 

interactions between water and macromolecules can be evaluated using recently proposed 

qMTLab software [26]. However, the simultaneous presence of MT-inducing 

macromolecules, water, and fat makes these standard models insufficient Instead, a more 

advanced three-pool model comprising exchanging macromolecules and water, and non-

exchanging fat (Fig. 3d) [49] is necessary to describe such tissues, which can be instantiated 

in MRiLab.

The phantoms were prepared by mixing the heated 2% agar water solution with peanut oil to 

yield fat fractions of 0%, 30% and 50%. The MR images were simulated for the digital 

objects and the pulse sequence identical to those used in real MRI experiments (see 

Appendix for model and pulse sequence parameters). In both real and simulated cases, 

magnetization transfer ratio (MTR) was calculated for each echo time from images with 

(MTon) and without (MToff) MT saturation:

(10)

Because of low MTR-to-noise ratio in phantom data (ranging from 0.95 to 4.2), MTon and 

MToff were pre-processed prior to MTR calculation using local polynomial filte [50]. The 

agreement between experiment and simulated results was determined in Bland-Altman 

analysis (±1.96 standard deviation of the mean difference was as limit of agreement). The 

bias between simulations and experiment was examined using the one-sample t-test for the 

differences between paired measurements with the significanc level define as p < 0.05.

Figure 9 shows measured and MRiLab-simulated MTR images of agar/water/fat phantoms. 

Figure 10a compares corresponding ROI-averaged MTR values. Simulations with the 

standard two-pool MT model (i.e., with 0% fat) yield stable signal across different echo 

times. Experimental data reveal that the presence of fat leads to a fluctuatin MTR, which 

cannot be explained by the standard model (Fig. 10a) highlighting difficultie in 

interpretation of MT-based macromolecular markers in tissues containing fat. At the same 

time, the three-pool model describes well the echo-time and fat-content dependent 

superposition of chemically shifted fat signal with MT-attenuated water signal. The three-

pool simulations agree well with the experimental observations as revealed by narrow limits 

of agreements (−0.77% +0.90%) and non-significan bias (0.06 ± 0.43%, p = 0.68) between 

simulation and experiment (Fig. 10b). This agreement supports validity of the three-pool MT 

model with fat component (Fig. 3d) for interpretation of MT-weighted signal in tissues 
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containing a mixture of fat, water, and macromolecules [49], which cannot be otherwise 

accomplished by a standard two-pool MT model.

E. Computational Performance

We firs compared speeds of GPU-based and standard CPU-based multi-threaded parallel 

computations in MRiLab (bSSFP scanning of a brain phantom [42] with TR/TE = 6/3ms, α 
= 15°, acquisition matrix 200×160, 30 slices, single water component). The CPU code was 

written in C using OpenMP technique for multi-threaded execution, and two matrix 

processing libraries (IPP (Intel Inc, Santa Clara, CA, USA) and Framewave (Advanced 

Micro Devices Inc, Sunnyvale, CA, USA) for accelerated CPU-based matrix operations. 

Next, we compared computational times for simulating this pulse sequence with all model 

configuration described in studies 1-4 and several acquisition matrix sizes. All simulations 

were repeated 10 times and the average simulation time was recorded.

Table 1 compares computational times of CPU-based and GPU-based calculations in 

MRiLab. GPU-based parallelization resulted in a nearly 200-fold improvement in 

computational speed compared to standard single threaded CPU computations, with the 

improved speed not achievable with standard multi-threading available on a regular personal 

computer. Table 2 shows computational times for different models. The computational times 

increased with the model complexity from qMTI and multi-component T2 relaxometry (two 

pools, one exchange pathway) to MT/fat imaging (three pools, one exchange pathway) to 

gagCEST imaging (three pools, two exchange pathways).

IV. Discussion

There exist several key distinctions between proposed MRi-Lab and existing MRI 

simulators. In MRiLab, the generalized multi-pool exchange model is combined with a 

computational engine designed for large scale, high fidelit simulations of MRI processes 

(please see the online user manual at http://mrilab.sourceforge.net/ for the full description of 

MRi-Lab functionality). The ability to simulate actual imaging sets MRiLab apart from 

software that evaluate multi-pool systems in a single-voxel regime (e.g., two-pool MT 

modeling software [26]), and makes MRiLab particularly appealing for evaluation of 

conventional and quantitative methods in realistic imaging conditions. Next, while the 

single-component imaging simulators may imitate multi-component modeling by 

accommodating spins of several types per imaging voxel, such approach does not take into 

account exchange processes and cannot represent macromolecular tissue content. On the 

other hand, MRiLab numerically solves Bloch equations for the general tissue model that 

encompasses multiple exchanging water and macromolecular pools and thus avoids these 

limitations. Similar to other comprehensive MRI simulators [4, 5], MRiLab resolves the 

computational challenges associated with large-scale 3D simulations and numerical solution 

of Bloch equations using parallel computing. However, instead of engaging expensive 

computer cluster hardware, it relies on relatively cheap personal computer-based GPU, 

which, to the best of our knowledge, was previously used only in a single-component MRI 

simulator [28]. Despite lower computational power of a GPU core compared to a CPU core, 

the ample number of cores in GPU and high amenability of MRI simulations to 
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parallelization allow achieving accelerations on two orders of magnitude relative to a single-

thread CPU implementation (Table 1). Our experiments demonstrated that GPU acceleration 

is also capable of tackling the extra computational complexity associated with the 

incorporation of fl xible multi-pool models into the MRiLab simulation pipeline (Table 2).

We demonstrated utility of multi-component MRiLab simulations with several quantitative 

MRI experiments that are not assessable by standard single-component MRI simulators. In 

addition to studying the limitations of simplifie modeling with single-component simulators 

for gagCEST and multi-component T2 mapping, we applied MRiLab to confir the accuracy 

of modifie cross-relaxation imaging (mCRI), an efficien qMTI technique for mapping 

myelin in neural tissues and collagen in cartilage, which was previously evaluated only 

experimentally [16]. Furthermore, multi-component MRiLab simulations can provide 

explanations for variations of MT contrast with echo time and fat fraction in the presence of 

tissue fat, which is not possible using single component models. Previously, these effects 

were observed in liver MT imaging [48]. Successful comparison of MRiLab predictions with 

actual MRI measurements in phantoms with known fat-tissue composition confirme the 

necessity of the three pool model (Fig. 3) for simulation of MT imaging in the presence of 

fat.

The utility of fast multi-pool simulations for quantitative imaging extends well beyond the 

example applications provided in this manuscript. MRI simulations with the multi-pool 

models can be valuable in many stages of development of quantitative techniques, including 

preliminary concept evaluation, evaluation of expected imaging performance, and 

assessment of the dependence of the accuracy and precision of model outputs on imaging 

and reconstruction parameters. Furthermore, the existing MRiLab functionality allows the 

simulator to be used for an even wider variety of simulations tasks. For example, external 

events implemented in MRiLab can be used to perform a dynamic update of the model 

parameters. This mechanism can be utilized to simulate tissues undergoing dynamic 

changes; for example, in dynamic contrast-enhanced imaging, which uses two-pool contrast 

kinetics modeling to quantify perfusion/permeability [23].

From software design perspective, MRiLab builds on the ideas of pipeline processing [11] 

and modularization [51], which makes MRiLab simulation structure fl xible and extensible. 

The extensibility is particularly facilitated by the use of Extensible Markup Language to 

store simulation information, to register new modules, and to organize communication 

between predefine macros and external programs. The latter may be straightforwardly 

applied to create a communicating pipeline for incorporating functions of external programs. 

The combination of high computational efficien y, extensibility, and open-source concept 

makes MRiLab an appealing platform for further expansion by existing or future models of 

MRI processes.

Similar to any existing MRI simulator, MRiLab may be limited by simplifie description of 

physical processes that are problematic to model numerically using currently available 

computational power. For example, direct numerical simulation of diffusion effects based on 

random-walk modeling during the pulse sequence evolution may require exhaustive 

computational power. In addition, in all shown experiments, spoiling of the transverse 
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magnetization was achieved through an external event zeroing the transverse magnetization, 

which may not be sufficien to model real experiments in which no special arrangements are 

made in the pulse sequence design to achieve complete spoiling [52]. In these cases, a more 

accurate approach to model the spoiling gradient effects on the intra-voxel transverse 

magnetization is through fine discretization of the digital object grid. This approach, 

however, may reach memory and computational feasibility limits, as MRiLab simulations 

are primarily restricted by the available memory size and the resources each thread can 

assess (i.e., shared memory and registers). However, rapid advances of new GPU-based 

methods (e.g. multiple-GPU and GPU cluster) [53] and faster and more powerful GPU 

devices could be used in the future to further improve the time-efficien y of the MRI 

simulation and to extend the simulation complexity in MRiLab to address these and other 

complex simulation problems. Finally, as studies in this manuscript were tested under 

CUDA 2.0, the backward compatibility to earlier versions of CUDA model is likely to 

require source code modification Future development will include providing the support for 

freely available programming platforms such as NumPy/SciPy [54] to broaden the 

availability of MRiLab to the scientifi community.

V. Conclusion

In this paper, we presented a comprehensive, high-performance, open-source MRI 

simulation tool capable of realistic simulations of the whole MRI experiment with fl xible 

representation of tissues by multi-pool exchange models. We demonstrated the feasibility of 

such full-scale MRI simulations on a regular personal computer equipped with relatively 

inexpensive GPU hardware. The MRiLab simulation environment can serve as a f exible, 

readily available, expandable platform for convenient customizing virtual MRI experiments 

to streamline the development of new MRI methods. This simulator may be particularly 

useful for accelerated development and accurate evaluation of new MRI approaches 

designed to assess tissue composition and microstructure in a quantitative fashion.
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Appendix

A. Multicomponent T2 Mapping

Images at several echo times were obtained simulating multiple spin echoes for the model in 

Fig. 3b. The simulations were performed in cylindrical objects each assigned an individual 

exchange rate value. The model (Fig. 3a) and pulse sequence parameters were identical to 

ones used in [37]. Model parameters: T2,s/T2,1 = 15/65ms, MWF = 39%, myelin water 

exchange rate K = [0, 2, 8, 25] s−1. Multiple spin echo sequence: TR = 6s, TE = [5, 10, 15, 

…, 150] ms. Other details: object size 100×100×30 (number of voxels 300000), k-space-

matrix size 60×60, pulse sequence time steps 241560, total simulation time 176 sec.

Liu et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Quantitative MT Imaging

The two-pool MT model (Fig. 3b) and pulse sequence parameters were similar to the ones 

reported in [16]. All datasets were simulated in axial plane with fiel of view = 20 × 16cm. 

Model parameters: Gray matter: T1,w = 1.4 s, T2,w = 100 ms,T1,b = 1s, T2,b = 10.21 μs, Kw,b 

= 1.57 s−1, MPF = 8.9%. White matter: T1,w = 1s, T2,w = 70ms, T1,b = 1s, T2,b = 9.84μs, 

Kw,b =2.70s−1, MPF = 13.6% MS lesions: T1,w = 1.3 s, T2,w = 30 ms, T1,b = 1 s, T2,b = 9.84 

μs, Kw,b = 2.70 s−1, MPF = 8.5% MT-SPGR sequence: TR/TE = 37/3.5 ms, excitation fli 

angle α = 15°, a 18ms Fermi MT pulse, all combinations of Ω = 2.5, 10, 18, 26 kHz and 

αMT = 850°, 1400°. Same sequence was used to simulate variable fli angle data with α = 6°, 

15°, 35°, 50°, Ω = 250 kHz. AFI sequence: TR1/TR2 /TE = 37/185/2.3 ms, α = 55°. Other 
details (cases without/with partial voluming effect (no-PVE/PVE): object size 200×160×60 

(number of voxels 1920000), 3D simulations with k-space-matrix sizes 200×160×60 (no-

PVE) and 128×96×20 (PVE), pulse sequence time steps 65484900 (no-PVE) and 11524500 

(PVE), total simulation times 120080 sec (no-PVE) and 23264 sec (PVE).

C. gagCEST Imaging

The gagCEST model (Fig. 3c) and pulse sequence parameters were similar to the ones 

reported in previous cartilage imaging studies [44, 55]. Model parameters: Two-pool MT 

T1,w = 1s, T2,w = 35ms, T1,b = 1s, T2,b = 7μs, Kw,b = 8s−1, MPF=15% [40, 56]. 

Glycosaminoglycan hydroxyl (-OH) pool: proton fraction 1% chemical shift δ = + 1.0ppm, 

T1,-OH = 1s, T2,-OH = 90ms, Kw,-OH = 12s−1. MT-SPGR sequence: TR/TE= 200/8ms, α = 

10°, a 100ms Hanning-windowed Gaussian MT pulse, saturation fli angles αCEST = [500°, 

1000°, 2500°], Ω varying linearly in range [-4.0…4.0] ppm. The spectra were normalized to 

signals without saturation (Ω = 250 kHz). Other details: object size 100× 100×30 (number of 

voxels 300000), 2D simulations with k-space-matrix size 60×60, pulse sequence time steps 

10606200, total simulation time 4800 sec.

D. MT Imaging in the Presence of Fat

Imaging was performed on a 3T MRI scanner (MR750, GE Healthcare, Waukesha, WI) 

using multi-echo MT-SPGR sequence. The parameters for model in Fig. 3d were selected 

according to the used fat fractions and previously reported parameters for fat [32] and 2% 

agar [14]. Model parameters: Agar: T1,w = 2.38 s, T2,w = 56.4 ms, T1,b = 1 s, T2,b = 15.3 μs, 

Kw,b = 0.734 s−1, MPF = 0.66% Fat: T1,f = 280 ms, T2,f = 55ms, 6-peak fat spectra, peak 

fractions/chemical shifts [8.7/−3.1, 69.3/−2.75, 12.8/−2.11, 0.4/−1.57, 3.9/−0.32, 4.8/0.49] 

%/ppm. MT-SPGR sequence: TR = 40 ms, TE = [1.37, 2.78, 4.19, 5.61, 7.02, 8.43, 9.84, 

11.25] ms, excitation angle α = 13°, 18ms Fermi MT pulse, αMT = 1000°, Ω = 2.5 kHz and 

250 kHz. Other details: object size 195×161×10 (number of voxels 313950), 2D simulation 

with k-space-matrix size 100×80, pulse sequence time steps 45500, total simulation time 

340 sec.
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Fig. 1. 
Generalized multi-pool exchange model. The tissue is represented by several free (F) and 

bound (B) proton pools undergoing the magnetization exchange.
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Fig. 2. 
An example of a hierarchical balanced steady state precession (bSSFP) sequence tree 

structure with the corresponding generated waveforms. Four separate RF sources in the tree 

permit modeling of parallel RF transmission (for display purposes, only one RF source 

within one T R is shown). The pulse sequence is built from tunable macros which provide 

modularization and reusability.
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Fig. 3. 
Configuration of the generalized exchange model to represent tissue response in (a) multi-

component T2 relaxometry for myelin water imaging, (b) quantitative MT imaging, (c) 

gagCEST imaging, and (d) MT imaging in the presence of fatty tissue infiltrations
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Fig. 4. 
Dependence of spin echo signal (a) and apparent MWF and T2 values (b) on the exchange 

rate K. In (b), the dashed lines show true parameter values and markers correspond to K 
values from (a). The deviations of signal and parameter values grow with the exchange rate.
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Fig. 5. 
(a) Digital object used in qMTI simulation experiments. Brain parenchyma is composed of 

white and gray matter, and lesions. (b) Ground truth MPF.
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Fig. 6. 
True fli angle (FA) (a) and simulated FA (b) maps. The maps are shown in units relative to 

the nominal (operator-prescribed) value.
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Fig. 7. 
Results of simulation-based evaluation of MPF mapping. (a) Example simulated image, 

estimated MPF, and MPF errors. (b) MPF histograms. Vertical lines correspond to the true 

MPF values. Note different locations of the histogram modes for simulations with and 

without PV.
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Fig. 8. 
Comparison of gagCEST simulations using simplifie (two non-exchanging pools, dashed 

lines) and full (three exchanging pools, solid lines) models. (a) gagCEST Z-spectra and (b) 

the asymmetry plots simulated for simplifie and full models for several off-resonance 

saturation powers (αCEST = 500°, 1000°, 2500°).
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Fig. 9. 
MTR in fat+agar phantoms at different echo times calculated by simulation (a) and 

measured at 3.0T (b). Note significan variability of MTR with fat fraction and echo time.
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Fig. 10. 
(a) Simulated and measured ROI-averaged MTR values agree well with each other for a 

range of echo times and fat fraction. (b) The Bland-Altman plot for experimental and 

simulated MTR values.
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Table I
MRILAB Simulation Times for GPU and Multi-Threading CPU Parallelization

CPU (Intel XeonW3520)
GPU (Quadro K4200)

1 thread 2 threads 4 threads 8 threads

83402 sec 42005sec 20700 sec 10412 sec 419 sec
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Table II
Simulation Times for Several Configurations of the Generalized Model and K-Space 
Matrix Sizes

Model Type
k-space Matrix Size

64×64 128×128 256×256

Single Pool 102 sec 293 sec 921 sec

qMTI 171 sec 478 sec 1496 sec

Multi-Component T2 183 sec 614 sec 1612 sec

MT + fat 235 sec 651 sec 2142 sec

gagCEST 241 sec 699 sec 2214 sec
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