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Abstract

Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to 

estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming 

a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D 

projections. The accuracy of this intensity-based technique, however, is often limited in low-

contrast image regions with subtle intensity differences. The solved deformation vector fields 

(DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a 

biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 

2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of 

anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated 

displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface 

deformation fields are subsequently used as the boundary conditions to drive structure-based FEA 

to correct and fine-tune the overall deformation fields, especially those at low-contrast regions 

within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D 

deformation to form an iterative loop, combining the benefits of intensity-based deformation and 

biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the 

accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation 

technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the 

image domain, and also in the DVF domain through clinician-tracked lung landmarks.
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I. Introduction

CBCT imaging is currently used in routine clinical practice for image-guided radiation 

therapy [1]. However, frequent imaging required by daily treatments exposes patients to 

additional radiation doses, increasing the risk of secondary cancers [2]. A new deformation-

driven CBCT estimation approach has recently been investigated. Instead of directly 

reconstructing the CBCT volume from 2D projections, this approach estimates the new 

CBCT through deforming a previously acquired high-quality CT/CBCT image [3]–[11]. 

Deformation of the 3D image is guided by the acquired 2D projections (2D-3D 

deformation). With the high-quality image as prior information, the CBCT imaging dose can 

be substantially reduced by acquiring fewer projections for image estimation. The 
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deformation approach can also pass along the accurate Hounsfield units (HU) from high-

quality prior CT images to estimated CBCT images, enabling more accurate dose 

calculations for radiation therapy [12]. The solved deformation field can also be utilized for 

tumor tracking [13], dose accumulation [14], adaptive radiation therapy [15], and functional 

imaging [16].

Currently available 2D-3D deformation techniques are purely intensity-based, aiming to 

match the intensity maps between the acquired projections and the computed projections 

from the deformed CBCT images. This approach usually works well for high-contrast 

regions [4], [6], [7] but its accuracy is often limited in low-contrast regions with subtle 

intensity differences [5]. In addition, the solved deformation fields may not be 

biomechanically realistic because the deformation fails to consider the elastic properties of 

anatomical structures [17].

Recently, there has been growing interest to solve image deformation problems through a 

biomechanical modeling-based approach [17]–[26]. Compared with the intensity-based 

approach, biomechanical modeling incorporates the morphology, the material composition, 

and the tissue elasticity of anatomical structures into the deformation process. The resulting 

deformation field is thus more physiologically and physically meaningful [22]. In addition, 

by using biomechanical modeling the whole deformation field can be computed from the 

provided boundary conditions, potentially generating a more accurate deformation field in 

low contrast regions within the anatomical structures [21].

In this study, we have developed a biomechanical modeling guided CBCT estimation 

technique (Bio-CBCT-est), which combines the intensity-based 2D-3D deformation 

technique with the finite element analysis (FEA)-based biomechanical modeling technique. 

The Bio-CBCT-est technique uses the accurate deformation field at high-contrast regions 

generated from 2D-3D deformation to correct and fine-tune the overall deformation field 

through biomechanical modeling, especially the deformation around low-contrast regions. 

Using Bio-CBCT-est, the overall physiological and physical plausibility of the derived 

deformation field also benefits from the correction by biomechanical modeling.

In this study, Bio-CBCT-est has been applied to estimate lung CBCT images. Based on 

eleven lung cancer patient cases, cone-beam projections with various sampling sparseness 

and noise levels were simulated for CBCT estimation, to evaluate the robustness and dose 

reduction potential of the Bio-CBCT-est technique. The estimation accuracy of the Bio-

CBCT-est technique was compared to that of the 2D-3D deformation technique, both 

through the image domain and through the deformation field domain. The accuracy of the 

Bio-CBCT-est technique was also compared to that of the traditional Feldkamp-Davis-Kress 

(FDK) [27] algorithm and the total variation-regularized algebraic reconstruction technique 

(ART-TV) [28].

II. Materials and methods

Since 2D-3D deformation works well at high-contrast regions [4], [6], [7], Bio-CBCT-est 

extracts the deformation field generated by 2D-3D deformation at high-contrast structure 
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boundaries. Bio-CBCT-est then uses the extracted field as the boundary condition to drive 

FEA to optimize the deformation field within the structure boundaries. The optimized 

deformation field is then fed back into the 2D-3D deformation as a new starting point for 

further optimization, forming a loop to iteratively fine-tune the overall deformation field for 

CBCT estimation. Details of the 2D-3D deformation technique, biomechanical modeling of 

the lungs, and the overall work-flow of Bio-CBCT-est are described below:

A. The 2D-3D deformation technique

1) General form of the 2D-3D deformation technique—By 2D-3D deformation, the 

new CBCT (μ) is morphed from a previously acquired high-quality CT/CBCT image 

(μprior ), through using the deformation vector field (DVF, denoted by v, v ∈ R3):

(1)

x denotes the voxel grids of the new CBCT. As shown on the right side of the equation, the 

DVF v is defined on the new CBCT image voxel grids and points to μprior [29]. The free-

form deformation [30] in (1) is driven by the tri-linear interpolation process [6]. Through 

(1), the problem of solving μ has been converted into that of solving v.

The solution of v is subjected to the following data fidelity constraint: the computed 

projections from μ should match the acquired projections. The corresponding equation is as 

follows:

(2)

The  symbol denotes the projection computation matrix, which is in correspondence with 

the acquired projections P. As illustrated in (2), the process of 2D projection matching drives 

the deformation of the 3D volume. Thus the image estimation process is named ‘2D-3D 

deformation’. To enforce the data fidelity constraint of (2), we use the sum of squared 

differences as the image similarity metric. Thus solving (2) translates into optimizing an 

objective function to solve v:

(3)

When limited-view projections are used as P, (3) presents an ill-posed problem. To further 

regularize the optimization problem for a stable solution [6], [7], an additional deformation 

energy term is defined and shown in (4):

(4)
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The m parameter separates the DVF v into three canonical directions x, y and z. The 

symbols ni, n j and nk denote the DVF sizes along the three directions, respectively. The E 
(v) term functions as a penalty for large variations in the DVF. Reducing E (v) will smooth 

the DVF and reduce its solution space for faster and stable convergence. Adding the 

deformation energy term to the original objective function, turns the objective function into:

(5)

The ω parameter denotes the weighting factor balancing the data fidelity term and the 

deformation energy term, which is empirically set as 0.05 in this study.

2) Solving the inverse deformation field—As shown in (1), the DVF v is defined on 

the voxel grids of the new CBCT (we call it the ‘forward DVF’). However, in this study, we 

are using the prior image μprior for biomechanical modeling purposes. The DVF used as the 

boundary condition for biomechanical modeling should be defined on the prior image voxel 

grids. We call the corresponding DVF inverse DVF (vinverse), which is defined on the voxel 

grids of the prior image and points to the new CBCT.

Deriving the inverse DVF directly from the forward DVF is usually subjected to errors with 

inverse consistency [31]. To address this problem, we take a symmetric 2D-3D deformation 

approach to solve both the forward and the inverse DVFs simultaneously, formulated as (6):

(6)

The prior symbol denotes the projection computation matrix corresponding to Pprior. Pprior 

denotes the projections simulated from the prior image μprior. For symmetry and simplicity, 

we choose prior = . The symmetric data fidelity and deformation energy terms in (6) are 

enforced to optimize the inverse-consistency [31] of the deformation fields, to allow the 

deformation results to be consistent along both forward and inverse directions. The inverse 

DVF vinverse can be computed from v by multiple approaches ([32]–[34]). In this study we 

take a simple and fast approach by setting vinverse = −v.

The gradient of (6) can be explicitly computed in a similar way to that shown in [6], 

enabling the objective function to be minimized through the nonlinear conjugate gradient 

algorithm. We set the initial DVF as 0 for the optimization to start. For the implementation 

details of the conjugate gradient algorithm and a corresponding pseudo-code, please refer to 

our previous publication [7].

Based on the derived forward and inverse deformation fields, biomechanical modeling of the 

structures (lung) can be performed as follows.
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B. Biomechanical modeling of lung

Biomechanical modeling divides the whole complex lung structure into small connected 

elements. Lung deformation can thus be modeled as the reactions of these elements to 

external boundary conditions, considering their morphological and elastic properties.

1) The theory of lung biomechanical modeling—In this study, the lung is modeled as 

the homogeneous, isotropic, and hyper-elastic Mooney-Rivlin [35] material. The Mooney-

Rivlin material is often used to model biological soft tissues with relatively large 

deformations, characterized by a nonlinear stress (force)-strain (deformation) relationship. It 

was previously used in lung biomechanical modeling and achieved encouraging results [17] 

with an accuracy similar to those reported by other lung biomechanical modeling studies 

[19], [20], [26].

In detail, the deformation gradient tensor (F) of the material can be expressed as:

(7)

vx, vy and vz are the displacement components of the DVF (vinverse as in this study) alongx, 

y, and z directions, respectively. The left Cauchy-Green deformation tensor B can be written 

as:

(8)

The FT symbol denotes the transpose of the deformation gradient tensor F. The 

corresponding invariants of B are:

(9)

(10)

Ĩ1 and Ĩ2 denote the first and second invariants of B, respectively. The J symbol denotes the 

determinant of F. tr (*) calculates the matrix trace.  and  denote the eigenvalues 

(principal stretches) of B.

The strain energy density function (SE) of the Mooney-Rivlin material, which represents the 

stored energy in the material from deformation, can finally be described as a combination of 

three separate terms:
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(11)

The first and second terms denote the deviatoric strain energy, determining how the material 

shape changes in response to stress. The third term denotes the volumetric strain energy, 

determining how the material volume changes in response to stress. The c1 and c2 

parameters denote the corresponding material constants for Ĩ1 and Ĩ2. The K parameter 

denotes the bulk modulus. The c1, c2, and K parameters are related to the Young’s modulus 

(EY ) and the Poisson’s ratio (vp) [17] by (12) and (13):

(12)

(13)

In this study, we model the lung as composed of homogeneous material and use the 

displacement vector fields at the lung surface to drive FEA. We are only interested in the 

solved lung displacement fields, not in the corresponding lung stress. As a result, the value 

of the Young’s modulus EY is essentially irrelevant [18], [36], [37]. Thus the absolute values 

of (c1+c2) and K are not important. Dividing (13) by (12), we eliminate EY from the 

equation:

(14)

To simplify the analysis, we set c1 = c2 = c in this study. Thus (14) is further simplified as:

(15)

After simplification, the number of parameters to optimize is essentially reduced to one, the 

k_factor k f. As shown in (15), k f is correlated with the Poisson’s ratio vp and represents the 

material incompressibility. Previous studies have used various vp values for the lung, ranging 

from 0.2 to 0.499 [18]–[20], [26], [38]. The corresponding range of k f is around 5 to 2000. 

We performed a parameterized study for different k f values and found that using k f = 200 

provided the best results overall (supplementary materials are available in the supplementary 

files/multimedia tab). In this study, for the purpose of running FEA, we choose c1 = c2 = 

0.135 kPa as previously described [17]. The corresponding bulk modulus is K = c1 * k f = 

0.135 kPa * 200 = 27 kPa.
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In summary, with the nonlinear elastic properties of the lung material specified by the strain 

energy function in (11), FEA can be performed to solve the lung deformation fields from 

boundary conditions.

2) The implementation of lung biomechanical modeling—Lung biomechanical 

modeling can be performed in four steps:

1. LUNG SEGMENTATION. In this study, the lung is semi-automatically 

segmented using the ITK-SNAP software [39]. An intensity threshold (−250 HU) 

is first applied on the prior image μprior through ITK-SNAP to select the region 

of interest (ROI). Automatic lung segmentation based on the level-set method is 

subsequently performed within the ROI. The automatic segmentation is manually 

fine-tuned as the last step to correct small residual errors. The resulting final lung 

segmentation is converted into a binary mask to represent the spatial domain of 

the lung.

2. LUNG TETRAHEDRAL MESH GENERATION. From the lung binary 

mask, the lung tetrahedral mesh is generated based on the Iso2Mesh package 

[40] to divide the lung into small connected tetrahedron elements. A coarse 

surface mesh made of triangles is first generated from the lung binary mask. The 

coarse surface mesh then undergoes subsequent automatic check and repair to 

remove non-manifold vertices, including the isolated ones. Laplacian smoothing 

is further applied to smooth and regularize the mesh surface. Based on the 

repaired and smoothed mesh surface, a high-quality volumetric mesh is 

generated by Tetgen [41] to discretize the surface-enclosed region into small 

connected tetrahedron elements. The four vertices (nodes) of each tetrahedron 

element are checked and re-oriented for consistency so that the determinant of 

the Jacobian matrix corresponding to the orientation is positive [22].

3. BOUNDARY CONDITION EXTRACTION. The boundary condition is 

defined as the displacement vector of the tetrahedron nodes residing at the mesh 

surface (surface nodes). Based on its location in 3D space, each surface node is 

paired with its corresponding image voxel through the nearest neighbor 

matching. The displacement vector of each surface node is extracted as the 

displacement vector of its matching image voxel from the inverse DVF vinverse, 

which is solved by the 2D-3D deformation technique (6).

4. FEA-BASED BIOMECHANICAL MODELING. The biomechanical lung 

DVF is derived from the combination of the tetrahedral mesh, the extracted 

boundary condition and the Mooney-Rivlin hyper-elastic material modeling. In 

this study, the FEBio package [42] is used to perform the final finite element 

analysis to solve the lung biomechanical DVF.

C. The Bio-CBCT-est workflow

The full, detailed work-flow of the Bio-CBCT-est technique is shown in Figure 1.
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For step 4, the lung biomechanical DVF is defined on the nodes of the tetrahedral mesh. In 

contrast, the intensity-based vinverse is defined on the voxel grids of the prior image. To 

merge the two DVFs, we have to convert the lung biomechanical DVF so that it is defined on 

the prior image voxel grids.

To address this need, the barycentric coordinates [43] of each prior image voxel are 

computed with reference to each tetrahedron element. The voxel is within a tetrahedron 

element only if all the corresponding barycentric coordinates (four in total) are nonnegative. 

If no tetrahedron element is available, we select the one closest to the voxel. After the 

corresponding tetrahedron element is localized for a voxel, the voxel’s DVF can be obtained 

by weighting the DVFs of the four tetrahedron nodes using the barycentric coordinates. 

Accordingly, the biomechanical lung DVF defined on the tetrahedron nodes is converted to 

that defined on the image voxels.

After performing the conversion, the lung biomechanical DVF is merged with the intensity-

based vinverse to replace the lung region in the latter. The resulting corrected DVF is 

iteratively fed back into the 2D-3D deformation until data fidelity-based stopping criteria are 

satisfied.

D. Evaluation materials: patient study

The efficacy of the Bio-CBCT-est technique was tested on eleven patients. Each analyzed 

patient has a 4D-CT set [20] acquired on a 16-slice Philips Brilliance CT scanner (Philips 

Medical Systems, Cleveland, Ohio). For each patient, ~80 anatomical landmarks were 

manually identified by a clinician for lung vascular and bronchial bifurcations, on both end-

expiration (EE) and end-inspiration (EI) 4D-CT phase images to track lung motion. One of 

the selected lung biomarkers is shown in Figure 2. For each patient, ~40 biomarkers were 

marked in the middle of the lungs (~20 for the left lung and ~20 for the right lung). About 

30 biomarkers were marked at the lung borders near the pleural region (~ 15 for the left lung 

and ~15 for the right lung). Another ~10 biomarkers were marked close to the tumor. In 

total, 872 landmarks were tracked for the eleven patients.

For each patient, the 4D-CT EE phase was used as the prior CT image for the deformation-

based image estimation. The 4D-CT EI phase was used as the new image (the goal of 

estimation, also served as the ‘ground-truth’ volume for the estimation accuracy evaluation). 

Both EE and EI phase images were resampled to a voxel resolution of 1.5 mm* 1.5 mm* 1.5 

mm. Based on the EI phase image, different numbers (5, 10, 20) of cone-beam projections 

spreading across a full 360° scan angle were simulated to represent different angular 

sampling sparseness. Each projection was simulated to have 300 * 250 pixels, with each 

pixel measuring 2 mm *2 mm in dimension.

To evaluate the effects of noise on the image estimation accuracy, various levels of imaging 

noise were also added to the simulated projections through (16):

(16)
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The  symbol indicates the noisy pixel value at location i. The I0 symbol indicates the 

quantity of incident photons at each projection pixel. The Pi symbol indicates the noise-free 

line integral at pixel i. The Poisson term adds quantum noise to the projection based on its 

Poisson nature. The Normal term adds the electronic background noise in Gaussian form [7]. 

To simulate different noise levels, various I0 values were used, including 104, 105, 106 and 

∞ (noise-free). The σ2 was kept constant at 10 and not included in the noise-free scenario.

E. Evaluation methods

To evaluate the accuracy of the deformed lung contour, which indicates the accuracy of the 

solved boundary condition for FEA, we can calculate the DICE coefficient [44] and the 

volume percentage error (VPE) [10] metric between the deformed lung contour (VDef ) and 

the ‘ground-truth’ lung contour (VGT ).

(17)

(18)

The DICE coefficient is a metric commonly used to evaluate how two contours match one 

another, with values ranging from 0 to 1. A larger DICE coefficient indicates a better match. 

Compared with the DICE coefficient, the V PE metric is more sensitive to the differences 

between two contours. A smaller V PE indicates a better match.

The estimated CBCT images were compared with the ‘ground-truth’ 4D-CT EI images to 

evaluate the estimation accuracy via the relative error (RE) metric.

(19)

The μest symbol denotes the estimated CBCT volume’s voxel-wise attenuation coefficient. 

The μGT symbol denotes the ‘ground-truth’ volume’s voxel-wise attenuation coefficient.

The DVFs solved by the Bio-CBCT-est technique, representing the deformation between the 

EE and EI phases, were compared to the tracked landmark motion for accuracy evaluation. 

The residual error of DVF-tracked lung landmark motion (residual DVF error) is defined as:
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(20)

The vTrack symbol denotes the manually-tracked landmark displacement vectors. The vDV F 

symbol denotes the corresponding DVF-tracked landmark displacement vectors. The m 
parameter separates the displacement vectors into three canonical directions x, y, and z.

For comprehensive evaluation, the CBCT estimation accuracy of the Bio-CBCT-est 

technique was also compared to that of the 2D-3D deformation technique. Compared to Bio-

CBCT-est, the 2D-3D deformation technique feeds the DVF solved from the previous 

iteration directly into the next iteration as a new starting point, without performing the FEA-

based biomechanical modeling correction (Figure 1, steps 2–4). The two-sided Wilcoxon 

signed-rank test was performed between the results of the Bio-CBCT-est technique and the 

2D-3D deformation technique. Statistical significance was defined atp < 0.05. In addition, 

the accuracy of the Bio-CBCT-est technique was also compared to that of the traditional 

Feldkamp-Davis-Kress (FDK) algorithm and the algebraic reconstruction technique with TV 

regularization (ART-TV).

III. Results

The tetrahedral mesh is generated from the 3D lung segmentation (Figure 4). The lung 

boundary conditions are extracted from 2D-3D deformation-generated DVFs (shown by the 

arrows on the surface of the tetrahedral mesh). The biomechanical DVF is then derived by 

FEA, based on the Mooney-Rivlin hyper-elastic model. In Figure 4, the FEA-derived 

biomechanical DVF is color-coded with hotter regions indicating larger deformations.

The DICE coefficients and VPEs of the deformed lung contours by the Bio-CBCT-est 

technique are shown in Table 1. Using 20 projections, the DICE coefficients for all the 

patients are >0.95 and the VPEs are <10%. The results indicate that the 2D-3D deformation 

in Bio-CBCT-est has generated accurate boundary conditions for biomechanical modeling.

Figure 5 shows a comparison of estimated/reconstructed CBCT images between the FDK 

technique, the ART-TV technique, the 2D-3D deformation technique, and the Bio-CBCT-est 

technique. The FDK image presents severe streak artifacts with the use of only 10 

projections for reconstruction. The ART-TV image removes the streak artifacts by TV 

regularization, but cannot recover the fine details in the lung due to under-sampling. The 

image estimated by 2D-3D deformation preserves the fine details from the prior image, 

which however mismatch with those in the ground-truth image due to incorrect DVF 

estimation. In comparison, Bio-CBCT-est not only preserves the fine details, but also 

successfully matches them to the ground-truth after biomechanical modeling.

A comparison of the lung DVFs generated from 2D-3D deformation and Bio-CBCT-est to 

the reference DVF is illustrated in Figure 6. The reference DVF was computed by directly 

registering the 4D-CT EE phase (prior image) to the 4D-CT EI phase (new image) by 

Demons registration [45]. The average residual error of the Demons DVF is 1.8±1.3 mm as 
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evaluated by the manually-tracked lung landmark motion. The corresponding average 

residual DVF errors for the 2D-3D deformation technique and the Bio-CBCT-est technique 

are 4.6 ± 3.2 mm and 2.9 ± 2.4 mm, respectively. By visual comparison, the DVF of Bio-

CBCT-est is more consistent with the Demons DVF as compared to that of 2D-3D 

deformation, especially in the regions with less contrast (far from the diaphragm).

The RE and the residual DVF error results are respectively reported in Tables 2 and 3. 

Statistical tests for both metrics show that the Bio-CBCT-est technique is significantly better 

(p<0.05) than the 2D-3D deformation technique. The average residual DVF error is reduced 

by ~ 2 mm for all three projection number configurations (5, 10, 20), comparing the Bio-

CBCT-est to the 2D-3D deformation technique (Table 3).

Image and DVF estimation results with noise introduced as (16) are reported in Table 4. The 

accuracy of the Bio-CBCT-est technique is slightly compromised (the RE increases by 

<=1.04% and the average residual DVF error increases by <=0.4 mm) for the highest noise 

level (104 incident photons), which corresponds to a projection set noisier than normally 

observed in clinical scenarios (Figure 3).

IV. Discussion

A. Comparison between the Bio-CBCT-est technique and the 2D-3D deformation technique

The Bio-CBCT-est technique has achieved statistically significant (p<0.05) improvement as 

compared to the 2D-3D deformation technique (Table 2, Table 3), especially in terms of 

DVF accuracy (Table 3). For the Bio-CBCT-est technique, an average residual DVF error 

within 3.5 mm can be achieved by using only 5 projections for estimation. The results 

suggest that combining biomechanical modeling with 2D-3D deformation achieves more 

accurate DVFs. The biomechanical modeling uses geometric/elastic properties of the 

anatomical structures, which can be viewed as additional constraints that helped guide the 

DVF optimization. Since FEA derives the biomechanical DVFs through considering each 

tetrahedral element in the structure mesh, this also helps correct the erroneous DVFs in the 

low-contrast regions not well deformed by the intensity-based 2D-3D deformation 

technique. The corrected low-contrast regions could, in turn, help to improve the DVFs in 

the high-contrast regions through the iterative approach of the Bio-CBCT-est technique. 

Previous studies tried to combine the intensity-based deformation techniques with 

biomechanical modeling to improve 3D image registration accuracy and generated improved 

results [21], [25]. Our work is the first to combine 2D-3D deformation with biomechanical 

modeling for CBCT estimation, leading to encouraging results (Figure 5, Figure 6, Table 2, 

Table 3).

The superiority of Bio-CBCT-est over the 2D-3D deformation technique on RE reduction is 

less prominent, as compared to that on residual DVF error reduction. Bio-CBCT-est further 

reduces the average RE by 0.51% – 1.65% (Table 2) as compared to 2D-3D deformation. In 

contrast, Bio-CBCT-est further reduces the average residual DVF error by 1.9 mm −2.5 mm 

(Table 3) compared to 2D-3D deformation. The effect of RE reduction is less prominent, 

because the Bio-CBCT-est technique primarily benefits from more accurate deformation at 

low-contrast regions with fine structures and small intensity differences, and the low-
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contrast regions’ contribution to the intensity-based RE metric is limited. However, low REs 

do not necessarily guarantee high-quality motion estimation. The DVFs can be incorrect 

(Table 3) even with a low RE, leading to substantial errors if the solved DVFs are used for 

motion tracking or treatment dose deformation/accumulation in radiation therapy, especially 

around the low-contrast areas [46]. Thus the DVF accuracy improvement achieved in this 

study is of clinical relevance in the practice of radiotherapy. DVF-based lung ventilation 

imaging is also highly sensitive to DVF accuracy [47]; this is another area that may 

potentially benefit from the development of Bio-CBCT-est.

B. Comparisons with previous relevant studies

A previous study that used the same patient sample as ours yielded an average residual DVF 

error of ~3.3 mm [20], slightly higher than what we obtained in this study (2.9 mm average 

residual DVF error by using 20 projections). Compared with this previous publication, 

which is based on pure biomechanical modeling, the Bio-CBCT-est technique mainly 

benefits from the advantage of combining intensity-based 2D-3D deformation and 

biomechanical modeling. The boundary conditions in the aforementioned previous study are 

well-defined as they are directly extracted from high quality CT images. In contrast, Bio-

CBCT-est obtains boundary conditions only from limited-view 2D projections, validating 

the accuracy of the boundary condition recovery through 2D-3D deformation (Table 1).

Another study [48] developed a ‘navigator channel’-based approach to reconstruct 3D lung 

models from 2D planning projections. Compared with the ‘navigator channel’ based 

technique, Bio-CBCT-est does not require a library of patients to build a pool of lung 

models. Bio-CBCT-est also does not need the error-prone model morphing process from 

patient to patient. Bio-CBCT-est uses the 2D-3D deformation technique to solve the lung 

boundary condition. The 2D-3D deformation technique also solves the deformation field for 

structures outside the lung. In contrast, the ‘navigator channel’ technique updates the DVF 

based on a limited scope of selected anatomical landmarks and can only solve the DVF 

inside the lung.

C. Computational cost of the algorithm

The implementation of the Bio-CBCT-est algorithm is currently semi-automatic, except for 

the manual lung segmentation fine-tuning process. Manual fine-tuning involves limited labor 

efforts, since the lung boundary is high-contrast and automatic segmentation methods are 

generally very effective. The three steps, including the semi-automatic lung segmentation, 

the tetrahedral mesh generation, and the barycentric coordinates computation, can be 

completed in less than 1 hour combined. The three steps are ‘off-line’ and can be conducted 

any time after the high-quality prior image is obtained. The ‘on-line’ steps (2D-3D 

deformation + FEA), enforced after the 2D projections are acquired, generally require 1–2 

hours, by using 5–20 projections for image estimation. In detail, each 2D-3D deformation 

step takes 3–5 minutes for 5–20 projections, and each FEA step takes less than 30 seconds. 

The algorithm converges in 10–15 iterations for all the studied cases.

The above computation speed is based on a personal computer with a 3.6 GHz Intel Core 

i7-4790 CPU and an NVIDIA Quadro K4200 GPU. For the current code implementation, 
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we include only a preliminary GPU acceleration scheme for the forward and backward 

projection steps within each projection view, due to the limited memory of the GPU card. 

The computation of the algorithm can be further accelerated by implementing a full GPU 

acceleration scheme within the total projection set. A GPU parallelization for the line-search 

step used in the nonlinear conjugate gradient descent process is also expected to further 

accelerate the Bio-CBCT-est algorithm. In addition to GPU acceleration, there is also 

potential to modify the code to enable multi-threading on the CPU to further accelerate the 

computation speed of the algorithm.

D. Potential improvements/limitations of the current Bio-CBCT-est technique

In this study, the lung is modeled as an isotropic, homogeneous organ with the same 

elasticity parameters. In reality, biomechanical parameters can vary among different lung 

lobes, and between the lung and the tumor. The elasticity parameters can also differ between 

the parenchyma, the lung vessels, and the bronchial trees. Though previous studies validated 

the accuracy and efficacy of modeling the lung as a whole homogeneous organ [18], [20], 

further studies are warranted to investigate the potential benefits of exploring lung 

heterogeneity [22], [23] and further improve the estimation accuracy. In addition, 

biomechanical modeling of other structures, including the spine, the ribs, and the chest wall, 

may also help to further improve image estimation accuracy. We can also potentially model 

the sliding motion between the chest wall and the lung by prescribing the boundary 

condition to the adjacent chest wall (instead of the lung surface itself) and allowing the lung 

to slide along the chest wall boundary. This approach has generated better results [19], [26] 

than that without considering sliding motion. In the current study, the DVF accuracy was 

only evaluated in the lung. The accuracy of structures outside of lung was only implicitly 

evaluated by the RE metric. The deformation field accuracy of these structures can be 

evaluated by tracking anatomical landmarks within each of them individually.

We use a fast symmetric term-based optimization strategy to solve the inverse deformation 

field (6). During optimization, the inverse DVF is viewed as the negative of the forward 

DVF, a simple and straightforward approach validated in previous studies [8], [31]. Other 

deformation field inversion techniques, including the scatter data interpolation, the Newton’s 

method [32], and the fixed-point approach [33], may also be potential candidates although 

more complex and time-consuming.

In this study, the end-expiration phase of 4D-CT is used as the high-quality prior volume for 

biomechanical modeling. The end-expiration phase is usually the most stable and 

reproducible phase with limited motion artifacts [49]. In cases of patients with very irregular 

breathing, the quality of 4D-CT may be compromised with severe motion artifacts. These 

extreme scenarios are not observed in the patient samples of this study. In clinical practice, if 

prominent irregularities exist, patients can be assisted with breathing coaching [50] or 

compression devices to make the breathing pattern more reproducible. A detailed analysis 

taking breathing irregularities into account will be performed on a larger patient cohort in 

the future.

We simulated cone-beam projections from the CT images to evaluate the efficacy of our 

algorithm, since high quality CT images can provide a ‘ground-truth’ for reference. A 
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preliminary robustness study was also performed to evaluate the accuracy of our technique 

when different levels of noise exist (Table 4). Other nonlinearity factors observed in clinical 

cone-beam projections, including the scatter and the imager lags, are not included in the 

cone-beam projection simulation. These factors may affect the accuracy of the proposed 

estimation algorithm, especially when CT images are used as the prior information for 

CBCT estimation (CBCT projections present more scatters than CT). Previous studies 

investigated multiple scatter correction/reduction techniques and achieved encouraging 

results [28], [51], [52]. The imager lags can also be corrected by using a measurement-based 

approach [53]. More robust image similarity metrics, including the normalized cross-

correlation [10] and the mutual information, can also be used to replace the sum of squared 

differences metric used in this study for better robustness against the intensity variations 

between the CT and CBCT systems. The effects of these nonlinearity factors and the 

aforementioned solutions will be investigated with clinically-measured data. The clinical 

study requires both high-quality 4D-CT for image estimation and fully-sampled high-quality 

4D-CBCT images to evaluate the quality of estimated lung phase images by Bio-CBCT-est, 

especially when evaluating the accuracy of the fine lung details. The corresponding clinical 

evaluation results will be reported in a future study once the patient data are available.

In this study, the new CBCTs were estimated from prior CT/CBCT images using a 

deformation-based approach. In some scenarios, non-deformation-induced intensity changes 

may exist, including necrosis or inflammation. These non-deformation components will not 

be recovered by the deformation-based approach. We have previously developed a 

simultaneous motion estimation and image reconstruction technique (SMEIR) [34] to 

combine motion estimation with a motion-corrected simultaneous algebraic reconstruction 

technique for 4D-CBCT reconstruction. We are currently extending our biomechanical 

modeling-based method to SMEIR, which can recover these non-deformation-induced 

changes. Another solution to these non-deformation-induced intensity change problems is to 

acquire new fully-sampled CT/CBCT images periodically during the treatment course, 

which will incorporate these non-deformation-induced intensity changes into a new prior 

image. For these non-deformation-induced intensity changes difficult to recover by 

deformation alone, the data fidelity error will notably increase even with converged 

optimization; this can potentially remind clinicians that a new fully-sampled CT/CBCT scan 

is needed to replace the current prior image.

Another potential limitation of our technique is that its accuracy may potentially be limited 

in structures with poorly defined boundaries (e.g. some prostate cases). A previous 

publication by Brock et. al proposed the use of ‘implicit boundary conditions’ [18] that are 

implicitly determined by the boundary conditions of neighboring organs (e.g. bladder and 

rectum for the prostate cases) for biomechanical modeling. Encouraging results have been 

achieved. The efficacy of this method, however, is pending further investigation for our 

algorithm.

In summary, potential improvements can be made to increase the accuracy of our technique. 

Factors including motion irregularity and imaging system differences (for instance, different 

scatter and imager lag pattern) also need to be investigated to evaluate their effects on the 

accuracy of the algorithm. Although we estimated CBCT images from prior CT images in 
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this study, our method can be readily applied to estimate CT from prior CT images or CBCT 

from prior CBCT images, where the intensity mismatch caused by imaging system 

differences will be greatly reduced. Our method can also be applied to other imaging sites 

where periodic motion may not be involved.

E. Future prospects

We evaluated the accuracy of the developed Bio-CBCT-est technique using eleven lung 

cancer patient cases. The Bio-CBCT-est technique is readily applicable to image estimation 

at other anatomical sites, such as the head and neck, the liver, and the pelvis. The technique 

is especially promising for low-contrast abdominal sites including the liver, since the low 

soft-tissue contrast within this organ impedes accurate intensity-based 2D-3D deformation 

[5]. Relevant work is currently in progress and will be reported as a follow-up study.

V. Conclusion

The Bio-CBCT-est technique improves the accuracy of the estimated images and the 

corresponding DVFs, demonstrating the advantages of incorporating material biomechanical 

properties into DVF optimization and image estimation. The resulting accurate DVFs can be 

applied in several areas of radiation therapy, including structure tracking/localization, dose 

accumulation, and adaptive radiation therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Work-flow of the Bio-CBCT-est technique.

Zhang et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An example of a bifurcation identified by the clinician as a lung landmark.
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Fig. 3. 
Simulated projections showing different levels of incorporated noise. The quantum noise 

increases as I0 decreases.
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Fig. 4. 
Work-flow of the lung biomechanical modeling process.
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Fig. 5. 
Axial slice cuts of the reconstructed CBCT by the FDK algorithm, the reconstructed CBCT 

by the ART-TV algorithm., the estimated CBCT by the 2D-3D deformation technique, the 

estimated CBCT by the Bio-CBCT-est technique, and the ‘ground-truth’ 4D-CT EI image. 

The magnified images show the fine details of the lung. The display window is [0, 0.08 

mm−1] for the original images and [0, 0.04 mm−1] for the enlarged images. The figure 

corresponds to patient 04, by using 10 projections for CBCT reconstruction/estimation.
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Fig. 6. 
Comparison between three DVFs: the reference lung DVF computed from Demons 

registration, the lung DVF computed from 2D-3D deformation, and the lung DVF computed 

from Bio-CBCT-est. The color bar on the right denotes the vector magnitudes of the 

deformation (unit: mm).
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TABLE IV

Relative errors (RE) and residual DVF errors after Bio-CBCT-est based estimation for patient 04, with regard 

to different noise levels (by using different numbers of incident photons).

Incident photons
RE (%) after Bio-CBCT-est

5 projection 10 projection 20 projection

1e4 12.95 10.94 9.96

1e5 12.77 10.38 8.85

1e6 12.77 10.45 8.92

Noise-free 12.77 10.45 8.92

Incident photons
(Average ± S.D.) Residual DVF errors (mm) after Bio-CBCT-est

5 projection 10 projection 20 projection

1e4 3.9 ± 3.2 3.3 ± 2.7 3.3 ± 2.7

1e5 3.7 ± 3.0 3.2 ± 2.6 2.8 ± 2.3

1e6 3.7 ± 3.0 3.2 ± 2.7 2.9 ± 2.4

Noise-free 3.7 ± 3.0 3.2 ± 2.7 2.9 ± 2.4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 01.


	Abstract
	I. Introduction
	II. Materials and methods
	A. The 2D-3D deformation technique
	1) General form of the 2D-3D deformation technique
	2) Solving the inverse deformation field

	B. Biomechanical modeling of lung
	1) The theory of lung biomechanical modeling
	2) The implementation of lung biomechanical modeling

	C. The Bio-CBCT-est workflow
	D. Evaluation materials: patient study
	E. Evaluation methods

	III. Results
	IV. Discussion
	A. Comparison between the Bio-CBCT-est technique and the 2D-3D deformation technique
	B. Comparisons with previous relevant studies
	C. Computational cost of the algorithm
	D. Potential improvements/limitations of the current Bio-CBCT-est technique
	E. Future prospects

	V. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	TABLE I
	TABLE II
	TABLE III
	TABLE IV

