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Abstract

A rotational Electrical Impedance Tomography (rEIT) methodology is described and shown to 

produce spatially accurate absolute reconstructions with improved image contrast and an improved 

ability to distinguish closely spaced inclusions compared to traditional EIT on data recorded from 

cylindrical and breast-shaped tanks. Rotations of the tank without altering the interior conductivity 

distribution are used to produce the rEIT data. Quantitatively, rEIT was able to distinguish two 

inclusions that were 1.5 cm closer together than traditional EIT could achieve for inclusions placed 

2 to 3 cm from the center for the cylindrical tank, and rEIT was able to distinguish two tumor-like 

inclusions where traditional EIT could not reliably do so.Mathematical analysis showed that rEIT 

improves the number of stable singular vectors by up to 4.2 and 4.7 times than that of traditional 

EIT for the cylindrical and breast-shaped tanks, respectively, which is an indication of improved 

resolution. Direct investigations into measurements revealed minimum rotation angles that should 

yield data uncorrupted by noise. Two inverse approaches (one that inverts then fuses the data 

(I/DF) and one that fuses the data then inverts (DF/I)) and two mesh modeling approaches were 

considered. It was found that DF/I produces far better results compared to I/DF and a rotated-mesh 

approach produces further improvements. The ability to obtain improved absolute reconstructions 

using rEIT on a practical clinical scenario (breast-shaped tank experiment) is an important step 

towards using rEIT to improve previous EIT results in medical applications.

Index Terms

Data fusion; electrical impedance tomography; finite element method; inverse problem; singular 
value decomposition

I. Introduction

Electrical impedance tomography (EIT) is an imaging modality that aims to estimate the 

electrical property distribution within a domain of interest using currents and voltages 

measured on the domain’s boundary. It has been considered in a number of medical [1] and 

industrial applications [2]. Medical applications include ventilation and perfusion imaging 
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[3], brain imaging [4], and cancer detection applied to breast [5], prostate [6], and cervical 

[7] tissues. It is attractive for medical applications due to its affordability, safe non-ionizing 

radiation-based nature [1], and potential for portability and miniaturization [8].

Several recent studies ([9]–[13]) in both industrial and medical applications have explored 

fusing together multiple sets of data with the objective of improving image quality. These 

approaches have been termed EIT with non-stationary electrodes [9], scanning EIT (SEIT) 

([10], [11]), rotational EIT (rEIT) [12], and rotary planar electrical impedance 

mammography (RPEIM) [13]. SEIT has been applied to rotating electrodes in a tank [10] 

and to translating electrodes across a surface [11]. All of these techniques aim to fuse sets of 

traditional EIT data together in order to produce an improved image with higher resolution 

and accuracy. However, there are questions of how best to fuse the data and which modeling 

approaches should be used to maximize these improvements.

EIT is a severely ill-posed inverse problem [14], which partially explains the moderately low 

resolution of EIT, i.e. the low sensitivity ‘far’ from the electrodes limits the accuracy of the 

electrical property estimation. Another factor limiting the resolution is the relatively low 

number of measurements typically available in clinical EIT systems. This stems from the 

cost and complexity of designing high channel-count systems and the practical challenges of 

applying a large number of electrodes given a fixed surface area constrained by the anatomy 

being imaged; this latter challenge is especially important since larger electrodes are 

preferred because they increase the signal to noise ratio [15] and reduce contact impedances 

[16]. By combining multiple sets of measurements together these fusion EIT approaches 

have the potential to create a better-posed inverse problem and improve resolution without 

expensive/complex hardware upgrades.

There are two methods for solving the inverse problem in fusion EIT approaches. The first 

approach, used by ([9]–[12]), is to stack all measurements together in a single measurement 

vector over which the appropriate inversion is performed. Alternatively, the RPEIM 

approach [13] calculates the inverse reconstruction for each rotation and then fuses the data 

together through an averaging technique. We refer to the two methods as the data fusion then 

inversion (DF/I) and the inversion then data fusion (I/DF) techniques.

For each inversion approach, the mesh used to define the domain geometry and electrodes 

can either be 1) a single mesh that encodes all of the electrodes from all states (or rotations) 

within the boundary, or 2) a single standard mesh with electrodes defined for one particular 

state (i.e. 0° rotation) that is transformed (or rotated) to each of the states considered. We 

refer to these mesh types as the 1-mesh and rotated-mesh approaches, respectively.

In this study, we explored rEIT for breast cancer imaging. Absolute reconstructions, i.e. 

reconstructions that estimate the true conductivity distribution of the tissue without the need 

of a reference measurement, are essential for this application [17]. We developed a rEIT 

modeling approach that achieves improved absolute reconstructions compared to traditional 

EIT and quantitatively assessed the improvements and limitations offered by rEIT. These 

improvements and limitations are evaluated through 1) analysis of the mathematical 

formulation of the inverse problem, 2) analysis of image reconstructions produced from 

Murphy et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rotating tank experiments (each rotation denotes an additional dataset), and 3) analysis of 

raw voltage measurements acquired from bench-top experiments. Although rEIT has been 

studied previously ([10], [12]), this study 1) appears to be the first to produce absolute 

images with measured data, and 2) demonstrates more explicitly the qualitative and 

quantitative improvements offered by rEIT.

Bench-top imaging experiments were conducted to evaluate rEIT using a cylindrical and a 

breast-shaped tank (see Fig. 1a–b). In both experiments, two inclusions within the domain 

were kept stationary while the tanks were rotated. The full-set of traditional EIT 

measurements is recorded at each rotation, which is referred to as a dataset. rEIT uses a 

certain number of datasets, referred to as fused datasets, to produce a reconstruction. The 

mathematical analysis revealed an improvement of up to 4.2 and 4.7 times the number of 

stable singular vectors on the cylindrical and breast-shaped tank, respectively. This analysis 

enables one to quantify the improved resolution or added information provided by rEIT. 

Absolute imaging with rEIT was able to distinguish two inclusions that were 1.5 cm closer 

together than traditional EIT could achieve for inclusions placed 2 to 3 cm from the center of 

the cylindrical tank; likewise, rEIT was able to better distinguish two tumor-like inclusions 

within the breast tank, when compared to traditional EIT. Qualitative analysis of the 

reconstructions and quantitative analysis of the distinguishability and spatial metrics and 

inclusion contrasts revealed that the DF/I technique and rotated-mesh approach is the 

preferred method for rEIT. Lastly, analysis of voltage measurements was used to illustrate 

important limitations of rEIT, i.e. the minimum rotational step size, Δθ, that should yield 

added information was determined.

The remainder of the paper continues as follows. Section II includes a description of the 

forward problem, the meshing techniques, the inverse methods, the mathematical tools used 

to quantify the amount of information added by rEIT, and the description of the experiment, 

measurement system, and metrics used for analysis. Section III describes the results of the 

mathematical analysis, experiments, and direct investigation into measured voltage data. 

Section IV discusses the contributions of this study to literature, further discusses the clinical 

applications of rEIT, specifically those explored here, and includes a short discussion on 

modeling approaches.

II. Methods

This section describes the forward problem, two approaches for modeling tank rotations, two 

data fusion approaches used to perform the inversion, and three mathematical approaches 

used to investigate how much additional information can be gained through use of rEIT.

A. Forward Problem

The forward problem computes the electric potential within the domain and the electrode 

voltages on the boundary given a specified current injection distribution. The complete 

electrode model (CEM) [18] has been found to produce the most accurate simulated voltage 

measurements [19] and is defined by the following:
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(1)

(2)

(3)

(4)

where σ is the conductivity, u is the electric potential, Ω denotes the domain, L is the number 

of electrodes, and Ul, Il, zl represent the voltage, current, and contact impedance on the lth 

electrode, El. Using the variational formulation of these equations [18] one can solve in 3D 

using the finite element method (FEM) [20]. We use a 3D Matlab implementation of the 

CEM and FEM using tetrahedral elements and linear basis functions for calculations [21]. A 

3D mesh defining the domain of interest is constructed using gmsh [22]. Electrodes are 

defined within the mesh by specifying their boundaries using the nodes and edges. 

Therefore, each electrode is defined by a set of tetrahedral faces or 2D triangles.

The forward problem was modeled in two ways, referred to as the 1-mesh and rotated-mesh 
approaches. In the 1-mesh approach, a single FEM mesh was constructed that encoded the 

electrodes from all rotations. When calculating voltages corresponding to a single rotation, 

one needs to simply use the triangles that represent the electrodes for that rotation. In a sense 

the mesh is composed of overlapping electrodes. In contrast, the rotated-mesh approach is 

composed of a single mesh with the electrodes from a zero-degree rotation encoded in it, and 

one obtains meshes for different rotations by rotating the nodes of this mesh.

B. Inverse Problem

The inverse approach is based on the standard Gauss-Newton algorithm employing a 

generalized Tikhonov regularization scheme. After a linearization step ([23]) about an initial 

estimate of the conductivity, σ̃
0, the error to be minimized is given by

(5)

where δσ is the conductivity update, J is the Jacobian, L is the regularization matrix, λ is the 

Tikhonov regularization factor, and ΔV is the vector difference between measured, VMeas, 
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and simulated voltages, VSim(σ̃
0). In this study L is taken to be a Laplace smoothing 

regularization matrix. The solution to (5) can be written as

(6)

If an appropriate regularization matrix and Tikhonov factor are chosen, then the augmented 

Jacobian, JT J + λLT L, is positive definite and therefore invertible [24]. Absolute imaging 
assumes (as stated in (6)) that VSim(σ̃0) is simulated, whereas difference imaging uses a 

measured reference set in place of VSim(σ̃
0). Difference imaging can only be used when an 

appropriate reference set can be acquired. Equation (6) yields an update for the conductivity 

estimate throughout the domain, σ̃
1 = δ σ̃+ σ̃

0, and the whole process can be iterated to 

improve the quality and accuracy of the absolute reconstructions.

Our inverse implementation uses the dual-mesh method [25], which allows one to solve the 

Jacobian on a fine mesh while estimating the conductivity on a much coarser inverse mesh. 

This approach yields an electrical potential with high accuracy throughout the domain and 

enables one to reconstruct on any chosen inverse mesh. We note that this fine mesh is the 

same mesh used to simulate the voltages, VSim(σ̃
0), in (6).

In rEIT, datasets recorded from multiple tank rotations are combined to produce an 

improved reconstruction. For each of the NR rotations one has a distinct Jacobian J (θ ), 

measured data vector VMeas (θ ), and simulated voltages VSim (σ0, θ ). There are two 

approaches that one may use when combining the data. The first approach is to compute the 

inverse problem for each rotation (i.e. solve (6)) and then fuse the reconstructions (I/DF), 

and the second approach is to fuse all the data and solve the inverse problem simultaneously 

for all rotations (DF/I).

1) Inversion then Data Fusion (I/DF)—In this method, an estimate of the conductivity, 

σ̃ (θ ), is calculated for each rotation and these individual reconstructions are averaged to 

yield a final reconstruction, σ̃I/DF. Each individual reconstruction is performed on the same 

inverse mesh. Thus the fusion is a direct average over each node, i.e.

(7)

The I/DF technique was used in [13]; however, in [13] coarser and separate distinct meshes 

were used for each individual rotation compared to the final fused mesh (similar to the 

rotated-mesh approach).

2) Data Fusion then Inversion (DF/I)—In this approach the data is first fused and then 

inversion is performed simultaneously using all of the data. The data is fused in the error 

function such that
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(8)

Equation (8) is the average error between the model and measured data while including the 

same regularization scheme as traditional EIT, i.e. identical second term as in (5). The 

averaging maintains the same relative error and regularization norms regardless of the 

number of rotations due to the 1/NR factor. Thus a single Tikhonov factor can be used when 

comparing reconstructions across different numbers of fused datasets. One can rewrite (8) in 

the following equivalent form

(9)

where JFD and ΔVFD represent the concatenated fused-data (FD) Jacobian and voltage data, 

e.g. JFD is defined by

(10)

Using the same method to solve (5), the solution to (8) or (9) is given by

(11)

C. Mathematical tools for Analyzing the Inversion

We use singular value decomposition (SVD) to analyze the additional information obtained 

via fused datasets. In general, the matrix A, size m × n, can be decomposed into three 

matrices, i.e. A = USVT, where U is m × n, V is n × n with orthonormal columns, and S is a 

diagonal matrix with nonnegative elements (singular values) [26]. Analyzing the singular 

values gives the numerical rank of A and the expected number of singular vectors (columns 

of V) that can be used in inverting the matrix (page 56 of [27]). One can then use the Picard 

condition to estimate the number of stable singular vectors (see [9], [26]).

The matrix of interest in the context of rEIT is the Jacobian, JFD. The analysis of the 

singular values of JFD was considered in [12], and the analysis of the Picard condition in 

terms of the least square problem, ||JFDδσ − ΔVFD||2 was considered in [9]. A third method 

of analyzing the problem can be found by first rewriting (9) in an equivalent form,
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(12)

referred to as a stacked form (page 68 of [27]), where we refer to the stacked matrix as 

. An analysis of the singular values (SV) of B indicate the number 

of singular vectors that are directly associated with the Jacobian in the final regularized 

inverse solution. By using an empirically best-fit Tikhonov factor this analysis also 

incorporates the decay of the singular values and the measurements.

D. Description of Experiments

This section describes the experiments designed to reveal the practical improvements offered 

by rEIT and details of the measurements, measurement system, and reconstruction 

parameters. The experiments were conducted on a 16-electrode cylindrical tank (diameter 20 

cm, depth of 3 cm) and a breast-shaped tank (half-ellipsoid: x/y-diameter 14 cm, and z-semi-

principle axis/depth 5 cm) with two rows of 8 electrodes, offset by 45° (Fig. 1). The 

cylindrical tank electrodes were 3 cm in height and 2.0 cm in width and the square breast 

tank electrodes were 1 cm × 1 cm. The cylindrical tank was filled with 0.1 S/m saline and 

cylindrical metal inclusions (25.4 mm diameter) were used. The breast tank was filled with 

0.05 S/m (near adipose tissue) and gel inclusions (1 cm diameter and 1 cm height with a 

0.22 S/m conductivity) were placed in the solution as tumor surrogates ([28]).

Based on the results from [12] we aimed to use as many rotations as possible. Our manual 

rotation stage allowed accurate rotations down to 1 degree. Based on the electrode spacing 

there was a maximum turn of 22° and 44° before a repeated geometry would occur for the 

cylindrical and breast-shaped tanks, respectively. For the 1-mesh approach, rotations that 

resulted in nearly intersecting electrode boundaries (intersections within 0.15 cm) needed to 

be excluded to prevent illshaped mesh elements. Considering these factors and assuming 1° 

rotations for the cylindrical tank and using a simple greedy algorithm to find least 

overlapping electrode boundaries for the breast-shaped tank the parameters for the 

experiments were selected (Table I).

1) Measurement system—Impedance data was recorded using a custom designed EIT 

system [29]. All data was sampled at 10 kHz. A total of 1,456 tetrapolar measurements for 

the cylindrical tank and 1,320 tetrapolar measurements for the breast tank were recorded 

from each rotation, i.e. for each dataset. Each tetrapolar measurement is specified as the 

differential voltage measured between two electrodes created due to a pair of current 

injecting electrodes. We define each measurement as an IIVV pattern where II represents the 

current injection electrode pair (I1, I2) and VV represents the differential voltage sensing 

pair of electrodes (V1, V2). The IIVV patterns are composed of 0-skip through 6-skip 

patterns for cylindrical tank and composed of combinations of 0-skip through 3-skip patterns 

from both rows of the breast-shaped tank. No bi-polar measurements were used. The n-skip 

patterns are all combinations of current and voltage electrodes that have n electrodes 
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between current carrying and voltage measurement electrodes. For example, two IIVV 

patterns using 0- and 2-skips are [1 2 3 4] and [1 4 8 11], respectively. The average standard 

deviation across all voltage measurements and tests at a rotation of 0 degrees for the system, 

, was 0.21 mV for cylindrical tank and 0.10 mV for the breast-shaped tank. A saline 

calibration step was performed on all measurements [30].

2) Reconstructions—All reconstructions are absolute using (6) or (12). The number of 

fine mesh nodes and elements, the coarse inverse mesh grid and number of nodes, the 

number of inverse algorithm steps, and the Tikhonov factors for both experiments are listed 

in Table II. The L-curve approach was investigated [26], but in an attempt to find the point at 

which the two inclusions were most distinguishable it was empirically found that the optimal 

Tikhonov factor was slightly above the corner of the L-curve.

3) Distinguishability Experiments—These experiments were conducted to illustrate 

how rEIT provides more resolved imaging. Specifically, the experiment explored the 

minimum separable distance needed to distinguish two objects.

In each measurement configuration, two inclusions were placed within the tank. The 

inclusions were positioned so that their centers had an x-translation from the tank center of 2 

to 5 cm in 1 cm steps in the cylindrical tank and 2 to 4 cm in 0.5 cm steps in the breast-

shaped tank, and the inclusions were separated in the y-direction by 0.5 to as much as 3 cm 

in 0.5 cm steps in both experiments (see Fig. 1a for an illustration of the x-translation and 

separation). The inclusions were suspended so that when the tank was rotated the inclusions 

remained fixed in place. In the breast-shaped tank the inclusions were centered at a depth of 

2.5 cm.

Distinguishability Metric—A distinguishability metric was developed that incorporated a 

minimum peak to trough (MPT) ratio and a background noise (BN) measure. The inclusions 

were considered distinguishable if the MPT ratio was above a tolerance of 1.10 or 1.15, i.e. 

the minimum peak was 10% or 15% larger than the trough. Two tolerances were chosen 

because distinguishability is a subjective measure and these two values both help to illustrate 

the differences in reconstructions between the methods and number of combined datasets. A 

peak was required to be three times larger than the background noise, 3BN. The BN is 

defined to be the standard deviation of the reconstructed conductivity on nodes whose x-

value was less than −1 cm, i.e. the background from the left side of the reconstructions in 

Fig. 2. The trough was defined to be the minimum point on the line joining the two peaks. If 

two peaks were not found, then the MPT ratio was assigned a value of 1. Fig. 2 provides an 

illustration of the MPT ratio and distinguishability metric on two example reconstructions (1 

dataset and 8 fused datasets using the DF/I technique and 1-mesh approach). The 

reconstruction from the 8 fused datasets provides sufficient separation to quantitatively and 

qualitatively distinguish the inclusions, while the single dataset reconstruction yields a 

blurred region that does not clearly distinguish the inclusions. This approach to quantifying 

distinguishability is similar to that used in [31].

Other Metrics—In addition to the distinguishability metric, an x-translation error and 

separation error were used. The separation error was only calculated if two peaks were 
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identified. Additionally, the background conductivity error and inclusion contrast, defined by 

the mean peak value divided by the mean background conductivity, was used to 

quantitatively evaluate the recovered conductivity values and the potential of absolute 

imaging.

III. Results

The benefits of rEIT were evaluated using mathematical tools (i.e. SVD analysis), qualitative 

and quantitative analysis of images reconstructed from a series of experiments, and direct 

analysis of the raw voltage measurements. All data is measured and all reconstructions are 

absolute.

A. Mathematical Analysis of the Inversion (SVD Analysis)

The mathematical tools described in Section II.C were used to analyze the potential 

improvement associated with the fused datasets. This analysis is only applicable for the DF/I 

technique, since the inverse step remains the same for all data sets in the case of the I/DF 

technique.

First, SVs of the fused-data Jacobian, JFD, and the stacked Jacobian and regularization 

matrix, B, for 1, 2, 4 and 8 fused datasets are computed (Fig. 3) for the cylindrical tank and 

1-mesh approach. The SVs of JFD drop to numerical precision (~1×10−16) at NR×L(L-3)/2, 
which is the product of the number of rotations and the maximum number of independent 

measurements possible in an L-electrode tetrapolar measurement system (Fig. 3a). As 

expected, this suggests that rEIT provides significantly more information as additional 

datasets are fused. Similar findings were reported in [12]. Although the SVs will always 

decay exponentially, the degree of ill-posedness (page 8 of [26]) is reduced (rate of decay of 

SVs is slower) when more fused datasets are used. The SVs that correspond to the stacked 

Jacobian and regularization matrix, B, decrease exponentially until the SVs are influenced 

by the regularization (Fig. 3b). While only the first 120 SVs are shown, the SVs only drop to 

approximately 1×10−3 which implies the B matrices are each numerically well-conditioned. 

The index at which the SVs level off signifies the point at which the regularization becomes 

dominant. In other words, there are only 32, 48, 79, and 100 SVs that are directly related to 

the Jacobian for the 1, 2, 4, and 8 fused datasets, respectively. Analysis via Picard’s 

condition revealed 71, 105, 163, and 218 stable SVs for inversion when combining 1, 2, 4, 

and 8 fused datasets, respectively.

The results for the SVs of JFD are overly optimistic, as they do not consider the stability of 

the singular vectors. The improvements in terms of relative gain of singular vectors are 

shown in Fig. 4 for the other two methods (SV analysis of B and the Picard condition) 

corresponding to both tanks and the 1-mesh and rotated-mesh approaches. The analyses 

from the SVs of B (Fig. 3b) and Picard condition exhibit nearly the same improvement 

factor for the 1-mesh approach, whereas the Picard condition analysis results in slightly 

higher gains than the SVs of B analysis for the rotated-mesh approach. The analysis of the 

SVs of B is more relevant since they are directly linked to the regularization, which has been 

tuned to provide the best reconstruction results. Overall, these analyses suggest multiple 

fused datasets provide a relative gain of as much as 4.2 and 4.7 times the number of singular 
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vectors as compared to a single dataset for the cylindrical and breast-shaped tank, 

respectively (Fig. 4). The gain using 8 fused datasets (4.2 and 4.7) is similar to what one 

would ideally expect by doubling the number of electrodes (4.46); additionally, the gain is 

decreasing in slope as more datasets are fused, which implies there is likely an upper limit to 

the possible gains.

B. Cylindrical Tank: Distinguishability Experiment

This experiment illustrates the ability of rEIT to distinguish two metal inclusions in a 

cylindrical tank using three methods; 1) DF/I technique using the rotated-mesh approach, 2) 

DF/I technique using the 1-mesh approach, and 3) the I/DF technique. We verified that the 

I/DF technique produced equivalent images for both the 1-mesh and rotated-mesh 

approaches. We show example plots of the MPT ratio versus separation for each x-

translation in Fig. 5 and compare the minimum distinguishable separation using each 

method (Fig. 6) assuming tolerances of 1.10 and 1.15. The best reconstructions (assuming a 

tolerance of 1.15) are illustrated (Fig. 7) and compared to the other methods (Fig. 8). Finally, 

the spatial metrics and the inclusion contrasts are used to further evaluate these absolute 

reconstructions (Fig. 9).

Fig. 5 shows the MPT ratio as a function of inclusion separation for each x-translation 

considered when a DF/I technique and rotated-mesh approach were used for reconstructions. 

The right end-point of the curves represents the maximum separation tested for the particular 

x-translation. The MPT ratio increases as the inclusions are spaced further apart, which 

implies an increased distinguishability. Visually, there is a significant improvement observed 

when incorporating fused datasets. It is interesting to note that as the inclusions are moved 

closer to the center the differences between combining 2, 4, and 8 datasets becomes much 

smaller.

The curves in Fig. 5 with the chosen tolerances of 1.10 and 1.15 are used to determine the 

minimum distinguishable separation for each x-translation, shown in Fig. 6 for all methods. 

As expected the minimum distance at which two inclusions can be distinguished decreases 

as the inclusions approach the tank boundary (Fig. 6) where EIT is most sensitive. The best 

method is clearly the DF/I technique using the rotated-mesh approach. It is able to 

distinguish the two inclusions at a separation of 0.5 cm for all x-translations when 4 or more 

datasets are fused using the larger/more challenging tolerance of 1.15. We suspect the 2 

combined datasets performs worse because of (dual) inverse mesh artifacts (discussed in 

Section IV), which are reduced by averaging over more datasets. Overall and using the more 

challenging tolerance of 1.15, the rEIT technique is able to distinguish two inclusions 1.5 cm 

closer together than traditional EIT (1 dataset) could achieve for inclusions placed 2 to 3 cm 

from the center. In the remainder of this subsection, the tolerance of 1.15 is assumed.

There is a significant difference between the DF/I and I/DF techniques. There appears to be 

no added ability to distinguish the inclusions using the I/DF technique compared to 

traditional EIT (Fig. 6c/f). The two DF/I techniques in contrast are quite similar. It appears 

that either 2- or 4- fused datasets is best for the 1-mesh approach (Fig. 6e).
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Fig. 7 shows the reconstructions corresponding to the smallest overall distinguishable 

separation at each x-translation for 1, 2, and 8 datasets along with their corresponding 

conductivity profiles through the peaks using the best approach (DF/I using the rotated-mesh 

approach). Combinations of 4 datasets are omitted because they are nearly indistinguishable 

from the 8-dataset reconstructions. Combining 2 or 8 datasets provides better 

distinguishability between the two inclusions as compared to a traditional EIT (1 dataset). In 

fact, for x-translations of 2 to 4 cm the 1 dataset reconstructions only recovered a single 

peak (assuming separations from Fig. 7). The three methods are directly compared using 

each of their best number of fused datasets corresponding to the best method’s smallest 

distinguishable separation at each x-translation (Fig. 8). The first three columns show the 

reconstructions and the final column shows their corresponding profiles through the peaks. 

In each row, the inclusions reconstructed with DF/I are qualitatively more resolved than 

I/DF. Likewise, the I/DF approach is only able to quantitatively distinguish the two 

inclusions for an x-translation of 5 cm. The difference between the two DF/I techniques are 

more subtle, but qualitatively the rotated-mesh reconstructions have much more consistent 

contrast in the inclusions and the inclusions are more aligned vertically as expected based on 

the geometry of the measured data.

In Fig. 9 the spatial and contrast metrics are shown for the same reconstructions of Fig. 8. 

One can see that the DF/I and rotated-mesh approach is nearly always better in terms of each 

metric (except the smallest x-translation in the x-translation error metric). This reinforces the 

qualitative appearance of more accurately located and separated inclusions in Fig. 8 using 

this technique. We note that the separation error can only be calculated if two inclusions 

were detected. Thus x-translations of less than 3 cm could not be calculated for the I/DF 

technique. The contrast plot illustrates the convergence of the approach and the 

improvements one achieves using absolute imaging (3.4 contrast) compared to 1 iteration 

(2.2), i.e. a 1.5× improvement in contrast. The background conductivity error was 3.3%, 

6.1%, and 4.8% for the reconstructions shown in Fig. 9 using the DF/I and rotated-mesh 

approach, DF/I and 1-mesh approach, and the I/DF technique, respectively.

C. Breast Tank: Distinguishability Experimental

The second experiment was performed on a breast-shaped tank (Fig. 1b), which is a realistic 

potential clinical geometry with tumor and saline conductivities chosen similar to a fatty 

breast [28]. Essentially the same experiment was performed as with the cylindrical tank, but 

here the geometry is more complicated, multiple rows of electrodes are used, and the 

inclusions are of a smaller size and contrast more closely representing typical tumor sizes 

and conductivities. Reconstructions were performed using the DF/I technique with the 

rotated-mesh approach. The minimum distinguishable separations are determined (Fig. 10d–

e) using the MPT ratio (Fig. 10a–c) with tolerances of 1.10 and 1.15. The reconstructions at 

the minimum distinguishable separation (assuming a tolerance of 1.10) using 1, 2, and 8 

combined datasets are compared qualitatively in Fig. 11 and quantitatively in Fig. 12.

One can see a clear improvement when using 6 and 8 combined datasets by the MPT ratio 

plots at 3.5 and 4.0 cm x-translations (Fig. 10b–c) and the overall minimum distinguishable 

separation curves in Fig. 10d assuming a tolerance of 1.10. We prefer using the tolerance of 
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1.10 opposed to 1.15 because the 1.10 tolerance better illustrates the subtle changes between 

the different numbers of combined datasets used (compare Fig. 10d to 10e). In the remainder 

of this subsection, we assume a tolerance of 1.10. Regardless, the minimum distinguishable 

separations are much larger than the cylindrical tank experiment (Fig. 6a,d), which is 

expected because of the smaller sized inclusions and significantly reduced inclusion-to-

background contrast. It is surprising that according to the MPT ratio the 1-combined dataset 

outperforms the 2, 4, 6, and 8 combined datasets at an x-translation of 3 cm (Fig. 10d). 

However, if one inspects the reconstructions (Fig. 11) and the spatial metrics (Fig. 12), it is 

apparent that the inclusions spatial locations and separations have significant errors. In terms 

of the contrast metric, one again sees the best contrast by taking multiple iterations (absolute 

imaging) and by combining 8-datasets (1.27). Unfortunately, it is significantly less than the 

ideal contrast 4.4 (= 0.22/0.05). This significant underestimate is likely caused by the ill-

posed nature of the problem and the combination of the Laplace smoothing regularization 

and the small size of the inclusions. Regardless, it is a 7% improvement compared to 1-

iteration and a 5% improvement compared to traditional EIT (using 6 iterations). The 

background conductivity error was very accurate in this experiment, i.e. less than 0.5% for 

each reconstruction shown in Fig. 12. Overall, the 8 fused datasets appears best when 

considering together the minimum distinguishable separations (assuming a 1.10 tolerance), 

qualitative analysis of the reconstructions, and the spatial and contrast metrics.

D. Measurement Limitations on Distinguishability

Finally, the hardware specification of the data acquisition system will impact the potential 

improvements provided by rEIT. Fig. 13 shows the average weighted voltage difference 

(AWVD) between measurements recorded at rotations of θ and 0 degrees at a fixed inclusion 

separation of 1 cm for both experiments, which can be written as

(13)

where SNn is the standard deviation of the system noise for the nth measurement. Points 

below the  line are on average more likely to be corrupted by noise than those above 

. As expected, measurements are above this noise threshold when the inclusions are 

closer to the boundary and when there are larger changes in the rotation, Δ θ. For instance, 

in the cylindrical experiment (Fig. 13a) at x-translations of 2 and 3 cm, a minimum Δ θ of 3 

and 4 degrees, respectively, is required to on average detect a measureable change in voltage. 

Based on how the datasets have been combined here, this implies that reconstructions using 

only 2 datasets are expected to be best (i.e. a 7 degree rotation change) as opposed to 4- and 

8-fused dataset reconstructions (i.e. 2 and 1 degree rotations, respectively) for x-translations 

of 2 and 3 cm. The 2-fused dataset reconstructions do indeed appear to be better than 4- and 

8-fused dataset reconstructions when using the DF/I and 1-mesh approach (Fig. 4b) at these 

x-translations. In the case of the breast-shaped tank (Fig. 13b), larger rotations were 

considered, and therefore most of the rotations result in average weighted voltage 

differences above the  threshold. One can see, e.g. that for an x-translation of 2 cm on 
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average the 2 and 3-degree rotations are corrupted by noise, but the DF/I technique using the 

rotated-mesh approach appears robust to this. Regardless the overall importance of this 

analysis is to illustrate that there is a clear limit on the number of rotations (fine-ness of 

rotations that can be used), which would expect to add information and that this should be 

considered when designing a rEIT system.

IV. Discussion

This study reports 1) experimental evidence that illustrates the improvements offered by 

rEIT, and 2) provides the first rEIT (or fused-data EIT) study that has produced absolute 

images (with relatively large electrodes) for a realistic clinical application. In this section we 

discuss the modeling of the 1-mesh versus rotated-mesh approach and the above two points.

1-Mesh versus Rotated-Mesh Approaches—The 1-mesh approach was developed to 

minimize (dual) inverse mesh artifacts. Standard FEM mesh artifacts are well-studied and 

are known to potentially cause significant artifacts [32]. However, the dual mesh artifacts are 

different. An element of the inverse mesh is composed of numerous tetrahedra making up 

the same volume within the fine FEM mesh. A particular coarse element within the 

stationary inverse mesh will incorporate a different set of fine mesh elements for each 

rotation of the rotated-mesh approach, while the inverse element will consist of the same 

fine elements for all rotations when the stationary 1-mesh approach is used. These small 

variations can lead to artifacts in electrical property estimation. We believe this is why gains 

are limited for the rotated-mesh approach when only 2 datasets are used; the two different 

rotations could represent quite different sets of fine elements within each inverse mesh 

element. Despite this, we found that with a larger number of datasets the rotated-mesh 

approach in general performed better than the 1-mesh approach. We hypothesize that this 

slight jitter introduced on the volume of each inverse mesh element is beneficial to rEIT 

reconstructions, especially in improving spatial accuracy.

Experimental Evidence of Improvements offered by rEIT—This study was 

motivated by a lack of clarity on how much improvement rEIT can provide ([10], [12]). In 

these prior studies there appeared to be overly optimistic improvements that could have been 

caused by poor modeling choices (Figs. 12–13 in [12]), and the remaining illustrations did 

not clearly quantify the improvements (e.g. improvement versus distance from tank edge). 

This study provides a rigorous evaluation of rEIT that 1) gives guidance on the preferred 

modeling approach (DF/I technique using a rotated-mesh approach), 2) clearly describes the 

inversion approach, and 3) quantifies the improvements via singular value analysis and two 

experiments that clearly show how rEIT improves the reconstructions qualitatively and 

quantitatively.

Absolute Imaging and Clinical Applications of rEIT—It is essential that absolute 

imaging is achievable using rEIT for clinical applications such as breast cancer imaging 

([17]). This study has established absolute imaging using rEIT on two tank experiments. 

Although tank experiments are more controlled compared to clinical situations it is an 

important step. Our prior studies in breast imaging ([5], [33]) involved an EIT system in 
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which the woman would lie on a custom examination table with her breast hanging pendant. 

Four rings of 16 electrodes were then lightly pressed against the breast. It was very 

challenging to obtain accurate boundary information ([34]), which is needed for absolute 

imaging ([35]). To overcome this problem and to utilize the potential of rEIT, we envision a 

slight modification of the system in which the breast is compressed into a shallow tank with 

embedded electrodes. This scenario/system 1) can give accurate knowledge of the domain 

(and electrode positions), 2) is applicable for rEIT, and 3) could be combined with other 

modalities such as an automated whole breast ultrasound system ([36]). This system would 

be similar to [13], except in its use of relatively large electrodes, which are preferable ([15], 

[16]), and in the combination with ultrasound. The possible addition of a bimodal system is 

important for data registration and could provide further improvements to reconstructions 

(e.g. [37]). Practical solutions such as a properly chosen ultrasound gel or a shallow saline 

bath could ensure proper electrode contact (with minimal shunting) and ease of tank 

rotations. This study represents an important step towards the development of such a system.

In ongoing research we are investigating a fused-data EIT approach for prostate cancer 

imaging applications by fusing multiple sets of transrectal EIT (TREIT) ([38], [39]) data 

together to form an improved reconstruction and we may investigate this approach in a 

related project, intraoperative surgical margin assessment ([6]). The analysis of modeling 

approaches performed here provides important lessons that can be used to better design and 

deploy EIT systems and potentially help to translate this technology to the clinic.

V. Conclusions

In conclusion this study 1) developed a method capable of obtaining spatially accurate 

absolute rEIT reconstructions with improved image contrast and an improved ability to 

distinguish between closely spaced inclusions compared to traditional EIT, 2) clearly 

illustrated improvements due to rEIT via mathematical analysis and qualitative and 

quantitative assessments from two tank experiments, and 3) demonstrated through direct 

analysis of the measured data clear limitations in the minimum rotation step that add new 

information. The ability to perform absolute reconstructions using rEIT on a practical 

clinical scenario (breast-shaped tank experiment) and clearly showing its improvements over 

traditional EIT are important steps towards using rEIT to improve previous EIT results in 

medical applications.
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Fig. 1. 
Two 16-electrode tanks used in this study, a. cylindrical tank and b. a breast-shaped tank 

(half-ellipsoid). The tanks are rotated counter clockwise while suspended inclusions remain 

fixed.
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Fig. 2. 
Illustration of the minimum peak to trough (MPT) ratio via two example reconstructions (1 

dataset and 8 fused datasets using the DF/I technique and 1-mesh approach) and their 

respective profiles through the reconstructed peaks.
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Fig. 3. 
Illustration of the normalized singular vectors from a. the Jacobian, JFD (10) and b. the 

stacked Jacobian and regularization matrix, B, for 1, 2, 4, and 8 fused datasets.

Murphy et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The relative gain in stable singular vectors as a function of number of fused datasets for the 

cylindrical (Cyl) and breast-shaped (Brst) tanks and the 1-mesh and rotated-mesh 

approaches predicted by the singular vector analysis of B (SVs of B) and the Picard 

condition.
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Fig. 5. 
Plots of the minimum peak to trough (MPT) ratios for 1, 2, 4, and 8 fused datasets using the 

DF/I technique and rotated-mesh approach. The MPT ratio increases as the inclusions are 

moved apart. One can see that the fusion of datasets increases the MPT ratio.
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Fig. 6. 
Plot of the minimum distinguishable separation for 1, 2, 4, and 8 fused datasets using the 

a/d. DF/I technique and rotated-mesh approach, b/e. DF/I technique and 1-mesh approach, 

and c/f. I/DF technique, which is determined by finding the minimum separation that yields 

an MPT ratio of 1.10 (a–c) or 1.15 (d–f) (see Fig. 5).
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Fig. 7. 
Reconstructions (using the DF/I and rotated-mesh approach) corresponding to the smallest 

distinguishable separation (across number of fused datasets) at each x-translation for 1, 2, 

and 8 fused datasets (first three columns) along with profiles through their respective peaks 

(last column). The profiles are the reconstructed conductivities over the line connecting the 

two peaks. If there is no profile for a number of fused datasets then two peaks were not 

detected.
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Fig. 8. 
Reconstructions comparing DF/I to the I/DF technique for 8 fused datasets corresponding to 

the DF/I’s smallest distinguishable separation at each x-translation. The first three columns 

show the reconstructions and the final column shows the corresponding profiles through the 

peaks. If there is no profile for a number of fused datasets then two peaks were not detected.
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Fig. 9. 
Illustration of the a. X-position error and b. separation error, versus x-translation and the c. 

inclusion contrast (averaged across x-translations) versus iteration across each reconstruction 

method. The true separation at each x-translations corresponds to the reconstructions shown 

in Figs. 7 and 8.
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Fig. 10. 
Minimum peak to trough ratios versus separation for x-translation of a. 3 cm, b. 3.5 cm, and 

4. cm from the tank center. Based on these MPT ratios and tolerances of 1.10 and 1.15, d. 

and e. show the resulting minimum distinguishable separation versus x-translations for 1, 2, 

4, 6, and 8 combined datasets, respectively.
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Fig. 11. 
Reconstructions of the breast-shaped tank (Fig. 1b) (using the DF/I and rotated-mesh 

approach) corresponding to the smallest distinguishable separation at each x-translation for 

1, 2, and 8 combined datasets (first three columns) along with profiles through their 

respective peaks (last column). The profiles are the reconstructed conductivities over the line 

connecting the two peaks. If there is no profile for a number of fused datasets then two peaks 

were not detected.
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Fig. 12. 
Illustration of the a. x-position error and b. separation error, versus x-translation and the c. 

inclusion contrast (averaged across x-translations) versus iteration across 1, 2, 4, and 8 

combined datasets of the breast-shaped tank. The true separation at each x-translations 

corresponds to the reconstructions shown in Fig. 10.
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Fig. 13. 
Plot of the average weighted differences between a rotation of θ and 0 degrees for each x-

translation and a separation of 1 cm. Points above , on average, should provide 

information whereas points below fall within the noise of the system.
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TABLE I

Rotations Used in Tank Experiments

Tank No. of Datasets Minimum Rotation (°) Rotations (°)

Cylinder 1 - 0

2 7 0, 7

4 3 0, 3, 6

8 1 0, 1, 2, 3, 4, 5, 6, 7

Breast 1 - 0

2 24 0, 24

4 7 0, 7, 24, 31

6 3 0, 3, 7, 24, 27, 31

8 2 0, 3, 5, 7, 24, 27, 29, 31
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TABLE II

Mesh and Reconstruction Parameters

Tank No. of Datasets Minimum Rotation (°) Rotations (°)

Cylinder 1 - 0

2 7 0, 7

4 3 0, 3, 6

8 1 0, 1, 2, 3, 4, 5, 6, 7

Breast 1 - 0

2 24 0, 24

4 7 0, 7, 24, 31

6 3 0, 3, 7, 24, 27, 31

8 2 0, 3, 5, 7, 24, 27, 29, 31
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	1-Mesh versus Rotated-Mesh Approaches—The 1-mesh approach was developed to minimize (dual) inverse mesh artifacts. Standard FEM mesh artifacts are well-studied and are known to potentially cause significant artifacts [32]. However, the dual mesh artifacts are different. An element of the inverse mesh is composed of numerous tetrahedra making up the same volume within the fine FEM mesh. A particular coarse element within the stationary inverse mesh will incorporate a different set of fine mesh elements for each rotation of the rotated-mesh approach, while the inverse element will consist of the same fine elements for all rotations when the stationary 1-mesh approach is used. These small variations can lead to artifacts in electrical property estimation. We believe this is why gains are limited for the rotated-mesh approach when only 2 datasets are used; the two different rotations could represent quite different sets of fine elements within each inverse mesh element. Despite this, we found that with a larger number of datasets the rotated-mesh approach in general performed better than the 1-mesh approach. We hypothesize that this slight jitter introduced on the volume of each inverse mesh element is beneficial to rEIT reconstructions, especially in improving spatial accuracy.Experimental Evidence of Improvements offered by rEIT—This study was motivated by a lack of clarity on how much improvement rEIT can provide ([10], [12]). In these prior studies there appeared to be overly optimistic improvements that could have been caused by poor modeling choices (Figs. 12–13 in [12]), and the remaining illustrations did not clearly quantify the improvements (e.g. improvement versus distance from tank edge). This study provides a rigorous evaluation of rEIT that 1) gives guidance on the preferred modeling approach (DF/I technique using a rotated-mesh approach), 2) clearly describes the inversion approach, and 3) quantifies the improvements via singular value analysis and two experiments that clearly show how rEIT improves the reconstructions qualitatively and quantitatively.Absolute Imaging and Clinical Applications of rEIT—It is essential that absolute imaging is achievable using rEIT for clinical applications such as breast cancer imaging ([17]). This study has established absolute imaging using rEIT on two tank experiments. Although tank experiments are more controlled compared to clinical situations it is an important step. Our prior studies in breast imaging ([5], [33]) involved an EIT system in which the woman would lie on a custom examination table with her breast hanging pendant. Four rings of 16 electrodes were then lightly pressed against the breast. It was very challenging to obtain accurate boundary information ([34]), which is needed for absolute imaging ([35]). To overcome this problem and to utilize the potential of rEIT, we envision a slight modification of the system in which the breast is compressed into a shallow tank with embedded electrodes. This scenario/system 1) can give accurate knowledge of the domain (and electrode positions), 2) is applicable for rEIT, and 3) could be combined with other modalities such as an automated whole breast ultrasound system ([36]). This system would be similar to [13], except in its use of relatively large electrodes, which are preferable ([15], [16]), and in the combination with ultrasound. The possible addition of a bimodal system is important for data registration and could provide further improvements to reconstructions (e.g. [37]). Practical solutions such as a properly chosen ultrasound gel or a shallow saline bath could ensure proper electrode contact (with minimal shunting) and ease of tank rotations. This study represents an important step towards the development of such a system.In ongoing research we are investigating a fused-data EIT approach for prostate cancer imaging applications by fusing multiple sets of transrectal EIT (TREIT) ([38], [39]) data together to form an improved reconstruction and we may investigate this approach in a related project, intraoperative surgical margin assessment ([6]). The analysis of modeling approaches performed here provides important lessons that can be used to better design and deploy EIT systems and potentially help to translate this technology to the clinic.
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