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Estimation of Large Motion in Lung CT by
Integrating Regularized Keypoint

Correspondences into Dense
Deformable Registration

Jan Rühaak∗, Thomas Polzin, Stefan Heldmann, Ivor J. A. Simpson, Heinz Handels,
Jan Modersitzki, and Mattias P. Heinrich

Abstract— We present a novel algorithm for the regis-
tration of pulmonary CT scans. Our method is designed
for large respiratory motion by integrating sparse key-
point correspondences into a dense continuous optimiza-
tion framework. The detection of keypoint correspondences
enables robustness against large deformations by jointly
optimizing over a large number of potential discrete dis-
placements, whereas the dense continuous registration
achieves subvoxel alignment with smooth transformations.
Both steps are driven by the same normalized gradient
fields data term. We employ curvature regularization and a
volume change control mechanism to prevent foldings of
the deformation grid and restrict the determinant of the
Jacobian to physiologically meaningful values. Keypoint
correspondences are integrated into the dense registration
by a quadratic penalty with adaptively determined weight.
Using a parallel matrix-free derivative calculation scheme,
a runtime of about 5 min was realized on a standard PC. The
proposed algorithm ranks first in the EMPIRE10 challenge
on pulmonary image registration. Moreover, it achieves an
average landmark distance of 0.82 mm on the DIR-Lab COPD
database, thereby improving upon the state of the art in
accuracy by 15%. Our algorithm is the first to reach the inter-
observer variability in landmark annotation on this dataset.

Index Terms— Computed tomography, COPD, image reg-
istration, Jacobian determinant, keypoints, lung, Markov
random fields.

I. INTRODUCTION

THE registration of inspirative and expirative lung CT
images has important medical applications, in particular
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in the diagnosis and characterization of chronic obstructive
pulmonary disease (COPD) [1]. COPD is characterized by
chronic airflow limitation, which is primarily caused by small
airway disease and emphysema [2]. Using accurate pulmonary
registration, the local lung ventilation can be reliably quan-
tified [3]. Furthermore, lung registration is widely used in
radiotherapy for estimation of tumor motion [4] together with
localized ventilation measures, which can be included into
planning in order to spare as much well-functioning tissue
as possible from radiation dose. Local volume change can
be calculated based on the Jacobian determinant of nonlinear
displacement fields [5].

From our experience, the following two conditions are
most important for an accurate motion estimation: 1) correct
alignment of all discriminative inner-lung structures (such as
vessels and airways); 2) smooth and plausible (in particular
invertible) deformations with subvoxel accuracy. While several
approaches have been proposed in the past that aim at opti-
mizing both objectives jointly (see [6] for an overview), there
exists a remaining challenge to achieve highly accurate results
for scan pairs between full inspiration and full expiration
and therefore very strong motion [7]. Here we propose to
decouple the complex problem into two steps: 1) a very robust
computation of sparse correspondence fields for a moderate
number of keypoints and 2) an intensity-driven, continuous-
optimization based deformable registration integrating both
keypoint correspondences and volume change constraints.
This work draws inspiration from our two previous confer-
ence publications [8], [9]. In contrast to heuristic approaches
that use a separate descriptor matching, we integrally com-
bine keypoint correspondences and continuous optimization
within one unified objective function. We present improved
pre-processing, data-adaptive parametrization and parallel
matrix-free continuous optimization together with a substan-
tially extended evaluation on publicly available lung CT
images.

A. Related Work and Motivation

There are several competing strategies for intra-subject
alignment of volumetric lung CT scans. Following [6], their
performance mainly differs based on their choice of energy
terms and optimization strategy.
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1) Similarity Metrics: One of the main challenges of pul-
monary image registration is the reduction in lung density
during inspiration due to inflowing air. The associated lung
volume expansion leads to a decrease of the Hounsfield units
in the parenchymal region, violating the intensity constancy
assumption between corresponding points, upon which the
classic sum of squared differences (SSD) distance measure
is built. Several alternatives are reported in the literature:
In [10] and [11], local cross-correlation is used as distance
measure for robustness against breathing-related changes.
A mass-preserving transformation model based on the com-
puted volume change is used in [12] to adapt the local
image intensity, enabling the use of SSD without violating the
intensity constancy assumption. A similar approach has been
pursued in [13] by using the so-called sum of squared tissue
volume differences (SSTVD) distance measure together with a
vesselness filter for improved alignment of vascular structures.
In our work, normalized gradient fields (NGF) [14] are used
to gain invariance against changes in tissue density.

2) Optimization Strategy: Since lung registration yields a
highly nonlinear and usually non-convex problem, continu-
ous optimization approaches may easily get trapped in local
minima. In addition to specific pre-processing protocols (e.g.
alignment of lung segmentations and masking of outer-lung
tissue, see Section II-A), most approaches attempt to deal
with this problem by employing a multi-resolution framework.
However, for large intra-patient motion between inspirative
and expirative scans residual misalignments are still common.
This is evident from results published in [15] when applying
three widely used registration toolboxes on the COPD dataset
of [7], resulting in relatively high average landmark errors of
1.58 mm [16], 4.68 mm [17] or 2.19 mm [18]. When employ-
ing discrete optimization, a large range and dense sampling of
potential displacements can be explored simultaneously (as in
e.g. [8], [19], [20]), reducing average errors to 1.08 mm [8].

Our strategy is therefore to sample as many displacements
as possible to find robust correspondences with the help
of discrete optimization, while reducing the computational
complexity by considering only a sparse subset of keypoints
(as control points) and employ similar approximations for
the Markov random field based regularization as in [20].
Invertibility and volume change constraints of the estimated
transformation, which are difficult to model in discrete opti-
mization and computationally expensive for a large number
of displacements, are only enforced in the subsequent dense
registration to ease the keypoint matching.

Deformable registration with an initial keypoint correspon-
dence search has been considered in previous work [21]–[24].
However, the matching of each keypoint has been performed
independently, which thus generally resulted in a considerable
number of outliers. For inter-subject brain registration, a
graph-based matching of two sets of landmarks was proposed
in [25] and [26] that optimizes all correspondences simultane-
ously. In most approaches, the employed feature descriptors
are not applicable as a similarity metric in the subse-
quent dense continuous optimization, yielding an inconsistent
registration model. Our proposed method optimizes jointly
over all potential combinations of keypoint correspondences

using a graph-based optimization technique. In contrast
to [22], [25], [26], we detect keypoints in one scan and use
a dense search window in the other. Adding spatial regular-
ization yields more robust correspondences as shown in [8].
Part-based models [27] have also been successfully applied
to anatomical landmark localization [28]. Here, they are used
for the first time as energy term within an intensity-driven
deformable registration.

B. Paper Outline

In Section II our proposed lung registration method
DIS-CO is described. The images are first preprocessed using
lung masks to account for large scalings and to exclude non-
lung voxels. Second, a sparse correspondence field is found
using a part-based model and the normalized gradient fields
distance measure. These keypoint matches are then integrated
as least-squares penalty into a continuous optimization, which
is regularized by a curvature term and a volume change control
mechanism. In Section III the presented method is extensively
evaluated on publicly available lung CT data and compared
to state-of-the-art algorithms in terms of landmark and fissure
distances as well as the Jacobian determinant. The proposed
algorithm ranks first in the EMPIRE10 challenge [6] and
achieves an average landmark distance of 0.82 mm on the
DIR-Lab COPD database [7], thereby improving upon the state
of the art in accuracy [29] by 15 %. Our algorithm is the first
to reach the inter-observer variability in landmark annotation
on this dataset as highlighted in Section IV.

II. METHODS

Let F : R
3 → R denote the fixed image and M :

R
3 → R the moving image with compact support in domains

�F and �M, respectively. We aim to estimate a nonlinear
transformation y : R

3 → R
3 that best aligns F (the inspiration

CT scan) and M (an expiration scan of the same patient).

A. Preprocessing

Prior to our intensity-based registration, the CT scans
are preprocessed using lung segmentations. In our experi-
ments, we employ the lung segmentation algorithm from [30].
Following [31], the lung masks are first aligned by their centers
of gravity, followed by an affine-linear registration using the
SSD distance measure on these binary masks. In order to
fully exploit the segmentation information and provide a better
alignment of the deformable lung surface at different breathing
states, we extend the model of [31] as follows. An addi-
tional deformable registration [32] of the lung segmentations
is performed using again the SSD distance of lung masks
together with curvature regularization [33] and a penalty on
local volume change [34]. This mimics our intensity-driven
registration framework as described in detail in Section II-D1
and yields an initial transformation ŷ together with a pre-
aligned moving image M̂.

We further use the lung segmentation to mask both CT
images, thus restricting the deformation to the lung area of
interest as illustrated in Fig. 1. This removes the necessity of
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Fig. 1. Sagittal views of dataset COPD6: (a) exhale and (b) inhale scan
with a red overlay of the inverse lung mask. Only the intensities within the
lungs are retained, as shown for the inhale scan in (c). Note the volume
change that is indicated by the yellow crosshair located at the same rib
in both scans. The increased Hounsfield units in the parenchyma and
the deteriorated quality due to reduced acquisition dose [7] of the exhale
scan are visible.

recovering sliding motion between lung and rib cage during
breathing, more precisely between pleura visceralis and pleura
parietalis, which otherwise requires considerable attention in
the deformation modeling [35]–[38]. Note that in many clinical
applications, including lung cancer screening and quantitative
lung ventilation analysis, a lung segmentation mask is usually
available for both scans. The masked lung scans are then used
as input to all subsequent steps, cf. also Fig. 1.

B. Normalized Gradient Fields

Focusing on image edges rather than on absolute intensities
is particularly beneficial for the registration of inspirative
and expirative lung CT scans, since the inflowing air may
easily lead to differences of several hundred Hounsfield units
between corresponding parenchymal structures [7]. Major
edges are given by the bronchial and vessel tree, the lung
boundary and the fissures. For the alignment of such structures,
we employ the following variant of the normalized gradient
fields (NGF) distance measure [9], [14]

D(F ,M(y)) :=
∫
�F

1 − 〈∇M(y(x)),∇F(x)〉2
η

‖∇M(y(x))‖2
η ‖∇F(x)‖2

η

dx (1)

with 〈 f, g〉η := η2 + ∑3
j=1 f j g j and ‖ f ‖2

η := 〈 f, f 〉η.
It utilizes image edges independently of their strength, but
allows to suppress small noise-related edges by an edge para-
meter η > 0. A key element of this work is that the same cost
term (NGF) is used throughout both discrete keypoint match-
ing and dense continuous optimization. Note that we do not
claim NGF to be superior to other contrast-invariant metrics,
its choice was motivated by its comparably efficient compu-
tation, robustness, and suitability for numerical optimization.

C. Regularized Keypoint Correspondences

Keypoints are widely used in image recognition [39] and
multi-view scene reconstruction [40]. In order to cope with
large motion, searching for sparse keypoint matches has
been proposed in previous work [21]–[23]. However, these
approaches have in common that an unconstrained optimum
is found for each keypoint independently, potentially leading

to outliers. Our proposed approach for inferring regularized
correspondence fields, which has been initially outlined in [8],
consists of three main parts: sparse keypoint extraction, simi-
larity evaluation over search space, and a part-based model for
inference of a regularized transformation. This is followed by
a refinement stage, which takes into account the symmetry of
displacement marginals (see Section II-C4). To avoid repet-
itive interpolation, both scans are resampled to an isotropic
resolution of 1 mm3 for keypoint matching.

1) Sparse Keypoint Extraction: As suggested by previ-
ous approaches for interest point localization in lung CT
scans [21], [23], a Förstner operator [41] is applied to find a
sparse set of distinctive keypoints K ⊂ R

3 in the fixed image.
The spatial gradients of the fixed scan ∇F are smoothed with
a Gaussian kernel Gσ , which yields a distinctiveness volume
FD = 1/ trace

(
(Gσ ∗ (∇F∇FT ))−1

)
. To avoid strong spatial

clustering of detected keypoints, a maximum filter over a 3D
cubic region R is applied to the Förstner response: F∗

D =
maxx∈R FD(x). Locations that are not a local maximum, i.e.
where FD 
= F∗

D , are removed from K . Since we are interested
in aligning inner lung structures, the keypoint extraction is
restricted to the lung volume. By empirically choosing σ =
1.4 mm and a side-length of 6 voxels for R, we obtain a set
of |K | ≈ 3500 well-dispersed keypoints.

2) Similarity Evaluation Over Search Space: Matching
keypoints has been proposed based on SIFT-like feature
vectors [42] for natural images [22], [43] and medical
scans [24] or by learning appropriate Gabor features in [44].
Here, we refrain from using such computationally expensive
descriptors and simply employ normalized gradient fields
(see Section II-B) motivated by the fact that they are robust
against local intensity variations and strong acquisition noise,
which is common in ultra-low-dose CT. However, it is
expectable that other low-complexity descriptors (e.g. Census
as used in [19] or self-similarity descriptors (SSC) [8], [45])
yield a comparable performance. We found in previous
work [46] that, due to the difficulty of detecting the same
interest point twice across medical scans, classical keypoint-
to-keypoint matching [22] may yield insufficient correspon-
dence field quality. We therefore extract keypoints only in
the fixed image and search for potential matches over a
large range of finely quantized displacements d ∈ L =
{0,±2,±4, . . . ,±32}3 mm with |L| = 35937. Our discretized
matching cost DKP(k, d) (dependence on images F and M̂
omitted for brevity) is defined as sum of pointwise normalized
gradient costs (see (1)) for a small patch Pk of voxels p around
a keypoint k ∈ K and a certain new location k + d within the
pre-aligned moving image M̂:

DKP(k, d) := 1

|Pk |
∑
p∈Pk

1 − 〈∇M̂(p + d),∇F(p)〉2
η

‖∇M̂(p + d)‖2
η ‖∇F(p)‖2

η

.

(2)

Thus for each of the |L| potential displacements the matching
likelihood is computed by summing |Pk | NGF costs. We used
a patch-size of 73 voxels with a stride of 2, yielding |Pk | = 64.
A traditional block-matching approach [23], [47], [48] would
then select an optimal displacement for each keypoint k
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independently: d∗ = arg mind∈LDKP(k, d). However, this
procedure is prone to outliers, thus making (often ad-hoc) post-
processing schemes necessary to eliminate erroneous matches,
as qualitatively demonstrated in Fig. 2(a). In contrast, we
will leverage the advantages of discrete optimization that has
recently been popularized in medical image registration [17],
[20] in order to find the optimal combination of displacement
vectors jointly for all sparse keypoints.

3) Part-Based Model for Inference of Regularization: In con-
trast to traditional block-matching approaches that assume
independence of neighboring motion vectors, our goal is to
find a sparse regularized transformation y that combines a
prior assumption of globally smooth lung deformations with
the local displacement likelihoods DKP(k, d), estimated in the
previous section. Given their success in deformable object and
pose recognition, we propose to use part-based models [27]
to find the optimal joint configuration of displacements of
parts (here lung keypoints), which are connected within a
graph. Including this regularization into the matching of sparse
keypoints removes the need for complex image descriptors to
obtain robust and accurate alignment of highly deformable
lung structures and enables the use of the same similarity
term (NGF) as in the following dense intensity-driven step.

Ideally, the regularization term would also be identical to
the curvature term (5) used within our continuous optimization
part, yet realizing this within a discrete optimization model
requires the computationally demanding use of ternary (higher-
order) cliques instead of pairwise potentials [49]. We therefore
opt to use an efficient approximation based on a diffusion-like
regularizer RKP(dk, dq):

RKP(dk, dq) := αKP||dk − dq ||22
||xk − xq ||2 + |F(k)− F(q)|/σI

. (3)

Here, αKP is a user-determined weighting term; the squared
differences of displacements of two neighboring keypoints
k and q , which are connected by an edge ekq , are penalized
(normalized by their spatial and intensity distance, with σI =
150). Minimizing

∑
k∈K DKP(k, dq)+∑

ekq ∈E RKP(dk, dq) for
an arbitrary graph is still NP-hard, we thus restrict the graph
to a minimum-spanning-tree (where the denominator of (3)
describes the edge cost between keypoints) as commonly done
in part-based models [27], [28]. Belief propagation is used
to obtain the exact marginal energies for every keypoint and
displacement label after two passes of messages. Starting from
the leaf nodes, messages m are passed along the edges ekq ∈ E
of the tree (from current node k to parent node q) and updated
with the following computation of one element of mkq [27]:
mkq (dq) = min

dk
DKP(k, dq)+ RKP(dk, dq)+

∑
c

mck(dk),

(4)

where c are the children of k. In theory, every potential
combination of two displacements dk (from the current node k)
and dq (its parent q) would have to be calculated. However, for
the regularizer chosen in (3), the computation of each message
vector mkq is particularly efficient (linear in |L|) when using
distance transforms [27]. Once the root node has been reached,
messages have to be passed in the opposite directions to obtain

Fig. 2. Sagittal views of dataset COPD6 [7]: Scan with keypoint
correspondences generated either (a) without regularization or (b) with
regularization. The lines show the direction of the movements of key-
points during respiration and their color indicates the magnitude of the
motion.

a vector of marginal energies for each node (or keypoint).
More details on this outward pass can be found in [50].

4) Refinement by Symmetry of Marginal Distribution: Despite
the part-based model regularization, the estimated correspon-
dences could still be erroneous due to the repetitive appearance
of different lung structures within the same search window,
as well as the slightly limited regularization given by the
tree model. To overcome these difficulties, we perform an
additional estimation of the marginal distribution in the oppo-
site direction. Similar to a mutual consistency check often
employed in stereo-depth processing [51], we first translate the
keypoint locations according to their regularized matches into
the moving image and use them as control points for a second
correspondence estimation (following the same procedure as
in Sections II-C2 and II-C3) from moving to fixed image. We
then simply average the respective marginal energies, see [8]
for more details. Ideally, the energies of both directions of
the displacement space are symmetric and the averaging re-
enforces them. If the displacement from fixed to moving image
pointed to a close neighbor of the correct displacement and
the motion in a small neighborhood is smooth, the backward
search may improve the match.

Afterwards, a new dense transformation could be directly
obtained by choosing the minimizer d∗

k of the marginal ener-
gies for each keypoint and some interpolation strategy (in
our previous work thin-plate spline transforms were used [8],
[52]). The relaxed regularization term (3) and the complex
motion may, however, still cause such a transformation to
contain implausible foldings (negative Jacobian determinants)
and is therefore problematic as initialization for a continuous
optimization strategy that might not recover these errors. We
therefore opt for a sparse correspondence field yKP, which is
only defined at keypoint locations, and use it for a keypoint
penalty K as detailed later in Section II-D2. The effect of
the regularization on the keypoint matching and the resulting
sparse correspondence fields are shown in Fig. 2.

D. Dense Intensity-Driven Registration Model

The employed dense intensity-driven registration algorithm
is based on the lung registration method from [9]. Here,



1750 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 8, AUGUST 2017

a standard variational approach [32], [53], [54] is extended by
two terms, one that improves lung boundary alignment [34]
and one controlling local volume change, thereby restricting
the transformation to meaningful volume change and guaran-
teeing invertibility, cf. also [55]. We augment the method by
three elements: an extended pre-registration using nonlinear
transformations (cf. Section II-A), integration of keypoint
correspondences as an additional term in the objective func-
tion, and an adaptive parameter estimation strategy. Moreover,
parallel matrix-free schemes for derivative calculations [56]
were employed in all registrations, thereby reducing runtime
and memory consumption.

The classic variational registration approach, which forms
the basis of our algorithm, models the transformation y as a
minimizer of a joint objective functional D(F ,M(y))+αR(y)
with regularization parameter α > 0. As stated before, we
employ the NGF distance measure (1) for D. Our regulariza-
tion strategy is founded on the observation that non-continuous
sliding motion along the rib cage does not have to be recov-
ered when using lung segmentations. Hence, the remaining
motion inside the lungs is expected to be very smooth, which
motivates the usage of the curvature regularizer [33]

R(y) := 1

2

∫
�F

3∑
j=1

‖�(y j − ŷ j )‖2 dx, (5)

with a given transformation ŷ. The curvature regularizer
penalizes second order derivatives of the deviation of y from ŷ,
thus yielding very smooth deformations. We set ŷ to the result
of the pre-registration of the lung masks, cf. Section II-A.

1) Model Extension: Following [9], the basic registration
model is extended by two terms. As a first fundamental
requirement, the computed deformation shall map tissue within
the lung in scan F to tissue within the lung in scan M, and
analogously the area outside the lung in scan F to the area
outside the lung in scan M. To this end, let bF : �F → {0, 1}
and bM : �M → {0, 1} denote binary functions for F and
M that are equal to one inside the lungs and zero otherwise.
We define the penalty term B as

B(y) := 1

2

∫
�F

(
bM

(
y(x)

) − bF (x)
)2

dx . (6)

Note that B coincides with the sum of squared differences of
the segmentation masks as binary images. This term has been
shown to improve lung boundary alignment, cf. [34].

Although the employed curvature regularization uses
second-order derivatives and consequently favors smooth
transformations, it cannot safeguard against physically implau-
sible deformations such as large volume expansion or shrink-
age and even foldings. This, however, is critical when using
properties of the computed transformation such as the Jacobian
determinant for the assessment of local lung volume change,
cf. [1], [5], [57]–[59].

Consequently, we extend the registration model with an
additional term that directly measures change of volume as
induced by the transformation y,

V(y) :=
∫
�F

ψ(det ∇y(x)) dx (7)

with weighting function

ψ(t) := (t − 1)2

t
for t > 0 and ψ(t) := ∞ else,

cf. also [55], [60]. We call V volume change control (VCC).
As ψ(t) = ψ(1/t), deviations of the Jacobian from 1,
i.e. local volume expansion or shrinkage, are symmetrically
penalized. In addition, ψ ensures (local) injectivity of the
deformation since ψ(det ∇y) → ∞ as det ∇y → 0. Hence,
V(y) = ∞ if the Jacobian becomes negative at any point.
The volume change control therefore fulfills two important
functions: It prevents foldings and ensures that large changes
in volume are penalized. Our implementation is based on
representing transformations as first order B-splines defined
on a regular control point grid. In this case, the Jacobian
is pointwise bounded by the minimum and maximum of
64 terms that depend on the eight (vector-valued) B-spline
coefficients needed to evaluate the B-spline at a single point
in 3D [61]. More precisely, we partition �F into the cells
�Fi of the underlying control point grid with constant volume
C := |�Fi |. This enables us to calculate the local Jacobian
for all x ∈ �Fi as

det ∇y(x) =
64∑
�=1

αi�(x)di� (8)

with αi�(x) ∈ [0, 1], ∑64
�=1 αi�(x) = 1. The values di� depend

on the B-spline coefficients of the transformation y while
αi�(x) do not. Hence, det ∇y(x) is bounded by the minimum
and maximum of di1, . . . , di64, and with Jensen’s inequality
we obtain for convex ψ

V̂(y) := C
∑

i

64∑
�=1

ψ(di�) ≥ V(y). (9)

We use V̂(y) for our actual implementation. Note that V is
not only bounded by V̂ , but also V̂(y) = ∞ if det ∇y(x) ≤ 0
at any point x ∈ �F . Hence, we penalize volume change and
numerically guarantee (locally) injective transformations.

2) Keypoint Integration: We now describe our approach for
adding the sparse keypoint correspondences from Section II-
C to the registration model. Generally, the integration of
keypoint information into intensity-based image registration
can be accomplished in numerous ways, see e.g. [62], [63].
In all these approaches, keypoint matches serve as addi-
tional constraints to the sought deformation, either requiring
an exact correspondence [62] or allowing for user-defined
tolerances [63]. The primary use case of these approaches
consists in integrating user input, for which an error estimate
is available, into the registration process.

In our algorithm, however, the keypoint input is generated
automatically without any user input, and there is no obvi-
ous way of deriving reliable upper bounds for the keypoint
alignment error. Hence, we choose to integrate the keypoint
information through a least-squares penalty into our model,
cf. e.g. [24]. This has the additional advantage of a very light-
weight computation that can directly be performed within our
unconstrained optimization setting.
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Fig. 3. Axial views of dataset COPD4 [7]: (a) inhale scan with Förstner
keypoint location, (b) corresponding location according to a scattered
displacement interpolation of nearby manual landmark annotations in
exhale scan, (c) correspondence found with keypoint matching, (d) final
location after nonlinear registration. The top row shows a normal case
where manual annotation, keypoint matching and nonlinear registration
are all in agreement. The bottom row demonstrates the ability of DIS-CO
to correct an inaccurate keypoint correspondence.

Our aim is to minimize the squared difference between
the dense intensity-driven transformation y and the sparse
keypoint transformation yKP from Section II-C defined at
keypoint locations xi . Naturally, this leads to a discrete sum
over all |K | keypoint locations,

K(y) :=
|K |∑
i=1

‖y(xi )− yKP(xi )‖2
2, (10)

as an additional element of the joint objective. Fig. 3 qual-
itatively shows the effect of K. In the top row, the visually
correct correspondence from the keypoint matching algorithm
is left unaltered by the full method. In the bottom row, an
erroneous match (c) is recovered by the deformable registra-
tion step (d) as can be seen in comparison to displacement
estimates obtained by a scattered interpolation of nearby expert
landmarks (b).

With weighting parameters α, β, γ, δ > 0, the full model is
given by

J (y) = D(F ,M(y))+ αR(y)+ βB(y)+ γV(y)+ δK(y).
(11)

The parameters β and δ are determined adaptively to balance
the influence of the three data terms D, B and K. Since the
intensity-based distance term and the keypoint information
are considered to be of equal importance for the alignment,
the parameter δ is chosen such that D(F ,M(y)) = δK(y)
at the beginning of the registration. Similarly, the influence
of the lung boundary alignment term is steered by setting
D(F ,M(y)) = 100βB(y). As the pre-registration is already
designed for precise alignment of the lung boundaries, β is
decreased by two orders of magnitude in comparison to D;
another reason for decreasing β is that D also contributes to
the lung boundary alignment.

3) Numerical Optimization: The numerical optimization of
the joint objective (11) is performed within the discretize-
optimize framework [32]. All components of the registration
are discretized first, yielding a finite-dimensional optimization

problem that can be solved using Newton-type methods.
Following [9], we employ the L-BFGS algorithm [64] for
minimization. The Hessian approximation is initialized as
R + τ I with R denoting the Hessian matrix of the curvature
regularizer and I the identity matrix [32]. For all registrations,
τ = 10 and an L-BFGS buffer size of 5 were used.

The numerical optimization is embedded in a multilevel
scheme ranging from coarse to fine. Image downsampling is
performed after Gaussian smoothing and aiming at isotropic
voxels as proposed in [9]. We use a four-level pyramid with
the original images on the finest level. A control point grid of
size 128×128×128 is employed on the finest level, the number
of control points is halved in each dimension for each coarser
level. In our experiments, increasing the number of control
points did not further improve accuracy, cf. also [29], [65].
Trilinear interpolation is used to evaluate the deformation at
arbitrary positions.

The minimization is performed using the fully matrix-free
computation rules for objective function gradient and Hessian
approximation as proposed in [56]. These formulations consid-
erably reduce memory footprint, enable better cache efficiency
and allow for parallel computations on multicore architec-
tures, resulting in substantially reduced overall execution time.
In comparison to [9], we can use denser control point grids
with lower memory consumption. For more details, the reader
is referred to the description in [66].

III. EXPERIMENTS AND RESULTS

Several experiments have been performed to assess the accu-
racy, plausibility and parameter sensitivity of our proposed reg-
istration method DIS-CO. The conducted experiments include
evaluation of landmark distances on the inspiration-expiration
DIR-Lab COPD [7] and 4DCT datasets [67], [68], assessment
of the alignment of the major fissures on COPD scans,
and a submission to the EMPIRE10 challenge on pulmonary
image registration [6]. In addition, the values for the Jacobian
determinant of the computed deformation fields are studied,
and the sensitivity of the method to variations of its main
parameters is analyzed. For all experiments (unless stated
otherwise), the main parameters were fixed to αopt = 2,
α

opt
KP = 1

45 , γ opt = 0.001 and ηopt = 12. These values
were determined empirically starting from the values given
in [9]. All accuracy evaluations exclusively use publicly avail-
able data. Fig. 4 shows representative qualitative results for
inspiration-expiration registration of two scan pairs from the
EMPIRE10 study and of dataset COPD1.

A. Landmark Distances

It is common practice to measure registration accuracy using
expert-annotated landmarks, i.e. at point pairs that have been
declared as corresponding to each other by (medical) experts.
Our experiments were primarily performed on the DIR-Lab
COPD dataset [7], a collection of ten inspiration-expiration
cases of the COPDgene study with 300 expert-annotated land-
mark pairs each. The public availability of the data allows for
easy and transparent comparison to published work. The scans
have an axial resolution ranging from 0.586 mm × 0.586 mm
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Fig. 4. Visualization of three inspiration-expiration registration results: (a) and (b) show coronal views before and after registration, (c) and (d) sagittal
views, respectively. The color overlays show the inhale scan in orange and the exhale in blue; due to addition of RGB values, aligned structures
appear gray or white. The first two rows show the outcome of DIS-CO for the first and seventh scan of the EMPIRE10 challenge, respectively. In both
cases the respiratory motion was successfully recovered. The bottom row visualizes the result for the first case of the COPD dataset that reveals a
misalignment close to the mediastinum (central region between lungs). This is most likely caused by a joining of left and right lungs during inhale,
which would lead to a very high VCC penalty to separate them during registration.

to 0.742 mm × 0.742 mm with 5122 voxels per slice and a
slice thickness of 2.5 mm with about 120 slices [7].

The mean and standard deviation of the distances of the
300 landmarks per dataset after registration were computed for
the proposed algorithm and the best performing state-of-the-
art methods [8]–[10], [19], [29], [48], [69] with results given
in Table I. Here, NLR [9] was adapted to be comparable to our
continuous optimization without keypoint matching by using
the full image resolution. CORR is the baseline for regularized
correspondence search only as originally described in [8]. With
an average landmark distance of 0.82 ± 0.97 mm after regis-
tration, our method outperforms the second best result [69]
(0.96 ± 1.31 mm) by 15 %. It is herewith the first method
to match the inter-observer variability of 0.82 ± 1.54 mm as
reported for the DIR-Lab COPD dataset [7]. Fig. 5 visualizes
the cumulative landmark distance distribution of the compared
algorithms. We performed one-sided paired t-tests that show
that the improvement to all competing methods is statistically
significant, see Table I for p-values.

Since the proposed algorithm employs a Förstner operator-
based feature detection, it will preferably select keypoints

Fig. 5. Curves of the cumulative distribution of target registration
errors for expert landmarks of all COPD datasets after registration. The
superiority of our DIS-CO approach is highlighted by the colored dashed
lines, which show the 90% quantile for each method. The quantile values
are as follows: 1.61mm (DIS-CO), 1.93mm (LDDMM), 1.95mm (ANTs),
2.02mm (CORR) and 2.10mm (NLR).

at positions with high local curvature such as vascular or
bronchial bifurcations, cf. [70]. As reported in [7], the manual
detection of expert landmarks also typically led to such
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TABLE I
AVERAGE DISTANCES OF EXPERT LANDMARKS (WITH STANDARD DEVIATION) AFTER REGISTRATION WITH STATE-OF-THE-ART METHODS ON

THE DIR-LAB COPD DATASET [7]. INITIAL: DISTANCES WITHOUT REGISTRATION, OBSERVER: INTER-OBSERVER VARIABILITY AS REPORTED

IN [7]. FOR ALL METHODS THE TRANSFORMED LANDMARKS WERE MOVED TO NEAREST VOXEL CENTER BEFORE COMPUTING LANDMARK

DISTANCES. THUS, THE RESULTS ARE COMPARABLE TO THE PERFORMANCE OF HUMAN OBSERVERS THAT COULD ONLY CHOOSE VOXEL

CENTERS, cf. [67]. VALUES ARE GIVEN IN MILLIMETERS. AVERAGE LANDMARK AND FISSURE DISTANCES ARE SUMMARIZED IN THE

THIRD LAST AND SECOND LAST ROW, RESPECTIVELY. RESULTS OF THE ONE-SIDED PAIRED T-TESTS FOR

LANDMARK DISTANCES EVALUATED AGAINST THE DIS-CO RESULTS ARE GIVEN IN THE LAST ROW.

positions, and consequently there is a potential danger that our
algorithm (and similar feature-based methods) put too much
focus on these locations. To investigate this, we have per-
formed a second experiment on the DIR-Lab COPD dataset.
Here, all keypoints within 10 mm distance from any of the
expert-annotated landmarks were removed, and the continuous
registration was performed with this reduced set of keypoints
only. This procedure only slightly increases the average land-
mark distance to 0.87 ± 1.07 mm, indicating that there is very
little bias towards expert-annotated points.

In addition, we have evaluated our algorithm on the widely
used DIR-Lab 4DCT dataset [67], [68], a similar collection of
ten cases with 300 landmarks on the end-inhale and end-exhale
phases of four-dimensional CTs. With the same parameters
as for the COPD datasets, we achieve an average landmark
distance of 0.94 ± 1.06 mm, which is equal to the currently
lowest published landmark distances [56] and also very close
to the inter-observer variance (0.88 ± 1.31 mm) on this dataset.

B. Fissure Alignment

The evaluation of registration quality in [6] has shown
that fissure alignment is very indicative of the overall per-
formance of different registration approaches. Fissures are
very thin anatomical structures that separate individual lung
lobes, which are generally difficult to register automatically.
They, however, play an important role for analyzing breathing
defects. Since no ground truth fissure segmentations were
available for the DIR-Lab COPD dataset, we manually seg-
mented the major oblique fissures in all scans in every slice
in axial direction.1 To guide the segmentation in areas of low
contrast and to improve consistency across slices, we first
performed an initial segmentation in some slices in coronal
view. Overall, the task took around 60 minutes per scan pair.

1Our segmentations are publicly available at http://mpheinrich.de/
research.html#COPD and as supplementary files at IEEE Xplore.

Fig. 6. Curves of the cumulative distribution of distances of fissure
voxels in both left and right lung compared to manual segmentations of
all COPD datasets after registration. The ranking of different methods
is nearly identical to the evaluation based on expert landmarks. The
superiority of our DIS-CO approach is highlighted by the colored dashed
lines, which show the 90% quantile for each method. The quantile values
are as follows: 2.62mm (DIS-CO), 2.75mm (LDDMM), 2.80mm (CORR),
3.73mm (ANTs) and 3.77mm (NLR).

Since the noise level is particularly high in exhale scans, we
omitted the horizontal (minor) fissure as also done in [6].

Fissure distances were computed as follows. First, a distance
transformation of the labeled moving images was gener-
ated. Second, the resulting distance image was transformed
using each registration result and linear interpolation. Finally,
distances were computed by accessing the voxels of the
transformed distance image, which are labeled as fissure in
the fixed images. The mean and standard deviation over all
datasets is given in Table I. Since this evaluation required
access to the full deformation fields, only publicly available
algorithms as well as our own previous work could be included
into the comparison. The average fissure distances range from
1.10 mm to 1.47 mm with the proposed method achieving the
lowest values. The cumulative distributions of fissure distances
after alignment are additionally visualized in Fig. 6.



TABLE II
STATISTICS OF det (∇y) WITHIN THE LUNGS FOR THE COPD DATASET.
Q1 AND Q99 DENOTE THE 1st AND 99th PERCENTILES. THE NUMBERS

WITHIN PARENTHESES ARE THE RESULTS WITHOUT VCC (γ = 0).
NO DIFFERENCES IN THE MEAN WERE OBSERVED FOR

THE GIVEN PRECISION.

C. The EMPIRE10 Challenge

The EMPIRE10 challenge [6] is currently the most compre-
hensive public comparison study on pulmonary image regis-
tration worldwide. Since its start in 2010, 42 lung registration
algorithms from academia and industry have been submitted
for public evaluation and comparison. The evaluation data
consists of 30 datasets from six different categories: repeated
breathhold inspiration, breathhold inspiration and expiration,
4D data, ovine data, contrast-noncontrast, and artificially
warped scan pairs. Algorithms are evaluated using four differ-
ent criteria: lung boundary alignment, major fissure alignment,
distance of expert-annotated landmarks, and deformation field
singularities. To account for the high importance of lung
boundary alignment, we increased the weighting of B tenfold
for our submission. All other parameters were left unchanged.
As of September 2016, our algorithm ranks first in the
EMPIRE10 challenge with an average landmark distance of
0.63 mm. For full details, we refer to the challenge website.2

D. Jacobian Determinant

As motivated in the paragraph on volume regularization, the
registration should not produce transformations with a negative
Jacobian determinant. Furthermore, very large values or values
close to zero are unrealistic as the Jacobian determinant is a
local measure for volume change, i.e. if det(∇y) > 1 a volume
expansion occurred and if det(∇y) < 1 the volume decreased.
We evaluate the Jacobian determinant on the DIR-Lab COPD
dataset using several statistics. The standard deviation of the
Jacobian determinant is often used to describe the smoothness
of a transformation, see e.g. [20], [57]. The results for the
proposed method DIS-CO are given in Table II (first values
per column). Note that the evaluation was done in the lung
volumes only as we perform masked registrations and the
values outside of the lung volume are thus not meaningful
(although they never featured negative Jacobian determinants).

On average, a Jacobian less than 1 is expected as y describes
the change from full breathhold inspiration to expiration state.
For each dataset, this criterion was fulfilled by our algorithm.

2See http://empire10.isi.uu.nl/mainResults.php.

Fig. 7. Sagittal views of dataset COPD6: (a) result of pre-registration,
(b) final registration result, (c) resulting Jacobians of the transformation
y within the lungs. In (a) and (b) the masked fixed scan is orange and the
transformed moving scan is blue; due to addition of RGB values aligned
structures appear gray or white.

In addition, the minimum values are always positive as guaran-
teed by the volume penalty term. The 1 % and 99 % quantiles
as well as the minimum and maximum of the Jacobian show
that the vast majority of volume changes is plausible. Fig. 7
shows the inspiration-expiration registration of dataset COPD6
including the pre-registration, the final result and the Jacobian
determinant of the computed transformation.

E. Influence of Additional Objective Function Terms

The objective function of the proposed registration approach
is composed of the standard model D(F ,M(y))+αR(y) and
three additional terms B, V and K. The individual influence
of these terms is assessed on the basis of the DIR-Lab COPD
datasets. Since we are interested in the contribution of the
individual terms, only one term is removed at a time by setting
its weight to zero. All other parameters are left unchanged.

1) Lung Boundary Alignment: The purpose of the term B is
to improve the alignment of the lung boundaries. Since the
nonlinear pre-registration and the term B are jointly designed
for this goal, we additionally changed the pre-registration to a
purely affine-linear transformation model for this experiment.
The effect of the boundary alignment strategy is analyzed
using the Hausdorff distance of the lung segmentations. With-
out B, an average Hausdorff distance of 11.72 mm is obtained
as opposed to 10.20 mm with the full model. In addition, the
average landmark distance slightly increases from 0.82 mm for
the full model to 0.86 mm. The boundary alignment term B and
the nonlinear pre-registration thus moderately improve both
the registration of lung surface and inner-lung structures.

2) Volume Change Control (VCC): The aim of using the
volume change control mechanism V is to prevent foldings and
implausible volume change. We therefore compare statistics of
the Jacobian determinant of transformations with and without
VCC, results are given in Table II. Without VCC, foldings
are present in all ten cases. In addition, the transformations
exhibited a much larger range of volume change and an
increased standard deviation of the Jacobian (about 25 % on
average) as opposed to the full model. This confirms that
VCC produces smoother and more realistic transformations,
which is important for the analysis of COPD. Furthermore,
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TABLE III
LANDMARK ERROR RESULTS OF THE PARAMETER SENSITIVITY TESTS

ON THE COPD DATASETS [7]. THE RESULTING MEAN LANDMARK

ERRORS OVER ALL TEN REGISTRATIONS ARE SHOWN WHEN

VARYING ONE PARAMETER BY ORDERS OF MAGNITUDE AT A

TIME AND FIXING THE OTHERS TO THEIR EMPIRICALLY

DETERMINED OPTIMAL VALUES. THE COLORMAP

INDICATES EXCELLENT (GREEN) TO

POOR (RED) QUALITY.

the landmark distance substantially increased to 1.45 mm when
omitting the volume change control term.

3) Keypoint Matching: The keypoint matching term K is
designed to increase registration accuracy in the case of large
motion and to avoid local minima during optimization. When
excluding this term, we observed that for five out of the
ten DIR-Lab COPD cases (1, 2, 5, 6 and 8), the average
landmark distance after registration substantially increases by
2.04 mm on average. For the remaining five cases, only a
small decrease in registration accuracy by less than 0.1 mm
was found. In total, the overall landmark distance of 0.82 mm
for the full model more than doubles to 1.86 mm without K.
This clearly demonstrates that the keypoint information helps
to increase registration accuracy as validated by 3000 expert
landmark pairs. A similar observation was made for the fissure
matching, where the average fissure distance over all cases
increases by almost 1 mm to 2.05 mm when turning off the
keypoint term.

F. Parameter Sensitivity

We analyzed the sensitivity of the proposed method to
variations of its major parameters. As the weights β and δ
are chosen adaptively, the proposed method has four main
parameters: α, αKP, γ and η. Their influence on the registration
accuracy is studied by varying one parameter at a time,
multiplying it with {10k|k = −5,−4, . . . , 5}, and fixing the
remaining three to their empirically determined optimal values.
Results are shown in Table III, demonstrating good robustness.
α, γ and η can be decreased by up to five orders of magnitude
with only moderate impact on registration quality. When the
regularization parameters are increased by more than a factor
of ten, the registration is substantially deteriorated, which can
be explained by the increased stiffness of the transformation
model. A similar behavior can be observed for unreasonably
large edge parameters for NGF. When αKP is multiplied with
values equal to or less than 10−2 the accuracy is substantially

reduced, underlining the importance of the regularization in
the keypoint detection. In addition, a two-fold cross-validation
using a moderate-sized grid search was explored as alternative
to our heuristic parameter optimization. This yields slightly
different optima for αKP and an average error of 0.83 mm.

IV. DISCUSSION AND CONCLUSION

We have presented a new deformable registration approach
targeted to the challenging alignment of inspiration and expi-
ration scans of lung patients. While most state-of-the-art
algorithms struggle with the large magnitude of this highly
deformable motion, we demonstrate an excellent alignment
of lung vessels, airways and fissures, while constraining
the transformation to be physically plausible (with positive
Jacobians) and accurately match the lung boundaries. Our
target registration error of 0.82 mm for expert-annotated land-
marks on the DIR-Lab COPD database sets a new state-
of-the-art accuracy (outperforming all previous approaches
by 15 %) and reaches the inter-observer variability. Our method
also ranks first overall in the comprehensive EMPIRE10 lung
registration challenge [6]. In addition, the computation time
of less than five minutes on a standard multi-core computer
would enable practical implementation in clinical routine.

This registration performance is achieved by combining
three key elements. First, the robustness against large motion
between breathing states is substantially improved by finding
sparse regularized keypoint correspondences using a dense
sampling of potential displacements together with a part-based
model regularization. Second, a volume change control mech-
anism is employed that reliably guarantees a positive Jacobian
(no folding) and enables a low-complexity transformation,
while a lung mask term ensures alignment of the outer bound-
aries. Third, the use of quasi-Newton methods in a matrix-
free setting enables us to substantially improve computational
efficiency. All parts of our method are integrally combined
within one unified registration framework that optimizes the
same similarity cost function in both discrete and continuous
matching. Further improvements could be achieved by learning
the most discriminative descriptor or similarity metric for each
stage, cf. [44]. However, substantially different cost functions
could also lead to contradictory objectives, which would at
least delay convergence, and thus have to be carefully studied
prior to combined usage.

We performed an extensive evaluation on ten inhale-exhale
CT scan pairs of the COPDgene study, ten 4DCT scans of the
DIR-Lab database and all 30 datasets of the EMPIRE10 chal-
lenge, which cover a variety of further application scenarios.
We provide a detailed sensitivity analysis that demonstrates
the robustness of the method against parameter variations. Fur-
thermore, we have manually segmented 40 lung fissures (both
oblique fissures in all COPD scan pairs) and provide them
as download for interested researchers as further validation
metric. A low surface distance of fissures after alignment, as
achieved by our approach, is important when using deformable
image registration for assessing breathing defects (reduced
lung ventilation and therefore low volume change [3]) for indi-
vidual lobes. While the treatment of sliding motion was not a
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focus of this work, the discrete keypoint matching in principle
allows for accurate registration both within and outside the
lungs. However, a more adaptive, non-quadratic regularization
model, e.g. a total variation term as proposed in [69], would
have to be adopted in the deformable registration step. In
particular, the combination with the volume change control
mechanism is not straightforward.

Our quantitative results clearly demonstrate the usefulness
of integrating regularized correspondences into a continuous
registration framework. Our method combines high alignment
accuracy with physiologically plausible transformations at a
moderate, clinically acceptable runtime. We hope that our
contribution will further advance the application of pulmonary
image registration for local lung ventilation assessment and
radiation therapy planning in the clinical practice.
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