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Abstract- Segmentation and volumetric quantification of 

white matter hyperintensities (WMHs) is essential in 

assessment and monitoring of the vascular burden in aging 

and Alzheimer’s disease (AD), especially when considering 

their effect on cognition. Manually segmenting WMHs in 

large cohorts is technically unfeasible due to time and 

accuracy concerns. Automated tools that can detect WMHs 

robustly and with high accuracy are needed. Here we 

present and validate a fully automatic technique for 

segmentation and volumetric quantification of WMHs in 

aging and AD. The proposed technique combines intensity 

and location features from multiple magnetic resonance 

imaging (MRI) contrasts and manually labeled training 

data with a linear classifier to perform fast and robust 

segmentations. It provides both a continuous subject 

specific WMH map reflecting different levels of tissue 

damage and binary segmentations. The method was used to 

detect WMHs in 80 elderly/AD brains (ADC dataset) as 

well as 40 healthy subjects at risk of AD (PREVENT-AD 

dataset). Robustness across different scanners was 

validated using 10 subjects from ADNI2/GO study. Voxel-

wise and volumetric agreements were evaluated using Dice 

similarity index (SI) and intra-class correlation (ICC), 

yielding ICC=0.96, SI=0.62±0.16 for ADC dataset and 

ICC=0.78, SI=0.51±0.15 for PREVENT-AD dataset. The 

proposed method was robust in the independent sample 

yielding SI=0.64±0.17 with ICC=0.93 for ADNI2/GO 

subjects. The proposed method provides fast, accurate and 

robust segmentations on previously unseen data from 

different models of scanners, making it ideal to study 

WMHs in large scale multi-site studies.1 
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I. Introduction 

Alzheimer’s disease (AD) is the most common cause of 

dementia that currently affects 44 million people worldwide 

and is increasing in prevalence [1]. AD is clinically 

characterized by gradual and progressive decline in memory as 

well as other cognitive functions. The hallmark neuropathology 

of AD consists of extracellular deposition of amyloid β plaques 

and intracellular neurofibrillary tangles made of tau [2]. In 

addition to these major contributing factors, accumulating 

evidence shows that progressive loss of white matter integrity 

due to the loss of axons and their neurons, synapses and 

dendrites plays an important role in the development of AD 

[3]. Very often and with a higher prevalence among older 

subjects, AD co-occurs with cerebral small vessel disease 

(CSVD), hypertension, hypercholesterolemia and diabetes. 

Such subjects typically present additional deficits in 

comparison with AD in subjects without these co-morbidities 

[4]. CSVD is represented on MRI as white matter 

hyperintensities (WMHs). There is accumulating evidence that 

the WMH load is related to ischemic damage along with 

microbleeds and lacunar infarcts [5] [6] [7]. WMHs can also be 

associated with other underlying mechanisms, such as dilation 

of perivascular spaces in the frontal and/or parietal subcortical 

white matter [8], increased extracellular spaces, glial cell 

responses, vessel wall leakage, and collagen deposition in the 

vessel walls. WMHs are highly prevalent in AD patients as 

well as the elderly population in general. They primarily occur 

adjacent to the cerebral ventricles, especially around the 

posterior horns of the lateral ventricles [8].  

Clinical studies commonly distinguish between periventricular 

WMHs and WMHs in the deep white matter tissue. The former 

are identified with thin hyperintense lines, smooth halos or 

irregular bands/caps around the ventricles while the latter are 

categorized as punctate, early confluent and confluent WMHs 

[7]. While mild periventricular WMHs are often seen in elderly 

individuals with no clinical symptoms, larger periventricular 

WMHs volumes have been reported to be associated with gait 

difficulties and lower motor performance [9]. Furthermore, the 

total volume of subcortical WMHs has been associated with 

decline in cognition and faster rate of memory decline, even 

after adjusting for rate of cerebral or hippocampal atrophy [10]. 

This evidence suggests that accounting for the WMH burden in 

addition to the AD related pathologies can improve prediction 

of memory and cognitive decline.  

Manual segmentation of WMHs is generally performed on 

Fluid-attenuated inversion recovery (FLAIR) MR images by 

expert raters. Accurate and consistent segmentation of WMHs 

is a complicated task due to the heterogeneity in their texture 

and pattern as well as the fact that these lesions often have 
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fuzzy borders. Manually detecting WMHs is challenging, time 

consuming, expensive and inconsistent due to inter-rater and 

intra-rater variability. As a result, inter-rater and intra-rater 

agreement is generally modest at best [11], since the boundary 

between WMH and non-WMH tissue is difficult to determine 

precisely and different raters draw different arbitrary 

distinctions between the two, whereas  automated methods 

always apply the same policy to this distinction. In addition, 

the huge number of images being collected makes the human 

cost of manual identification prohibitive. These make 

automated segmentation tools that can detect WMHs robustly 

and with high sensitivity and specificity highly advantageous 

since with their objectivity and reproducibility they would 

essentially eliminate the intra-rater variability and make it 

possible to follow individual subjects over time, or segment 

WMHs in large scale studies with 1000s of subjects, (e.g. 

clinical trials). The MRI contrasts that are commonly used in 

detecting WMHs include T1-w (mostly used for coregistration 

purposes) on which WMHs appear hypointense, and T2-w, 

proton density (PD-w), and FLAIR on which WMHs appear 

hyperintense. Since different MRI modalities have different 

contrasts across tissues, integrating information from multiple 

modalities can reduce uncertainty and consequently increase 

segmentation accuracy. 

Most automated lesion segmentation methods in the literature 

have been developed for detection of lesions in Multiple 

Sclerosis (MS) patients [12], [11]. These methods generally 

use a set of features such as multi-modality image intensities as 

well as normal tissue statistics and spatial priors and input this 

information into various classifiers to segment the WMHs 

automatically. Such classifiers can be divided into two main 

categories: unsupervised and supervised. Unsupervised 

classifiers do not require labeled data to draw inferences. Such 

algorithms usually perform some form of clustering analysis to 

find patterns in the data. Thresholding techniques are generally 

in this category. To detect WMHs, Jack et al. used a histogram 

segmentation of FLAIR images by finding a cut-off threshold 

for differentiating WMHs from normal tissue [13]. Similarly, 

de Boer et al. used tissue segmentation results to automatically 

find an optimal threshold for WMHs in FLAIR images [14]. 

Smart et al. use 1.45 times the modal pixel intensity after skull 

stripping as a threshold to detect WMHs and removed isolated 

pixels from the segmentation afterwards [15]. Admiraal-

Behloul et al. combined multispectral intensity images with 

tissue spatial distribution probability maps and used a fuzzy 

inference technique to segment WMHs [16]. Wu et al. initially 

identify lesion seeds using the image intensity histogram, and a 

fuzzy connected algorithm to segment lesions and iteratively 

update seeds [17]. Leemput et al. defined and detected MS 

lesions as outliers to a Markov Random Field tissue 

classification technique [18]. Freifeld et al. used a similar 

approach and segmented MS lesions as outlier components of a 

Gaussian mixture model [19].  

While unsupervised techniques are favored since they do not 

require manual segmentations for the initial training, they are 

usually outperformed by supervised methods since the former 

often over-segment imaging artifacts as lesions (i.e. flow 

artifacts in the 4th ventricle) and need extensive post-processing 

to remove false positives [20]. Supervised techniques use 

manually labeled training data to draw inference. The 

supervised techniques that are generally used for lesion 

segmentation applications include k-nearest neighbors (k-NN), 

regression classifiers, graph cuts, neural networks, Bayesian 

classifiers, and support vector machines (SVM).  Anbeek et al. 

used a k-NN technique to segment white matter lesions from a 

feature space of voxel intensities and spatial information [21]. 

Similarly, Steenwijk et al. optimized intensity normalization 

and used spatial tissue type priors to improve k-NN 

classification of WM lesions [22]. Wu et al. combined an 

intensity-based statistical k-NN method with template-driven 

segmentation and partial volume artifact correction to segment 

MS lesions [23]. Garcia-Lorenzo et al. used an automated 

graph cuts method with expectation maximization to segment 

MS lesions [24]. Zijdenbos et al. used intensity information, 

spatial priors and neural networks to obtain a classification 

algorithm for MS WMHs [25]. Mechrez et al. used a 

multichannel spatially consistent path-based technique to 

segment MS lesions [26].  Beare et al. used morphological 

segmentation and an adaptive boosting statistical classifier, 

obtaining a two-phase method [27]. First, they used a 

morphological watershed to produce overly inclusive 

segmentations of WMHs. In the second phase, they used 

statistical classifiers to distinguish between real and false 

WMHs by examining the properties of each region. There has 

also been major interest in using Bayesian classifiers with 

Markov random field methods to detect WMHs in MS [28], 

and the elderly population [29]. Sajja et al. used a Parzen 

window classification method for lesion segmentation in MS 

and minimized the false negative lesion classifications using 

HMRF-EM (hidden Markov Random Field with expectation 

maximization) [30]. Karimaghaloo et al. used a conditional 

random field method and combined a variety of potential 

functions to detect lesions with various shapes [31]. Lao et al. 

have used support vector machines (SVMs) to create a 

classification algorithm for detecting WMHs [32]. Ghafoorian 

et al. have developed a technique for detecting WMHs in 

CSVD across a large sample of patients by separating small 

and large lesions and training two size-specific AdaBoost 

classifiers to detect these lesions [33]. The lesion growth 

algorithm (LGT), a publicly available tool for segmentation of 

MS lesions from 3T T1-w and FLAIR images by Schmidt et al. 

uses FLAIR intensity distribution in tissue classes to detect 

outliers which are then expanded toward a more liberal 

segmentation under certain conditions [34]. Ithapu et al. have 

also developed a publicly available MATLAB toolbox for 

segmentation of WMHs in AD and aging by combining texture 

features generated by filter banks and SVM and Random 

Forests classifiers [35]. 

Although many different lesion segmentation techniques have 

been proposed, most methods have been trained and validated 

using data obtained from small populations, all scanned with 

the same MRI imaging protocol. This simplifies the problem 

greatly, and may lead to overfitting. As a result, these 

techniques cannot be widely used for other datasets due to the 

unreliability and high variability of results across data that is 

scanned with different acquisition protocols [11] [20]. Also, 

methods that have been designed for lesion detection in MS 

populations do not generally perform as well in segmenting 

WMHs in the elderly populations for two main reasons. First, 

the MRI contrast between gray matter and white matter tissues 

decreases with age. Second, the boundaries of MS lesions are 

generally sharper than those of WMHs, which makes the 

segmentation task more challenging for the latter [20]. Due to 

these limitations, despite the number of proposed methods, an 

optimal algorithm has not yet been identified, leaving lesion 
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segmentation in general and WMH segmentation in particular 

an open problem [11] [20]. 

The goal of this study is to validate a robust and generalizable 

automatic technique for segmentation of WMHs in MRIs from 

elderly subjects and patients with AD to assess and monitor 

their vascular burden. To achieve this goal, we have 

investigated the performance of our technique across three 

different populations with different scanners and acquisition 

protocols. In this paper, our novel contributions are: 

- To describe a set of discriminative features to identify WMHs 

- To describe a processing pipeline that implements a linear 

regression classifier 

- Evaluation on three heterogeneous multi-site datasets, 

including images scanned by different scanners and different 

scan-parameters to show robustness    

- To obtain results that are as good or better to previously 

published results 

- To compare our classifier to publically available FSL, SPM, 

and W2MHs WMH segmentation tools 

II. Materials and methods 

Subjects: The method was implemented and validated based 

on 3 datasets to ensure robustness and generalizability. 

A) The first dataset (ADC) consists of 80 elderly individuals 

who received a full clinical workup and structural MR scans 

including T1-w, double-echo PD-w/T2-w, and FLAIR scans at 

their times of enrollment into the University of California, 

Davis Alzheimer’s Disease Center (ADC) [36]. Subjects were 

70-90 years old with either normal cognition, mild cognitive 

impairment (MCI), or AD.  

B) The second dataset (PREVENT-AD) consists of 40 

cognitively normal subjects at risk of AD aged 55-75 years 

obtained from “Pre-symptomatic Evaluation of Novel or 

Experimental Treatments for Alzheimer’s Disease” program 

data release 1.0., a longitudinal cohort study of healthy persons 

with a parental history of AD dementia.  The PREVENT-AD 

subjects had T1-w, T2*, and FLAIR MRIs [37].  

C) The final dataset includes T1-w and FLAIR scans of 10 

subjects, selected to have different loads of WMHs from 

ADNI2/GO study which was used to show the performance of 

the method on independent data from different scanners that 

was not previously used in the training and parameter 

optimization of the method. This data was obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI was to 

test whether serial MRI and other biomarkers, and clinical and 

neuropsychological assessment can be combined to measure 

the progression of MCI and early AD. 

MR imaging: We evaluated the proposed technique on 

datasets from three studies that were acquired with different 

MR contrasts to show the robustness of the classifier. This 

section describes scanner information and image acquisition 

parameters for the abovementioned datasets. Table 1. shows 

the summary of this information for each dataset. 

A) ADC: MRI data was acquired on two 1.5T MRI scanners: a 

GE MEDICAL SYSTEMS Signa scanner located at UCD 

Medical Center (Sacramento, CA), and a Philips Eclipse 

scanner located at the Veterans Administration Northern 

California Health Care System (Martinez, CA). Analogous 

sequences were installed on both scanners. 

B) PREVENT-AD: MRI data was acquired on a 3T 

SIEMENS MAGNETOM TrioTim syngo MR scanner (version 

B17). All patients had the same MRI protocol for T1-w, T2* 

and FLAIR scans.  

C) ADNI2/GO: The MRI data used was acquired on two 

different models of GE MEDICAL SYSTEMS scanners: Signa 

HDxt, and DISCOVERY MR750. All patients had similar MRI 

protocols for T1-w and FLAIR scans, acquired with gradient-

recalled echo and spin echo inversion recovery sequences, 

respectively. 

Table 1 - MRI acquisition parameters for ADC, PREVENT-AD, and 

ADNI2/GO datasets. 

 Parameter (unit) ADC PREVENT-AD ADNI2/Go 

T1-w 

Slice thickness (mm) 1.5 1 1.2 
No. of slices 128 176 196 
Field of view (cm2) 250×250 256×256 256×256 
Scan Matrix (cm2) 256×256 256×256 256×256 
TR: Repetition time (ms) 
(TR) () 

9 2300 7.2 
TE: Echo time (ms) 2.9 2.98 3.0 
Pulse Sequence FSPGR IR GR 

 

 

 Slice thickness (mm) 3 2  
 No. of slices 42 52  
 Field of view (cm2) 240×240 

cm2 
200×200  

T2-w/ Scan Matrix (cm2) 256×256 
cm2 

512×512  
T2* TR: Repetition time (ms) 

(TR) () 

2420 650  
 TE: Echo time (ms) 90 20  
 Pulse Sequence DSE IR  
 Slice thickness (mm) 3   
 No. of slices 42   
 Field of view (cm2) 240×240 

cm2 
  

PD-w Scan Matrix (cm2) 256×256 

cm2 

  
 TR: Repetition time (ms) 

(TR) () 

2420   
 TE: Echo time (ms) 20   
 Pulse Sequence DSE   

FLAIR 

Slice thickness (mm) 3 1 5 
No. of slices 48 176 42 
Field of view (cm2) 220×220 

cm2 

256×256 256×256 
Scan Matrix (cm2) 256×192 

cm2 

256×256 256×256 
TR: Repetition time (ms) 

(TR) () 

11000 5000 11000 
TE: Echo time (ms) 144 388 150 
Pulse Sequence FSE IR SE/IR 

Label segmentation: For all datasets, the WMHs were 

segmented independently based solely on the FLAIR scans by 

raters who were blinded to clinical symptoms of the subjects. 

Three different manual segmentation techniques were used: 

A) ADC: a strongly validated, semi-automated method was 

used to detect WMHs based on the FLAIR scans and human 

input [10]. In short, a threshold-based automated method 

identified potential WMH lesions and the expert rater 

eliminated false positives. 

B) PREVENT-AD: WMHs were manually segmented by two 

experts using FLAIR images. Union of the two segmentations 

was then used as the gold standard.  Periventricular and deep 

WMHs were identified with different labels, and thus enabled a 

comparison between segmenting all lesions together or 

segmenting these two classes of lesions separately (but only in 

the PREVENT-AD cohort). 
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C) ADNI2/GO: an expert rater manually painted the lesions 

on the native FLAIR scans. The manual segmentations were 

then reviewed and corrected by a second investigator. 

The cohorts presented large ranges of lesion loads: ADC (0.50-

40.3 CCs), PREVENT-AD (0.29-23.6 CCs), and ADNI2/GO 

(3.56-128.12 CCs). In the experiments below, we evaluated the 

performance of the classifier across 3 different white matter 

lesion loads (WMLL): large (WMLL > 20 CCs), medium (5-20 

CCs) and small (WMLL < 5 CCs). Fig. 1. shows the number of 

subjects in the different categories for each dataset. 

 

Fig. 1. Histograms of WMH load ranges for the 3 datasets (<5 CCs, 5-20 CCs, 
and >20 CCs). A) ADC B) PREVENT-AD C) ADNI2/GO. 

 

Pre-processing: All MRI scans were pre-processed using our 

standardized pipeline. Images were denoised using an 

automatic and multithreaded denoising method based on non-

local means filtering [38]. The bias field and intensity 

inhomogeneity were estimated and corrected using a 

nonparametric non-uniform intensity normalization (N3) tool 

[39]. The final preprocessing step included linear intensity 

scaling using histogram matching to a template obtained from 

150 subjects (50 normal control, 50 mild cognitively impaired 

and 50 dementia subjects) in the ADNI database 

(www.loni.ucla.edu\ADNI) [40]. The T2-w, PD-w, and FLAIR 

scans were then coregistered to the structural T1-w scan of the 

same subject using a six-parameter rigid body registration [41].  

The T1-w scans were nonlinearly registered to the ADNI 

template based on intensity correlation coefficient [42]. Using 

the T1-w-to-template transformations (i.e., linear + nonlinear), 

the other modalities (e.g., FLAIR, T2-w, PD-w) were 

registered to the ADNI template as well. The manually 

segmented lesion maps were also registered to the ADNI 

template using the transformations of their corresponding 

FLAIR images. 

Features: In order to reduce the feature space dimension and 

consequently the computational burden, each image voxel was 

treated as a separate data point. A feature set was defined based 

on a variety of intensity and probability parameters. The 

following features were used as inputs to the classifier: 

- Voxel intensity for each of the available modalities, e.g. T1-

w, T2-w, PD-w, and FLAIR 

- Spatial probability, i.e. the probability of the voxel in its 

specific location being a WMH 

- Intensity probability of the normal healthy and WMH tissues 

independently for each modality (𝑃𝐻  and 𝑃𝑊𝑀𝐻), i.e. the 

probability of the voxel with its specific intensity being normal 

healthy or WMH tissue, calculated for each modality 

independently 

- Average intensity of healthy tissue at voxel for each modality 

- The probability of each voxel being a WMH divided by the 

probability of it being healthy tissue obtained from the 

intensity probabilities for the different modalities (
𝑃𝑊𝑀𝐻

𝑃𝐻
), 

calculated for each modality independently 

All the features (except for the MRI intensities) were 

calculated based on training data in the cross validation step to 

avoid overfitting. The intensity probabilities of WMH and 

normal healthy tissues (𝑃𝐻  and 𝑃𝑊𝑀𝐻) were obtained by 

calculating histograms of intensity ranges within the manually 

segmented WMH masks and non-WMH brain regions, 

respectively.  

The intensity features from the different MRI contrasts are 

generally used in all WMH segmentation techniques, as they 

provide basic intensity information for the specific voxel. The 

spatial probability feature can inform the classifier of how 

likely it is for the voxel in this specific location in the brain to 

be a lesion, e.g. a hyperintense voxel in the periventricular 

regions is more likely to be a lesion, whereas a voxel with a 

similar intensity in the cortical regions is less likely to be so. 

This feature is most informative when the training dataset is 

large and reflects the prevalence of WMH across different 

brain regions accurately. The intensity probability features 

reflect the likelihood of the abnormality of the intensity of the 

current voxel, i.e. how likely it is for a voxel with such 

intensity to be either WMH or normal tissue. The division of 

these two features can distinguish the tails of the distributions 

and provide yet another measure to reflect the likelihood of 

being a lesion. The average intensity of the healthy tissue 

feature can provide a standard of what intensity is considered 

normal in this specific location of the brain. 

Using the information from multiple contrasts can decrease 

uncertainty and increase classification accuracy, especially in 

cases where one modality has certain artifacts. For example, 

proximity to bones might cause an increase in the signal in the 

optimal FLAIR image due to susceptibility. As a result, there 

may be non-WMH voxels that are hyperintense on the FLAIR 

image, but not on the other contrasts. Integrating the 

information from multiple contrasts can eliminate these false 

positives.  

Since different features have different ranges, feature 

normalization was performed by variance scaling, i.e. 

subtraction of the mean and division by standard deviation. 

This results in zero mean and unit variance in the normalized 

feature set.  Fig. 2. shows the flowchart for the preprocessing 

and feature selection steps. 

 
Fig. 2. Flow-chart of the proposed classifier and the preprocessing steps. The 
preprocessing includes denoising, image intensity non-uniformity correction, 

intensity range normalization, co-registration of T2w, PD and FLAIR to T1w 

http://www.loni.ucla.edu/ADNI
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scans, and stereotaxic registration of T1w. All modalities were then non-
linearly warped to a template obtained from the ADNI dataset.  Spatial prior, 

intensity and distribution features then served as inputs to the linear regression 

classifier. 

Tissue Classification: The main post-processing step for 

lesion segmentation is assigning a label (i.e. WMH or non-

WMH) to each voxel. The segmentation method was evaluated 

in a 10-fold cross validation manner, defining different training 

and testing subjects for each experiment. The training and 

testing subjects were selected from the same dataset in ADC 

and PREVENT-AD studies. For the ADNI2/GO 

segmentations, the training data was selected from the ADC 

study while testing data came from ADNI2/GO to show the 

robustness of the method across different scanners. The 

training dataset was generated from a large number of 

manually labeled voxels; i.e. all voxels inside the brain mask 

for the subjects that were selected for training were used to 

create the training set - this includes all positive (WMH) and 

negative (non-WMH) example voxels. (Note that subjects used 

for testing were not used to estimate any of the features, 

probabilities or spatial priors, and thus serve truly as 

independent test data without double dipping). After training, a 

classifier can segment the image voxels of new subjects from 

the test dataset either by comparing their features with the 

features in its current training set or by creating a model to 

estimate a relationship between the output label and the input 

features of the training set. A variety of classification 

algorithms can be used for this purpose, such as neural 

networks [43] [25], k-NN [44] [45] [22] [23], and support 

vector machines [46] [32]. In this work, we selected a linear 

regression classifier with thresholding due to its low variance, 

high accuracy and lower computation time compared with 

other classifiers. The model parameters were calculated based 

on a least-squares estimation 

𝛽 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) = (∑𝑋𝑖𝑋𝑖
𝑇

𝑁

𝑖=1

)

−1

(∑𝑋𝑖𝑌𝑖

𝑁

𝑖=1

) 

Where 𝛽, 𝑋 and 𝑌 denote the estimated weights, the feature 

matrix and target labels, respectively. 𝑋𝑖 and 𝑌𝑖 denote the 

feature set and target labels for subject 𝑖 and 𝑁 is the number 

of subjects in the training set. The output of the linear 

regression model for a new subject 𝑗 (𝐿𝑗 = 𝑋𝑗𝛽) can be 

considered as a probability map that reflects the likelihood of 

the input voxel being a WMH. This value can later be 

thresholded to create a binary lesion map. The value of the 

threshold can determine the sensitivity and specificity of the 

segmentations; i.e. choosing lower threshold values can 

increase the sensitivity of the segmentations with the price of 

decreasing the specificity, and vice versa. The optimal 

threshold value for creating binary segmentation maps can be 

obtained through cross validation as described below. 

Evaluation metrics: To evaluate the accuracy of the automatic 

segmentations with respect to the gold standard manual labels, 

we used a variety of volumetric as well as spatial 

correspondence measures since no single measure is capable of 

reflecting all the desired information regarding the quality of 

segmentations [20]. To assess the volumetric correspondence 

between the automated and manual labels, we used intra-class 

correlation coefficient (ICC) for total lesion volume. The per-

voxel spatial correspondence between two segmentations was 

evaluated using Dice similarity index (SI) as well as true and 

false positive rates (TPR and FPR), and positive prediction 

value (PPV) [20]. A high TPR (sensitivity) indicates that the 

automatic segmentation corresponds well to manual labels. A 

low FPR indicates that the procedure does not over-segment; 

i.e. identify non-WMH voxels as WMHs.  A small PPV 

implies that many of the positive results are false positives. 

True positive (TP) and true negative (TN) indicate agreement 

whereas false negative (FN) and false positive (FP) indicate 

disagreement between the two segmentations. In cross-

validations, SI was regarded as the primary outcome measure; 

i.e. the parameters were optimized based on SI values. 

III. Experiments and Results 

Qualitative results: Figure 3 shows the segmentation results 

for a subject from the ADC dataset. In each row, 5 axial slices 

are shown, containing from top to bottom: the FLAIR image, 

the manual segmentations overlaid on the FLAIR, probability 

maps outputted by the linear regression classifier, and the 

binary segmentations obtained by thresholding the probability 

maps with the optimal threshold based on SI values. 

 

Fig. 3.  Comparison of the automated vs. manually segmented WMHs for a 

subject from ADC dataset. Rows from top to bottom: A) axial FLAIR slices B) 
WMH labels obtained from manual segmentations C) probability maps 

obtained from the proposed automated method D) WMH labels obtained by 

thresholding the probability map. The color bar indicates the continuous output 

of the classifier before thresholding. 

Figure 4 shows similar segmentation results for a subject from 

the PREVENT-AD dataset. The method was trained to 

segment the periventricular and deep WMHs separately. Note 

the difference between the probability maps for the 

periventricular and deep WMHs and the fact that the 

probabilities are higher for areas closest to the ventricles for 

the former and lower for the latter. As a result, there is only a 

slight spatial overlap between the two segmentations 

(SI=0.05±0.04). 
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Fig. 4.  Comparison of the automated vs. manually segmented WMHs for a 

subject from PREVENT-AD dataset. Rows from top to bottom: A) axial 

FLAIR slices B) Periventricular (dark blue) and deep (light blue) WMH labels 
obtained from manual segmentations C) Periventricular and D) deep 

probability maps obtained from the proposed automated method, respectively 

E) Periventricular (orange) and deep (yellow) WMH labels obtained by 

thresholding the probability map. The color bar indicates the continuous output 

of the classifier before thresholding. 

Figure 5 shows the segmentation results for a subject from 

ADNI2/GO dataset. One can see that in each case, the 

automatic output is very similar to the manual labels. 

 

Fig. 5.  Comparison of the automated vs. manually segmented WMHs for a 

subject from ADNI2/GO dataset. Rows from top to bottom: A) axial FLAIR 
slices B) WMH labels obtained from manual segmentations C) probability 

maps obtained from the proposed automated method D) WMH labels obtained 

by thresholding the probability map. The color bar indicates the continuous 
output of the classifier before thresholding. 

Quantitative results: The performance of the method was 

evaluated on 3 different populations with 80, 40, and 10 

subjects. We investigated 3 categories of lesion load since the 

different datasets had different ranges of WMH loads. In the 

ADC dataset, 57.5%, 31.5%, and 11.25% of the population had 

small, medium, and large lesion loads respectively. In the 

PREVENT-AD dataset, 62.5%, 35%, and 2.5% of the 

population had small, medium, and large lesion loads. In the 

ADNI2/GO dataset, 20%, 40%, and 40% of the population had 

small, medium, and large lesion loads, respectively (Fig. 1). 

The binary segmentations were generated by applying a 

threshold to the probability map from the linear regression 

technique. Different values of threshold reflect different levels 

of sensitivity/specificity in the segmentations. Figure 6 shows 

the SI between the binary segmentation and gold standard 

manual segmentations for different values of threshold for the 

three datasets. Confidence intervals indicate the standard 

deviation of mean SI across 10 folds in the cross validation. 

From Fig. 6, we can see that the optimal threshold for 

generating binary segmentations is different for each case, 

since the number of available modalities is different, and 

consequently the number of features in the model are different 

for the 3 datasets.  

 

Fig. 6. SI (Dice Kappa) vs threshold for A) ADC B) PREVENT-AD C) 

ADNI2/GO datasets. Blue and red curves in B represent the results for the 
periventricular and deep WMHs, respectively. 

SI, ICC, sensitivity, FPR, and PPV were calculated for all 

subjects with the optimal thresholds calculated as hyper-

parameters through cross validation. Since the purpose of using 

ADNI2/GO dataset was to show the performance of the 

method on independent data from different scanners (not 

previously used in training or in parameter optimization), only 

information from ADC dataset was used to determine the 

optimal threshold for classification on ADNI2/GO dataset. 

(Note that additional investigation showed that using 

ADNI2/GO data to determine the optimal threshold would not 

lead to a significant improvement over using the ADC-derived 

threshold, p=0.31). The results are summarized in Table 2. For 

PREVENT-AD, the binary segmentation is a union of the 

periventricular and deep segmentations. Figure 7 shows a 

boxplot diagram of SI values for the 3 categories of lesion 

loads in each dataset.  

Table 2- Similarity measures between the manual and automatic segmentations 

for ADC, PREVENT-AD, and ADNI2/GO datasets. 

Dataset SI ICC Sensitivity FPR PPV 

ADC 0.62±0.16 0.96±0.09 0.63±0.18 0.0002±0.0001 0.69±0.17 

PREVENT-AD 0.51±0.16 0.78±0.21 0.52±0.20 0.0002±0.0002 0.59±0.15 

ADNI2/GO 0.64±0.17 0.93 0.71±0.23 0.0014±0.0014 0.60±0.09 
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Fig. 7. Boxplot diagrams of SI (Dice Kappa) (<5 CCs, 5-20 CCs, and >20 

CCs) for A) ADC B) PREVENT-AD C) ADNI2/GO datasets. 

An SI value of 0.7 or higher indicates an excellent agreement 

[47]. The SI values suggest excellent agreement for medium 

and large lesion loads for ADC and ADNI2/GO datasets, and 

very good agreement for medium and excellent agreement for 

large lesion loads for PREVENT-AD dataset. To investigate 

this further, SI values were plotted against total lesion loads 

obtained from manual segmentations (Fig. 8). All of the small 

SI values occur in subjects that have smaller total lesion loads. 

 

Fig. 8. SI (Dice Kappa) vs manually segmented WMH loads (CCs) for A) 

ADC B) PREVENT-AD C) ADNI2/GO datasets. 

Contribution of the features: In order to show how much 

each of the proposed feature sets contributes to the 

performance of the classifier, the classifier was trained without 

each feature set. Table 3 shows the percentage of drop in SI 

(Dice Kappa) after removing each set of features for each 

dataset. 

Table 3 – Percentage of drop in SI (Dice Kappa) by removing feature sets for 

ADC, PREVENT-AD (periventricular-deep), and ADNI2/GO.  

Dataset 
Voxel 

Intensity 

Spatial  

Prior 

Average 

 Intensity 
𝑃𝑊𝑀𝐻 𝑃𝐻 

𝑃𝑊𝑀𝐻
𝑃𝐻

 

ADC 5.5 8.6 5.3 6.6 5.5 1.6 

PREVENT-AD 3.3-2.9 75.7-78.1 1.9-3.1 2.6-2.3 2.2-1.9 3.8-4.2 

ADNI2/GO 8.0 9.3 8.4 19.9 7.7 9.7 

Comparison between classifiers: Linear discriminant analysis 

(LDA), LogitBoost, and random forest classifiers were also 

trained and validated on the same features [48], [49]. For these 

classifiers, MATLAB toolbox implementations were used. 

Table 4 summarizes the results.  

Table 4- Performance (SI) of LDA, LogitBoost and Random Forests classifiers  

 ADC PREVENT-AD (PV - Deep) ADNI2/GO 

LDA 0.58±0.24 0.17±0.21 - 0.11±0.12 0.41±0.25 
LogitBoost 0.70±0.14 0.62±0.15 - 0.52±0.21 0.31±0.24 

Random Forest 0.68±0.15 0.61±0.15 - 0.51±0.22 0.32±0.23 

Impact of Size of the Training Set: One of the important 

concerns for any supervised classification method that is 

dependent on training samples is the number of previously 

labeled samples that are required to reach desirable 

performance on new unobserved data. To evaluate this 

dependence, we trained and validated the performance of the 

method using different sizes of training sets for the ADC 

dataset. The results of our investigations as shown in Fig. 9. 

suggest that the method shows acceptable performance (SI~0.6 

and ICC~0.9) and can be used with as few as 40 labeled 

training subjects. 

 

Fig. 9. Impact of the number of training subjects on SI (Dice Kappa) and intra-

class correlation (ICC). Plotted SI and ICC values between the manually 
labeled gold standard WMHs and the WMH labels estimated by our automated 

method for the ADC dataset for different sizes of training sets. 

IV. Discussion 

In this paper, we proposed and validated a new method for 

fully automated segmentation of WMHs from MR images. The 

proposed method uses a variety of location and intensity based 

features and a linear regression technique to create a 

continuous output that can be considered as a subject specific 

probability map of lesions, which can then be thresholded to 

create binary WMH segmentations. The advantage of creating 

these subject specific continuous WMH maps over binary 

segmentations is that they can be thresholded with different 

values, balancing the desired level of sensitivity/specificity 

depending on the purpose of segmentation. Furthermore, such 

lesion probability maps can provide more information about 

the voxel tissue than a simple binary valued segmentation; e.g., 

lesion probabilities may be useful to identify dirty white matter 

compared to healthy white matter tissue [50]. These continuous 

values may also reflect the level of damage to the tissue, since 

higher WMH intensities can indicate more extensive cognitive 

deficits [51]. Finally, we demonstrated that the thresholded 

determined on one dataset (ADC) was applicable to a 

previously unseen dataset (ADNI2/GO), underlining the 

robustness and generalizability of the proposed method. 

A linear regression classifier was selected over other 

classification techniques for two reasons. First, because it 

provides a smooth continuous output that can be used as a 

subject specific probability map at low computational cost. But 

more importantly, our experiments showed that choosing more 

complex nonlinear classifiers may reduce the generalizability 

and applicability of the technique to new previously unseen 

data. For example, Random Forests and LogitBoost classifiers 

had a higher performance on ADC, but a much poorer 

performance on the independent ADNI2/GO datasets, as 

opposed to the simpler and more generalizable linear LDA and 

linear regression classifiers (Table 4).  

The automated WMH segmentation method was evaluated on 

three different datasets (n1=80, n2=40, and n3=10) with the 

gold standard labels obtained from manual segmentations and 

measures such as SI (Dice Kappa), intra-class correlation 

(ICC), sensitivity and specificity. The automated labels showed 

high agreement with manual labels across all the datasets. The 

good performance of the algorithm on the ADNI2/GO subjects, 

which were not used in training the classifier, suggests that the 

method is robust in dealing with inter-site variability and 

enables us to apply the classifier to other datasets. 
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One of the major complications for automated segmentation of 

WMHs is caused by resampling. Since most automated tools 

use multiple contrasts of images to increase segmentation 

accuracy, it is necessary to co-register all the modalities to a 

common space. However, in most studies, the FLAIR scans 

(i.e. the modality with the optimal contrast for lesion detection) 

as well as T2-w and PD scans are obtained with thick slices 

(usually 3-5 mms) in clinical studies due to acquisition timing 

constraints. This results in blurring effects after resampling. To 

avoid resampling as much as possible, we transformed all data 

(i.e. the spatial priors, brain masks, etc.) to the native FLAIR 

space for the ADC and ADNI2/GO datasets and performed 

segmentation in the native FLAIR space. This improved the 

segmentation performance significantly for the ADC (SI=0.62 

native vs SI=0.53 resampled) and ADNI2/GO (SI=0.64 native 

vs. SI=0.55 resampled) datasets while it did not have any effect 

on the PREVENT-AD dataset due to its inherent high spatial 

resolution (1mm3 isotropic voxels). In the PREVENT-AD 

dataset, separating the WMHs into periventricular and deep 

classes yielded an improvement of 10.87% in SI. This was 

expected since deep WMHs have a different contrast and were 

more likely to be missed if the same threshold as 

periventricular WMHs was used. 

The SI was used to validate the performance of the method as 

well as to determine the optimal threshold for creating binary 

segmentations from probabilistic lesion maps. However, as can 

be deduced from Fig. 8. the algorithm yields smaller SI values 

for small lesion loads and larger values for relatively larger 

WMH loads. This is not specific to the proposed method and is 

in fact due to the nature of the definition of SI, which causes 

the same amount of difference to yield lower SI values if the 

total volume is smaller. This prevents SI from being considered 

as the ideal similarity measure for lesion segmentation 

applications, since the reported results will then depend on the 

average lesion load across the population under study. 

However, since metrics such as ICC depend only on the total 

load rather than the actual segmentations, SI still remains the 

most informative metric, if its values are reported along with 

the average lesion loads across the population.  

Another possible set of metrics that are commonly used to 

study the performance of lesion segmentation techniques 

(especially those applied to MS lesion segmentation due to the 

clinical relevance of lesion count when evaluating treatment 

strategies) are per lesion metrics. However, since most of the 

WMHs in AD and aging populations are relatively large and 

confluent, such measures are not as informative in these 

studies. In fact, most of the per lesion metrics that were 

calculated for the ADC dataset showed nearly excellent 

performance.  

The average Dice Kappa was lower for the PREVENT-AD 

dataset in comparison with ADC and ADNI2/GO due to 

several reasons. First, the PREVENT-AD subjects are much 

younger and drawn from a healthy population without any 

cognitive complaints, and as a result have significantly lower 

WMH loads and smaller lesions when compared to the 

ADNI2/GO and ADC subjects (p<0.0001, p=0.0044). Second, 

different techniques were used for manual detection of the 

WMHs in each of the three datasets. Specifically, for the 

PREVENT-AD dataset where sensitive detection was desired, 

the union of two raters was used as the gold standard. This 

would naturally lead to more generous segmentations as 

opposed to using the intersection between the two labels, 

which would have the opposite effect. Third, the contrast 

between the healthy tissue and WMHs in the FLAIR scans was 

lower in the PREVENT-AD FLAIRs, leading to a significant 

overlap in the intensity histograms, and thus making the 

classification task more prone to errors, both for the manual 

raters and automated tools. On the other hand, the PREVENT-

AD FLAIR scans had a much better spatial resolution (i.e. 1 

mm slice thickness) enabling the method to identify smaller 

lesions. In the future, it would be interesting to study the 

dependence of lesion contrast on lesion age and level of tissue 

damage.  

FLAIR is the optimal modality to detect WMHs due to the 

high contrast between WMHs and surrounding tissue. 

However, many studies forego FLAIR acquisition in favor of 

other modalities. As a result, segmentation techniques that can 

detect WMHs without using FLAIR are highly desirable. The 

proposed technique was able to detect WMHs in the ADC 

dataset using only T1-w, T2-w, PD data with SI=0.45±0.18. 

While this is not as high as when using FLAIR, it shows that it 

is possible to segment some WMHs without using FLAIR 

information. 

The training time for the proposed method using an Intel Core 

i3-2120 processor at 3.30 GHz was approximately 19 minutes 

for 40 subjects and the segmentation time for each subject after 

training was approximately 1.6 seconds. The low 

computational expense enables us to use this technique on 

large MRI databases without being concerned with 

computation burden.  

The proposed technique was also compared with FAST 

toolbox (FMRIB's Automated Segmentation Tool) [52] from 

FSL [53]–[55], LGA (Lesion Growth Algorithm)[34] as 

implemented in the LST toolbox version 2.0.15 

(www.statistical-modelling.de/lst.html) for SPM [56], as well 

as W2MHS  from Ithapu et al. [35] as three well-known freely 

available segmentation techniques in the literature on the same 

3 datasets that were used for our validations. The results 

showed that the proposed technique outperforms all three 

methods in terms of Dice Kappa (SI) in segmenting all 

categories (small, medium, and large) of lesion loads across all 

three datasets. FAST from FSL oversegmented artifacts and 

bright regions near the cortex and was only able to segment 

large lesions with high contrast yielding SI=0.11±0.15 for the 

ADC dataset and SI=0.23±0.34 for the ADNI2/GO dataset. 

LGA from SPM tended to undersegment the lesions, especially 

deep WMHs across all three datasets (SI=0.09±0.12 for ADC 

and SI=0.20±0.24 for ADNI2/GO). W2MHS had a better 

performance for both ADC and ADNI2/GO datasets 

(SI=0.20±0.18 for ADC and SI=0.39±0.29 for ADNI2/GO 

datasets). All techniques had poor performance in cases with 

small lesions or low contrast between the healthy tissue and 

WMHs: in the PREVENT-AD dataset, neither technique was 

able to detect the WMHs (SI=0.003±0.003 for FAST, 

SI=0.01±0.02 for LGA, and SI=0.01±0.02 for W2MHS). All 

results were tested for statistical significance (using paired t-

tests) in comparison with SI values obtained from the proposed 

method for the same datasets (p<0.0001). 

It is difficult to compare our technique to previously published 

results. The difficulty lies in the differences between 

populations, MR image contrasts, anatomical definition of 
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WMHs, and quality of manual segmentations. All three 

datasets have a much higher number of subjects with small or 

even no WMHs (in case of deep WMHs in PREVENT-AD) for 

which disagreement in a few voxels would lead to a very small 

SI (or even zero for cases with no WMHs). In addition, there 

are other factors that might lead into differences between the 

reported performances of the methods, which do not 

necessarily reflect the superiority of the WMH segmentation 

technique, such as: masking out difficult/prone to artifact 

regions, using WM masks, using a rule for minimum number 

of neighboring voxels for manually or automatically labelling a 

voxel as WMH (See Table 5). Still, our results are comparable 

to those published in literature, yielding the best results for 

patients with large lesion loads, and among the best for 

medium lesion loads (See Table 5).  Future work will focus on 

improving the technique for small lesion loads to facilitate 

application of this technique to datasets of cognitively normal 

individuals and at-risk populations.  

Table 5 - Comparison of SI (Dice Kappa) for different lesion loads in various 

studies. (S: small load, M: medium load, L: large load).  Notes: 1- No 

exclusion mask. 2- No post processing. 3- Subjects with vascular disease. 4- 
Excluded areas between lateral ventricles. 5- Excluded small lesions. 6- 

Population did not have subjects with small WMH loads. 7- Used tissue 

segmentation. 8- Validation on 20 slices per subject on average, selected based 
on presence of lesions with clear borders. 9- Removed periventricular flow 

artifacts. 10- Excluded areas outside WM mask. 11- Post processing to remove 

noisy detections. 12- Subjects with small vessel disease (based on appearance 
of WMHs and/or lacunas). 13- Aging/AD and vascular disease patients with 

minor strokes. Used exclusion mask containing dilated CSF and subcortical 

structures (basal ganglia) and entorhinal cortex. 

   Dice (SI) 

Method Notes Number (S-M-L%) S M L Total 

Proposed Method  1,2 80 (58-31-11) 0.49 0.74 0.87 0.62 

Admiraal [16] 3,4,5 100 (40-35-25) 0.70 0.75 0.82 0.75  

Anbeek [21] 3 20 (40-35-25) 0.50 0.75 0.85 0.61 

Beare [27] 6 30  0.50 0.65 0.58 

Boer [14] 5,7 20 0.72 0.72 

Steenwijk [22] 5,7 
20 (15-45-40) 
18 (40-33-17) 

0.78 
0.65 

0.85 
0.72 

0.91 
0.81 

0.84 
0.75  

Khayati [28] 5,6,8 20 (35-50-15) 0.72 0.75 0.80 0.75 

Sajja [30] 5,7 23 (35-65) 0.67 0.84 0.78 

Schmidt [34] 7  53 0.66 0.79 0.85 0.75 

Ong [57] 9,10 38 0.36 0.56 0.71 0.47 

Ithapu [35] 9,11  38    0.67 

Herskovits [58]  2,7 42    0.60 

Dyrby [59] 10 362 0.45 0.62 0.65 0.56 

Erus [60] 6 
33 
47 

 
0.54 
0.66 

0.54 
0.66 

Ghafoorian [61] 12 46    0.79 

Simões [62] 
 

7,10 28 (14-9-5) 0.51 0.70 0.84 0.62 

Yoo [63] 5,6,10 32 (7-10-15) 0.59 0.73 0.86 0.76 

Griffanti [64] 13 
21 
109 

0.70 
0.41 

0.69 
0.58 

0.80 
0.68 

0.76 
0.52 

Quantification of WMH volumes is critical for evaluation of 

the vascular burden of AD. As well, this will prove especially 

useful in vascular cognitive impairment where cerebrovascular 

disease is believed to be the primary cause of the disease and 

the lesion load is thought to reflect the severity of disease [65]. 

There is growing evidence that controlling vascular risk factors 

which are the primary cause of WMHs is associated with 

decline in dementia [66]. Here, quantification of WMH will be 

essential for assessing severity, for monitoring progression and 

response to treatment. The proposed method has several 

advantages including robustness, not requiring any manual 

intervention, and fast computation time. Our results suggest 

that the proposed automated tool can provide fast, robust, and 

accurate segmentations for WMHs and holds good potential for 

clinical studies. Hence, it is particularly useful given the 

emergence of large MRI databases such as ADNI 

(http://www.loni.ucla.edu/ADNI/). 
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