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Constrained Deep Weak Supervision
for Histopathology Image Segmentation

Zhipeng Jia, Xingyi Huang, Eric I-Chao Chang and Yan Xu*

Abstract—In this paper, we develop a new weakly-supervised
learning algorithm to learn to segment cancerous regions in
histopathology images. Our work is under a multiple instance
learning framework (MIL) with a new formulation, deep weak
supervision (DWS); we also propose an effective way to introduce
constraints to our neural networks to assist the learning process.
The contributions of our algorithm are threefold: (1) We build
an end-to-end learning system that segments cancerous regions
with fully convolutional networks (FCN) in which image-to-
image weakly-supervised learning is performed. (2) We develop a
deep week supervision formulation to exploit multi-scale learning
under weak supervision within fully convolutional networks.
(3) Constraints about positive instances are introduced in our
approach to effectively explore additional weakly-supervised
information that is easy to obtain and enjoys a significant boost
to the learning process. The proposed algorithm, abbreviated as
DWS-MIL, is easy to implement and can be trained efficiently.
Our system demonstrates state-of-the-art results on large-scale
histopathology image datasets and can be applied to various
applications in medical imaging beyond histopathology images
such as MRI, CT, and ultrasound images.

Index Terms—Convolutional neural networks, histopathology
image segmentation, weakly supervised learning, fully convolu-
tional networks, multiple instance learning.

I. INTRODUCTION

H IGH resolution histopathology images play a critical
role in cancer diagnosis, providing essential information

to separate non-cancerous tissues from cancerous ones. A
variety of classification and segmentation algorithms have
been developed in the past [1], [2], [3], [4], [5], [6], [7],
[8], focusing primarily on the design of local pathological
patterns, such as morphological [2], geometric [1], and texture
[9] features based on various clinical characteristics.

In medical imaging, supervised learning approaches [10],
[11], [12] have shown their particular effectiveness in perform-
ing image classification and segmentation for modalities such

This work is supported by Microsoft Research under the eHealth program,
the Beijing National Science Foundation in China under Grant 4152033, the
Technology and Innovation Commission of Shenzhen in China under Grant
shenfagai2016-627, Beijing Young Talent Project in China, the Fundamental
Research Funds for the Central Universities of China under Grant SKLSDE-
2015ZX-27 from the State Key Laboratory of Software Development Envi-
ronment in Beihang University in China. Asterisk indicates corresponding
author.

Xingyi Huang, and Yan Xu are with State Key Laboratory of Soft-
ware Development Environment and Key Laboratory of Biomechanics and
Mechanobiology of Ministry of Education and Research Institute of Beihang
University in Shenzhen, Beihang University, Beijing 100191, China (email:
huangxingyi102@126.com; xuyan04@gmail.com).

Zhipeng Jia, Eric I-Chao Chang, and Yan Xu are with Mi-
crosoft Research, Beijing 100080, China (email: zhipeng.jia@outlook.com;
echang@microsoft.com; xuyan04@gmail.com).

Zhipeng Jia is with Institute for Interdisciplinary Information Sciences, Ts-
inghua University, Beijing 100084, China (email: zhipeng.jia@outlook.com).

as MRI, CT, and Ultrasound. However, the success of these
supervised learning algorithms depends on the availability of a
large amount of high-quality manual annotations/labeling that
are often time-consuming and costly to obtain. In addition,
well-experienced medical experts themselves may have a dis-
agreement on ambiguous and challenging cases. Unsupervised
learning strategies where no expert annotations are needed
point to a promising but thus far not clinically practical
direction.

In-between supervised and unsupervised learning, weakly-
supervised learning in which only coarse-grained (image-
level) labeling is required makes a good balance of having
a moderate level of annotations by experts while being able to
automatically explore fine-grained (pixel-level) classification
[13], [14], [15], [16], [17], [18], [19], [20]. In pathology, a
pathologist annotates whether a given histopathology image
has a cancer or not; a weakly-supervised learning algorithm
would hope to automatically detect and segment cancerous
tissues based on a collection of histopathology (training)
images annotated by expert pathologists; this process that sub-
stantially reduces the amount of work for annotating cancerous
tissues/regions falls into the category of weakly-supervised
learning, or more specifically multiple instance learning [13],
which is the main topic of this paper.

Multiple instance learning (MIL) was first introduced by
Dietterich et al. [13] to predict drug activities; a wealthy body
of MIL based algorithms was developed thereafter [21], [22],
[14]. In multiple instance learning, instances arrive together
in groups during training, known as bags, each of which is
assigned either a positive or a negative label (can be multi-
class), but absent instance-level labels (as shown in Figure 1).
In the original MIL setting [13], each bag consists of a number
of organic molecules as instances; their task was to predict
instance-level label for the training/test data, in addition to
being able to perform bag-level classification. In our case here,
each histopathology image with cancer or non-cancer label
forms a bag and each pixel in the image is referred to as an
instance (note that the instance features are computed based
on each pixel’s surroundings beyond the single pixel itself).

Despite the great success of MIL approaches [13], [14], [15]
that explicitly deal with the latent (instance-level) labels, one
big problem with many existing MIL algorithms is the use
of pre-specified features [21], [14], [16]. Although algorithms
like MILBoost [14] have embedded feature selection proce-
dures, their input feature types are nevertheless fixed and pre-
specified. To this point, it is natural to develop an integrated
framework by combining the MIL concept with convolutional
neural networks (CNN), which automatically learns rich hi-
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Fig. 1: Illustration of the learning procedure of a MIL algorithm. Our training dataset
is denoted by S = {(Xi, Yi), i = 1, 2, 3, . . . , n}, where Xi indicates the ith input
image, and Yi ∈ {0, 1} represents its corresponding manual label (Yi = 0 refers
to a non-cancer image and Yi = 1 refers to a cancer image). Given an input image,
a classifier C generates pixel-level predictions. Then, the image-level prediction Ŷi is
computed from pixel-level predictions via a softmax function. Next, a loss between
the ground truth Yi and the image-level prediction Ŷi is computed for the ith input
image, denoted by li(Yi, Ŷi). Finally, an objective loss function L takes the sum of
loss functions of all input images. The classifier C is learned by minimizing the objective
loss function.

erarchical features for pattern recognition with state-of-the-
art classification/recognition results. A previous approach that
adopts CNN in a MIL formulation was recently proposed [17],
but its greatest limitation is the use of image patches instead of
full images, making the learning process slow and ineffective.
For patch-based approaches: (1) image patch size has to be
specified in advance; (2) every pixel as the center of a patch
is potentially an instance, resulting in millions of patches to
be extracted even for a single image; (3) feature extraction
for image patches is not efficient. Beyond the patch-centric
CNN framework is the image-centric paradigm where image-
to-image prediction can be performed by fully convolutional
networks (FCN) [23] in which features for all pixels are
computed altogether. The efficiency and effectiveness of both
training and testing by FCN family models have shown great
success in various computer vision applications such as image
labeling [23], [24] and edge detection [25]. An early version of
FCN applied in MIL was proposed in [26] which was extended
into a more advanced model [18].

In this paper, we first build an FCN based multiple instance
learning framework to serve as our baseline algorithm for
weakly-supervised learning of histopathology image segmen-
tation. The main focus of this paper is the introduction
of deep weak supervision and constraints to our multiple
instance learning framework. We abbreviate our deep weak
supervision for multiple instance learning as DWS-MIL and
our constrained deep weak supervision for multiple instance
learning as CDWS-MIL. The concept of deep supervision
in the supervised learning was introduced in [27], which is
combined with FCN for edge detection [25]. We propose
a deep weak supervision strategy in which the intermediate
FCN layers are expected to be further guided through weakly-
supervised information within their own layers.

We also introduce area constraints that only require a small
amount of additional labeling effort but are shown to be
immensely effective. That is, in addition to the annotation of
being a cancerous or non-cancerous image, we ask pathologists
to give a rough estimation of the relative size (e.g 30%) of
cancerous regions within each image; this rough estimation
is then turned into an area constraint in our MIL formulation.

Our motivation to introduce area constrains is three-fold. First,
having informative but easy to obtain expert annotation can
always help the learning process and we are encouraged to
seek information beyond being just positive or negative. There
exists a study in cognitive science [28] indicating the natural
surfacing of the concept of relative size when making a dis-
crete yes-or-no decision. Second, our DWS-MIL formulation
under an image-to-image paradigm allows the additional term
of the area constraints to be conveniently carried out through
back-propagation, which is nearly impossible to do if a patch-
based approach is adopted [16], [17]. Third, having area
constraints conceptually and mathematically greatly enhances
learning capability; this is evident in our experiments where
a significant performance boost is observed using the area
constraints.

To summarize, in this paper we develop a new multiple
instance learning algorithm for histopathology image seg-
mentation under a deep weak supervision formulation, ab-
breviated as DWS-MIL. The contributions of our algorithm
include: (1) DWS-MIL is an end-to-end learning system
that performs image-to-image learning and prediction under
weak supervision. (2) Deep weak supervision is adopted in
each intermediate layer to exploit nested multi-scale feature
learning. (3) Area constraints are also introduced as weak
supervision, which is shown to be particularly effective in
the learning process, significantly enhancing segmentation
accuracy with very little extra work during the annotation
process. In addition, we experiment with the adoption of
super-pixels [29] as an alternative way to pixels and show
their effectiveness in maintaining intrinsic tissue boundaries
in histopathology images.

II. RELATED WORK

Related work can be divided into three broad categories:
(1) directly related work, (2) weakly supervised learning
in computer vision, and (3) weakly supervised learning in
medical images.

A. Directly related work

Three existing approaches that are closely related to our
work are discussed below.

Xu et al. [16] propose a histopathology image segmentation
algorithm in which the concept of multiple clustered instance
learning (MCIL) is introduced. The MCIL algorithm [16]
can simultaneously perform image-level classification, patch-
level segmentation and patch-level clustering. However, as
mentioned previously, their approach is a patch-based system
that is extremely space-demanding (requiring large disk space
to store the features) and time-consuming to train. In addition,
a boosting algorithm is adopted in [16] with all feature types
pre-specified, but features in our approaches are automatically
learned.

Pathak et al. present an early version of fully convolutional
networks applied in a multiple instance learning setting [26]
and they later generalize the algorithm by introducing a new
loss function to optimize for any set of linear constraints on
the output space [18]. Some typical linear constraints include
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suppression, foreground, background, and size constraints.
Compared with the generalized constrained optimization in
their model, the area constraints proposed in this paper are
simpler to carry out through back-propagation within MIL.
Moreover, our formulation of deep weak supervision combined
with area constraints demonstrates its particular advantage
in histopathology image segmentation where only two-class
(positive and negative) classification is studied.

Holistically-nested edge detector (HED) is developed in
[30] by combining deep supervision with fully convolutional
networks to effectively learn edges and object boundaries. Our
deep weak supervision formulation is inspired by HED but
we instead focus on a weakly-supervised learning setting as
opposed to being fully supervised in HED. Our deep weak
supervision demonstrates its power under an end-to-end MIL
framework.

B. Weakly supervised learning in computer vision
A rich body of weakly-supervised learning algorithms exists

in computer vision and we discuss them in two groupings:
segmentation based and detection based.

Segmentation. In computer vision, MIL has been applied to
segmentation in many previous systems [31], [32], [33], [34].
A patch-based approach would extract pre-specified image
features from selected image patches [31], [32] and try to learn
the hidden instance labeling under MIL. The limitations of
these approaches are apparent, as stated before, requiring sig-
nificant space and computation. More recently, convolutional
neural networks have become increasingly popular. Pinheiro et
al. [33] propose a convolutional neural network-based model
which weights important pixels during training. Papandreous
et al. [34] propose an expectation-maximization (EM) method
using image-level and bounding box annotation in a weakly-
supervised setting.

Object detection. MIL has also been applied to objection
detection where the instances are now image patches of
varying sizes, which are also referred to as sliding windows.
The space for storing all instances are enormous and proposals
are often used to limit the number of possible instances [35].
A lot of algorithms exist in this domain and we name a couple
here. Cinbis et al. [36] propose a multi-fold multiple instance
learning procedure, which prevents training from prematurely
looking at all object locations; this method iteratively trains a
detector and infers object locations. Diba et al. [37] propose a
cascaded network structure which is composed of two or three
stages and is trained in an end-to-end pipeline.

C. Weakly supervised learning in medical imaging
Weakly-supervised learning has been applied to medical

images as well. Yan et al. [38] propose a multi-instance deep
learning method by automatically discovering discriminative
local anatomies for anatomical structure recognition; posi-
tive instances are defined as contiguous bounding boxes and
negative instances (non-informative anatomy) are randomly
selected from the background. A weakly-supervised learning
approach is also adopted in Hou et al. [39] to train con-
volutional neural networks to identify gigapixel resolution
histopathology images.

Though being promising, existing methods in medical imag-
ing lack an end-to-end learning strategy for image-to-image
learning and prediction under MIL.

III. METHOD

In this section, we present in detail the concept and formu-
lation of our algorithms. First, we introduce our baseline algo-
rithm, a method in spirit similar to the FCN-MIL method [26]
but our method focuses on two-class classification whereas
FCN-MIL is a multi-class approach with some preliminary
results shown for natural image segmentation. We then discuss
the main part of this work, deep weak supervision for MIL
(DWS-MIL) and constrained deep weak supervision for MIL
(CDWS-MIL).

A. Our Baseline

Here, we build an end-to-end MIL method as our baseline
to perform image-to-image learning and prediction, in which
the MIL formulation enables automatic learning of pixel-level
segmentation from image-level labels.

We denote our training dataset by S = {(Xi, Yi), i =
1, 2, 3, . . . , n}, where Xi denotes the ith input image and
Yi ∈ {0, 1} refers to the manual annotation (ground truth label)
assigned to the ith input image. Here Yi = 0 refers to a non-
cancer image and Yi = 1 refers to a cancerous image. Figure
1 demonstrates the basic concept. As mentioned previously,
our task is to be able to perform pixel-level prediction learned
from image-level labels and each pixel is referred to as an
instance in this case. We denote Ŷik to be the probability
of the kth pixel being positive in the ith image, where
k = {1, 2, . . . , |Xi|} and |Xi| represents the total number
of pixels of image Xi. If an image-level predictions Ŷi can
be computed from all Ŷiks, then it can be used against the
true image-level labels Yi to calculate a loss Lmil. The loss
function we opt to use is the cross-entropy cost function:

Lmil =
∑
i

(
I(Yi = 1) log Ŷi + I(Yi = 0) log(1− Ŷi)

)
,

(1)
where I(·) is an indicator function.

Since one image is identified to be negative if and only
if there does not exist any positive instances, Ŷi is typically
obtained by Ŷi = maxk Ŷik, resulting in a hard maximum
approach. However, there are two problems with the hard
maximum approach: (1) It makes the derivative ∂Ŷi/∂Ŷik
discontinuous, leading to numerical instability; (2) ∂Ŷi/∂Ŷik
would be 0 for all but the maximum Ŷik, rendering the learner
unable to consider all instances simultaneously. Therefore, a
softmax function is often used to replace the hard maximum
approach. We use Generalized Mean (GM) as our softmax
function [14], which is defined as

Ŷi =

 1

|Xi|

|Xi|∑
k=1

Ŷ rik

1/r

. (2)

The parameter r controls the sharpness and proximity to the
hard function: Ŷi → maxk Ŷik as r →∞.
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We replace classifier C in Figure 1 with a fully convo-
lutional network (FCN) [23] using a trimmed VGGNet [40]
under the MIL setting. To minimize the loss function via back
propagation, we calculate ∂Lmil/∂Ŷik from ∂Lmil/∂Ŷi. By
the chain rule of differentiation,

∂Lmil
∂Ŷik

=
∂Lmil
∂Ŷi

∂Ŷi

∂Ŷik
. (3)

It suffices to know ∂Ŷi/∂Ŷik, whose analytical expression can
be derived from the softmax function itself. Once ∂Lmil/∂Ŷik
is known, back propagation can be performed.

In Figure 2, a training image and its learned instance-
level predictions are illustrated. Instance-level predictions are
shown as a heatmap, which shows the probability of each
pixel being cancerous. We use a color coding bar to illustrate
the probabilities ranging between 0 and 1. Note that in the
following figures, the instance-level predictions (segmentation)
are all displayed as heatmaps and we no longer show the color
coding bar for simplicity.

(a) training image (b) heatmap

Fig. 2: Probability map of an image for all instances. (a) Training image. (b) Instance-
level probabilities (segmentation) of being positive (cancerous) by our baseline algorithm.
The color coding bar indicates a probability ranging between 0 and 1.

B. Constrained Deep Weak Supervision.

After the introduction of our baseline algorithm that is an
FCN-like model under MIL, we are ready to introduce the
main part of our algorithm, constrained deep weak supervision
for histopathology image segmentation.

We denote our training set as S = {(Xi, Yi, ai), i =
1, 2, 3, . . . , n}, where Xi refers to the ith input image, Yi ∈
{0, 1} indicates the corresponding ground truth label for the ith
input image, and ai specifies a rough estimation of the relative
area size of the cancerous region within image Xi. The kth
pixel in the ith image is given a prediction of the probability
being positive, denoted as Ŷik, where k = {1, 2, . . . , |Xi|} and
there are |Xi| pixels in the ith image. We denote parameters
of the network as θ and the model is trained to minimize a
total loss.

Deep weak supervision. Aiming to control and guide the
learning process across multiple scales, we introduce deep
weak supervision by producing side-outputs, forming the mul-
tiple instance learning framework with deep weak supervision,
named DWS-MIL. The concept of side-output is similar to that
defined in [30].

Suppose there are T side-output layers, then each side-
output layer is connected with an accompanying classifier with
the weights w = (w(1), . . . , w(T )), where t = {1, 2, . . . , T}.
Our goal is to train the model by minimizing a loss between

output predictions and ground truth, which is described in the
form of the cross-entropy loss function l

(t)
mil, indicating the

loss produced by the tth side-output layer relative to image-
level ground truth. The cross-entropy loss function in each
side-output layer is defined as

l
(t)
mil =

∑
i

(
I(Yi = 1) log Ŷ

(t)
i + I(Yi = 0) log(1− Ŷ (t)

i )
)
.

(4)
The loss function brought by the tth side-output layer is
defined as :

l
(t)
side(θ, w) = l

(t)
mil(θ, w). (5)

The objective function is defined as:

Lside(θ, w) =
T∑
t=1

l
(t)
side(θ, w). (6)

Deep weak supervision with constraints. Our baseline
MIL formulation produces a decent result as shown in the
experiments but still with room to improve. One problem is
that the positive instances predicted by the algorithm tends
to progressively outgrow the true cancerous regions. Here
we propose to use an area constraint term to constrain the
expansion of the positive instances during training and we
name our new algorithm as constrained deep weak supervision,
abbreviated as CDWS-MIL.

A rough estimation of the relative size of the cancerous
region, ai, is given by the experts during the annotation
process. A measure of the overall “positiveness” of all the
instances in each image is calculated as

vi =
1

|Xi|

|Xi|∑
k=1

Ŷik. (7)

We then define an area constraint as an L2 loss:

lac = I(Yi = 1)
∑
i

(vi − ai)2. (8)

Naturally the loss function for the tth side-output layer can be
replaced by:

l
(t)
side(θ, w)← l

(t)
mil(θ, w) + ηt · l(t)ac (θ, w), (9)

where l(t)mil(θ, w) denotes the loss function generated in equa-
tion 4, l(t)ac (θ, w) is the area constraints loss, and ηt is a hyper-
parameter specified manually to balance the two terms. Then,
the objective loss function is still defined as the accumulation
of the loss generated from each side-output layer, which is
described in equation (6).

Fusion model. In order to adequately leverage the multi-
scale predictions across all the layers, we merge the side-
output layers with each other to generate a fusion layer. Ŷ (t)

side

is the predicted probability map at the tth side output layer.
The output of the fusion layer is defined as

Ŷfuse =

T∑
t=1

αtŶ
(t)
side, (10)

where αt refers to the weight deduced for the probability map
generated by the tth side-output layer.
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Fig. 3: Overview of our framework. Under the MIL setting, we adopt first three stages of the VGGNet and connect side-output layers with deep weak supervision under MIL.
We also propose area constraints to regularize the size of predicted positive instances. To utilize the multi-scale predictions of the individual layers, we merge side-outputs via a
weighted fusion layer. The overall model of equation (13) is trained via back-propagation using the stochastic gradient descent algorithm.

Then, the fusion loss function is given as:

Lfuse(θ, w) = l
(fuse)
mil (θ, w) + ηfuse · l(fuse)ac (θ, w), (11)

where l
(fuse)
mil (θ, w) is the MIL loss of Ŷfuse computed as

equation (4), l(fuse)ac (θ, w) is the area constraints loss of Ŷfuse
computed as equation (8), and ηfuse is a hyper-parameter spec-
ified manually to balance the two terms. The final objective
loss function is defined as below:

L(θ, w) = Lside(θ, w) + Lfuse(θ, w). (12)

In the end, we minimize the overall loss function by stochastic
gradient descent algorithm during network training:

(θ, w)
∗
= argminθ,wL(θ, w). (13)

To summarize, equation (13) gives the overall function to
learn, which is under the general multiple instance learning
with an end-to-end learning process. Our algorithm is built
on top of fully convolutional networks with deep weak su-
pervision and additional area constraints. The pipeline of our
algorithm is illustrated in Figure 3. In our framework, we
adopt the first three stages of the VGGNet and then the last
convolutional layer of each stage is connected to side-output.
Pixel-level prediction maps can be produced by each side-
output layer and the fusion layer. The fusion layer takes a
weighted average of all side-outputs. The MIL formulation
guides the learning of the entire network to make pixel-level
prediction for a better prediction of the image-level labels via
softmax functions. In each side-output layer, the loss function
lmil is computed in the form of deep weak supervision.
Furthermore, area constraints loss lac makes it possible to
constrain the size of predicted cancerous tissues. Finally, the
parameters of our network is learned by minimizing the ob-
jective function defined in equation (13) via back-propagation
using the stochastic gradient descent algorithm.

C. Super-pixels

Treating each pixel as an instance may sometimes produce
jagged tissue boundaries. We therefore alternatively explore
another option of defining instances, super-pixels. Using super-
pixels gives rise to a smaller number of instances and consis-
tent elements that can be readily pre-computed using an over-
segmentation algorithm [29]. Our effort starts with the SLIC
method mentioned in [29] to generate super-pixels by grouping
the input image pixels into a number of small regions. These
super-pixels act as our instances but our main formulation
stays the same as to minimize the overall objective function
defined in equation (13).

IV. NETWORK ARCHITECTURE

We choose the 16-layer VGGNet [40] as the CNN architec-
ture of our framework, which was pre-trained on the ImageNet
1K class dataset and achieved state-of-the-art performance
in the ImageNet challenge [41]. Although ImageNet consists
of natural images, which are different from histopathology
images, several previous works [42] have shown that networks
pre-trained on ImageNet are also very effective in dealing with
histopathology images. The VGGNet has 5 sequential stages
before the fully-connected layer. Within each stage, two or
three convolutional layers are followed by a 2-stride pooling
layer. In our framework, we trim off the 4th and 5th stages
and only adopt the first three stages. Side-output layers are
connected to last convolutional layer in each stage (see Table
I). The side-output layer is a 1 × 1 convolutional layer of
one-channel output with the sigmoid activation. This style of
network architecture makes different side-output layers have
different strides and receptive field sizes, resulting in side-
outputs of different scales. Having three side-output layers,
we add a fusion layer that takes a weighted average of side-
outputs to yield the final output. Note due to the different
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strides in different side-output layers, the sizes of different
side-outputs are not same. Hence, before the fusion, all side-
outputs are upsampled to the size of the input image by bilinear
interpolation.

TABLE I: The receptive field size and stride in the VGGNet [40]. In our framework, the
first three stages are used, and the bolded parts indicate convolutional layers linked to
additional side-output layers.

layer c1 2 c2 2 c3 3 c4 3 c5 3
rf size 5 14 40 92 196
stride 1 2 4 8 16

The reason for trimming the VGGNet. In histopathology
images, tissues appear as local texture patterns. In the 4th and
5th stages of the VGGNet, the receptive field sizes (see Table
I) become too large for local textures. Figure 4 shows side-
outputs if all 5 stages of the VGGNet is adopted. From the
figure, as the network going deeper, the receptive field size
increases and the side output grows to be larger and coarser.
In the 4th and 5th stages, the side-outputs almost fill the entire
images, which becomes meaningless. Thus we ignore the 4th
and 5th stages of the VGGNet in our framework, due to their
overlarge receptive field size.

(a) input (b) side1 (c) side2 (d) side3 (e) side4 (f) side5

Fig. 4: Side-outputs from 5 stages of the VGGNet. As the network going deeper, the
receptive field size increases and the side-output grows to be larger and coarser. In the
4th and 5th stages, almost all the pixels are recognized as positive, and then positive
areas almost cover the entire images. Therefore, we trim off the 4th and 5th stages in
our framework.

V. EXPERIMENTS

In this section, we first describe the implementation details
of our framework. Two histopathology image datasets are used
to evaluate our proposed methods.

A. Implementation

We implement our framework on top of the publicly avail-
able Caffe toolbox [43]. Based on the official version of Caffe,
we add a layer to compute the softmax of the generalized
mean for pixel-level predictions and a layer to compute the
area constraints loss from pixel-level predictions.

Model parameters. The MIL loss is known to be hard to
train, and special care is required for choosing training hyper-
parameters. In order to reduce fluctuations in optimizing the
MIL loss, all training data are used in each iteration (the mini-
batch size is equal to the size of the training set). The network
is trained with Adam optimizer [44], using a momentum of
0.9, a weight decay of 0.0005, and a fixed learning rate of
0.001. The learning rates of side-output layers are set to 1/100
of the global learning rate. For the parameter of the generalized
mean, we set r = 4.

Fusion layer. The fusion layer adopts the weighted average
of side-output layers. At the first attempt, we initialize all the
fusion weights to 1/3, and let the model learn appropriate
weights in the training phase. When the network converges,
we observe that the outputs of the fusion layer are very close
to the 3rd side-output layer, making the fusion results useless.
The reason for this outcome is that for the deeper side-output
layer, it has a lower MIL loss as a result of more discriminative
features. To resolve the problem, we use fixed fusion weights
instead of learning them. Based on cross-validation on training
data, the fusion weights are finally chosen as 0.2, 0.35, 0.45
for the three side-output layers, and a threshold of 0.5 is used
to produce segmentation results.

Weight of area constraints loss. The weight of the area
constraints loss is crucial for CDWS-MIL, since it directly
decides the strength of constraints. Strong constraints may
make the network unable to converge, while weak constraints
have a little help with learning better segments. To decide
the appropriate loss weight, we select a validation set from
training data to evaluate different options. The loss weights of
area constraints for the different side-output layers are decided
separately. To achieve this, when deciding the loss weight for a
side-output layer, only this layer has area constraints. Finally,
loss weights of 2.5, 5, 10, 10 are selected for the three side-
output layers and the fusion layer.

B. Experiment A
Dataset A is a histopathology image dataset of colon cancer,

which consists of 330 cancer (CA) and 580 non-cancer (NC)
images. In this dataset, 250 cancer and 500 non-cancer images
are used for training; 80 cancer and 80 non-cancer images
are used for testing. These images are obtained from the
NanoZoomer 2.0HT digital slide scanner produced by Hama-
matsu Photonics with a magnification factor of 40, i.e. 226
nm/pixel. Each image has a resolution of 3, 000×3, 000. Two
pathologists were asked to label each image to be cancerous
or non-cancerous. When the two pathologists disagree on a
particular image, they would discuss it with another senior
pathologist to reach an agreement. For the evaluation purpose,
we also ask the pathologists to annotate all the cancerous
tissues for each image, which are only used in testing to
evaluate our algorithms. For simplicity, in our table we use
CA to refer to cancer images and use NC to refer to non-
cancer images.

F-measure is used as the evaluation metric for experiments
on Dataset A. Given the ground truth map G and the pre-
diction map H , we define F-measure = (2 · precision ×
recall)/(precision+ recall) in which precision = |H ∩G|/|H|
and recall = |H ∩ G|/|G|. For images with label Y = 1,
the prediction map consists of pixels with 1 as the pixel-
level prediction, and the ground truth map is the annotated
cancerous regions. For images with label Y = 0, the prediction
map consists of pixels with 0 as the pixel-level prediction, and
the ground truth map is the entire image.

Comparisons. Table II summarizes the results of our pro-
posed algorithms and other methods on Dataset A. In all
experiments, images are resized to 500× 500 pixels for time-
efficiency. In MIL-Boosting, a patch size of 64×64 pixels and
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a stride of 4 pixels are used for both training and testing, and
other settings follow [16]. To show the effectiveness of area
constraints, we also integrate area constraints into our baseline,
denoted as “our baseline w/ AC” in the table. From the table,
DWS-MIL and CDWS-MIL surpass other methods by large
margins, and constrained deep weak supervision contributes
an improvement of 7.3% than our baseline method (0.835 vs
0.778). Figure 9 shows some examples of segmentation results
by these methods.

TABLE II: Performance of various methods on Dataset A.

Method F-measure of CA F-measure of NC
MIL-Boosting 0.684 0.997
our baseline 0.778 0.998
our baseline w/ AC 0.815 0.998
DWS-MIL 0.817 0.999
CDWS-MIL 0.835 0.997

Less training data. To observe how the amounts of training
data influence our baseline method, we train our baseline
with less training data. Table III summarizes the results, and
Figure 5 shows some samples of segmentation results that use
different amounts of training data. Given more training data,
the performance of segmentation is better. In the case of less
training data, the segmentation results tend to be larger than the
ground truth. This observation can be explained by analyzing
the MIL formulation. From the expression of the MIL loss,
identifying more pixels as positive in a positive image always
results in a lower MIL loss. With a smaller amount of negative
training images, it is easier to achieve this objective.

TABLE III: Performance of our baseline trained with less training data.

Training data F-measure of CA F-measure of NC
(Pos,Neg) w/o AC w/ AC w/o AC w/ AC
20% (50,100) 0.758 0.801 0.997 0.997
40% (100,200) 0.762 0.809 0.997 0.999
60% (150,300) 0.778 0.805 0.999 0.999
80% (200,400) 0.779 0.813 0.998 0.999
100% (250,500) 0.778 0.815 0.998 0.998

(a) input (b) gt (c) 20% (d) 40% (e) 60% (f) 80% (g) 100%

Fig. 5: Differences in results with different amounts of training data: (a) The input images.
(b) Ground truth labels. (c) Results that use 20% of training data. (d) Results that use
40% of training data. (e) Results that use 60% of training data. (f) Results that use 80%
of training data. (g) Results that use all the training data.

Area constraints. From Table III, the area constraints
enable our baseline method to achieve a competitive accuracy
with a small training set. Equipped with area constraints, our
baseline method using 20% of training data achieves better
accuracy than using all training data without area constraints.
Figure 6 shows some samples of segmentation results by using

and not using area constraints. It is clear that area constraints
achieve the goal of constraining the model to learn smaller
segmentations, which significantly improves segmentation ac-
curacy for both cancer images and non-cancer images. When
not using area constraints, the segmentation results are much
larger than the ground truth, and also have the tendency to
cover entire images. In contrast, when the area constraints loss
is integrated with the MIL loss, the fact that too many pixels
are identified as positive will yield a large area constraint loss
to compete with the MIL loss. To achieve a balance between
the MIL loss and the area constraints loss, it only learns the
most confident pixels as positive, as proven in Figure 6. Table
IV summarizes results of the baseline methods, DWS-MIL,
CDWS-MIL and MIL-Boosting using 20% of training data.
Comparing CDWS-MIL in Table IV with other methods in
Table II, CDWS-MIL outperforms other methods using only
20% of training data. In addition, constrained deep weak
supervision contributes an improvement of 8.2% over our
baseline method (0.820 vs 0.758), which is larger than the
condition that all training data are used.

TABLE IV: Performance of various methods with 20% training data.

Method F-measure of CA F-measure of NC
MIL-Boosting 0.635 0.995
our baseline 0.758 0.997
our baseline w/ AC 0.800 0.997
DWS-MIL 0.808 0.998
CDWS-MIL 0.820 0.998

(a) input (b) gt (c) w/o AC (d) w/ AC

Fig. 6: Comparison of using and not using area constraints: (a) The input images. (b)
Ground truth labels. (c) Results of our baseline. (d) Results of our baseline w/ AC. The
area constraints loss constrains the model to learn better segmentations.

Deep weak supervision. To illustrate the effectiveness of
deep weak supervision, Table V summarizes segmentation
accuracies of the different side-outputs and Figure 7 shows
some examples of the different side-outputs. From Table V,
we observe that segmentation accuracy improves from lower
layers to higher ones. Figure 7 shows pixel-level predictions
(segmentation) of side-output layer 1, side-output layer 2, and
side-output layer 3. This is understandable since the receptive
fields of CNN become increasingly bigger from lower layers
to higher ones. Histopathology images typically observe local
texture patterns. The final fusion layer that combines all the
intermediate layers achieves the best result.

Super-pixels. We conduct experiments to compare DSW-
MIL and DSW-MIL w/ super-pixel. We adopt the SLIC
method [29] to generate super-pixels. The average F-measures
of DSW-MIL w/ super-pixel on cancer images and non-cancer
images are 0.818 and 0.999, respectively. Figure 8 shows
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TABLE V: Performance of different side-output layers. The first line: DWS-MIL; The
second line: CDWS-MIL.

F-measure of CA F-measure of NC
side1 side2 side3 fusion side1 side2 side3 fusion
0.666 0.747 0.783 0.817 0.984 0.994 0.997 0.999
0.660 0.783 0.819 0.835 0.984 0.994 0.997 0.997

(a) input (b) gt (c) side1 (d) side2 (e) side3 (f) fusion

Fig. 7: Results of side-output layers: (a) The input images. (b) Ground truth labels. (c)
Results of side-output 1. (d) Results of side-output 2. (e) Results of side-output 3. (f)
Results by final fusion. The figure shows a nesting characteristic of segmentation outputs
from the lower side-output layer to the higher side-output layer. The final fusion balances
pros and cons of different side outputs, and achieves better segmentation results than all
of them.

some samples of the segmentation results of the two methods.
In histopathology images, super-pixels adhere well to tissue
edges, resulting in more accurate segmentations. The adoption
of super-pixels can help to predict more detailed boundaries.

(a) (b) (c) (d) (e)

Fig. 8: Comparisons of DWS-MIL and DWS-MIL w/ super-pixel: (a) The input images.
(b) Results generated by SLIC method [29]. (c) Ground truth labels. (d) Results of DWS-
MIL. (e) Results of DWS-MIL w/ super-pixel. Some detailed edges can be recognized
with the help of super-pixels.

Advantages of CDWS-MIL. MIL-Boosting in comparison
is a patch-based MIL approach. The bags in their MIL
formulation are composed of patches sampled from input
images. Figure 9 shows some samples of segmentation re-
sults of CDWS-MIL and MIL-Boosting, demonstrating that in
some cases (like the 2nd row in the figure), MIL-Boosting
completely fails to learn the correct segmentations, while
in other cases (like the 5th row in the figure), CDWS-MIL
and MIL-Boosting both learn roughly correct segmentations,
but CDWS-MIL learns much more elaborate ones. There
are three advantages of our framework CDWS-MIL over
MIL-Boosting: (1) CDWS-MIL is an end-to-end segmentation
framework, which can learn more detailed segmentations than
the patch-based MIL-Boosting; (2) Deep weak supervision
enables CDWS-MIL to learn from multiple scales, and the
fusion output balances outputs of different scales to achieve
the best accuracy; (3) Area constraints in CDWS-MIL are
straightforward, while being hard to be integrated into patch-
based methods like MIL-Boosting.

C. Experiment B

Dataset B is a histopathology image dataset of 30 colon
cancer images and 30 non-cancer images which are referred as
tissue microarrays (TMAs). The dataset is randomly selected
from the dataset in [16]. All images have a resolution of
1024×1024 pixels, and the rough estimations of the portion of
cancerous regions have 8 levels 0.05, 0.1, 0.15, . . . , 0.4. They
are annotated in the same way as Dataset A.

We conduct experiments to compare MIL-Boosting with our
proposed method CDWS-MIL on Dataset B. All experiments
are conducted with 5-fold cross-validation, and the evaluation
metric is the same on Dataset A. The average F-measures
of CDWS-MIL on cancer images and non-cancer images are
0.622 and 0.997, respectively. The average F-measures of
MIL-Boosting on cancer images and non-cancer images are
0.449 and 0.993, respectively. Figure 10 shows some samples
of the segmentation results of these two methods.

VI. CONCLUSION

In this paper, we have developed an end-to-end frame-
work under deep weak supervision to perform image-to-image
segmentation for histopathology images. To preferably learn
multi-scale information, deep weak supervision is developed in
our formulation. Area constraints are also introduced in a natu-
ral way to seek for additional weakly-supervised information.
Experiments demonstrates that our methods attain the state-
of-the-art results on large-scale challenging histopathology
images. The scope of our proposed methods are quite broad
and they can be widely applied to a range of medical imaging
and computer vision applications.
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“Slic superpixels compared to state-of-the-art superpixel methods,”
TPAMI, vol. 34, no. 11, pp. 2274–2282, 2012.

[30] S. Xie and Z. Tu, “Holistically-nested edge detection,” in ICCV, 2015,
pp. 1395–1403.

[31] Q. Li, J. Wu, and Z. Tu, “Harvesting mid-level visual concepts from
large-scale internet images,” in CVPR, 2013, pp. 851–858.

[32] X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu, “Max-margin multiple
instance dictionary learning,” in ICML, 2013, pp. 846–854.

[33] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level
labeling with convolutional networks,” in CVPR, 2015, pp. 1713–1721.

[34] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and
semi-supervised learning of a deep convolutional network for semantic
image segmentation,” in ICCV, 2015, pp. 1742–1750.

[35] J.-Y. Zhu, J. Wu, Y. Xu, E. Chang, and Z. Tu, “Unsupervised object class
discovery via saliency-guided multiple class learning,” TPAMI, vol. 37,
no. 4, pp. 862–875, 2015.

[36] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” TPAMI, vol. 39,
no. 1, pp. 189–203, 2016.

[37] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool,
“Weakly supervised cascaded convolutional networks,” arXiv preprint
arXiv:1611.08258, 2016.

[38] Z. Yan, Y. Zhan, Z. Peng, S. Liao, Y. Shinagawa, S. Zhang, D. N.
Metaxas, and X. S. Zhou, “Multi-instance deep learning: Discover
discriminative local anatomies for bodypart recognition,” TMI, vol. 35,
no. 5, pp. 1332–1343, 2016.

[39] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz,
“Efficient multiple instance convolutional neural networks for gigapixel
resolution image classification,” arXiv preprint arXiv:1504.07947, 2015.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” 2014.



11

[42] Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, and E. I.-C. Chang, “Deep con-
volutional activation features for large scale brain tumor histopathology
image classification and segmentation,” in ICASSP, 2015, pp. 947–951.

[43] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[44] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.


	I Introduction
	II Related Work
	II-A  Directly related work
	II-B Weakly supervised learning in computer vision
	II-C Weakly supervised learning in medical imaging 

	III Method
	III-A Our Baseline
	III-B  Constrained Deep Weak Supervision.
	III-C Super-pixels

	IV Network Architecture
	V Experiments
	V-A Implementation
	V-B Experiment A
	V-C Experiment B

	VI Conclusion
	References

