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Abstract

Features of high-risk coronary artery plaques prone to major adverse cardiac events (MACE) were 

identified by intravascular ultrasound (IVUS) virtual histology (VH). These plaque features are: 

Thin-cap fibroatheroma (TCFA), plaque burden PB≥70%, or minimal luminal area MLA≤4mm2. 

Identification of arterial locations likely to later develop such high-risk plaques may help prevent 

MACE. We report a machine learning method for prediction of future high-risk coronary plaque 

locations and types in patients under statin therapy. Sixty-one patients with stable angina on statin 

therapy underwent baseline and one-year follow-up VH-IVUS non-culprit vessel examinations 

followed by quantitative image analysis. For each segmented and registered VH-IVUS frame pair 

(n=6341), location-specific (≈0.5mm) vascular features and demographic information at baseline 

were identified. Seven independent support vector machine (SVM) classifiers with seven different 

feature subsets were trained to predict high-risk plaque types one year later. A leave-one-patient-

out cross-validation was used to evaluate the prediction power of different feature subsets. The 

experimental results showed that our machine learning method predicted future TCFA with 

correctness of 85.9%, 81.7%, and 77.0% (G-mean) for baseline plaque phenotypes of TCFA, 

thick-cap fibroatheroma, and non-fibroatheroma, respectively. For predicting PB≥70%, correctness 
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was 80.8% for baseline PB≥70% and 85.6% for 50%≤PB<70%. Accuracy of predicted 

MLA≤4mm2 was 81.6% for baseline MLA≤4mm2 and 80.2% for 4mm2<MLA≤6mm2. Location-

specific prediction of future high-risk coronary artery plaques is feasible through machine learning 

using focal vascular features and demographic variables. Our approach outperforms previously-

reported results and shows the importance of local factors on high-risk coronary artery plaque 

development.

Index Terms

Atherosclerosis; natural history; coronary artery disease; intravascular ultrasound; prognosis; 
machine learning

I. Introduction

Identification of patients at risk of major adverse cardiac events (MACE) is challenging but 

has an enormous medical impact [1], [2]. Trials as PROSPECT [3], VIVA [4] and 

ATHEROREMO-IVUS [5] found that high-risk plaques exhibiting thin-cap fibroatheroma 

(TCFA), plaque burden (PB) ≥ 70%, and/or minimal luminal area (MLA) ≤ 4.0 mm2 are 

predictors of MACE, as determined by virtual histology intravascular ultrasound (VH-

IVUS) [6]–[8]. Although systemic pharmacologic therapies (mostly statins) contribute to 

regression of coronary plaques [9], [10] (“Negative” panel in Fig. 1 (A), (D), (F)), high-risk 

plaques (such as TCFA [11], [12]) still remain (“Positive” panel in Fig. 1 (A), (D), (F)). 

Additionally, some less-advanced plaques continue to progress to more advanced high-risk 

plaques even under statin therapy (“Positive” panel in Fig. 1 (B), (C), (E), (G)). These 

residual and newly-occuring high-risk plaques remain responsible for MACE in the future. 

Early identification of locations, in which high-risk plaques will likely develop in the future, 

is highly desirable as it will enable patient-specific preemptive strategies (such as more 

intensive pharmacological treatment in high-risk patients or attempting focal plaque 

stabilization [13]) to avert MACE.

Coronary atherosclerosis is a dynamic process during which focal plaque undergoes 

progression, regression, or quiescence in an independent manner [14]. Such a dynamic 

behavior is influenced by many systemic factors and by local vascular factors. Utilizing in 

vivo vascular imaging tools including VH-IVUS and angiography, efforts have been 

undertaken to enable the prediction of treated or untreated outcomes of plaques by 

correlating local vascular factors to plaque progression and vulnerability [11], [12], [14]–

[17]. Only a very limited number of studies have reported successful prediction of high-risk 

plaques showing significant correlation between angiography-IVUS-derived features and 

TCFA outcome (healed or remaining) [11], [12]. Clearly, predicting whether, and if so, 

where high-risk plaques (TCFA, PB≥70%, MLA≤4mm2) will remain unchanged or will 

newly occur remains very challenging.

In order to learn how to prospectively predict high-risk plaques, frame-to-frame registration 

of baseline and follow-up VH-IVUS pullback data is necessary to facilitate location-specific 

quantitative comparisons between the two time points. Most previous studies assessed 

plaque progression in the entire lesions or over long vessel segments [3]–[5], [11], [12], 
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[14], in part because accurate frame-to-frame registration of IVUS pullbacks at two time 

points was not available [16]. Using such long coronary segments fails to reflect the focal 

nature of clinical events and leads to excessive averaging of focal plaque morphology/

composition indices [17]. Recently, we reported a highly-automated approach for frame-to-

frame registration of baseline and follow-up IVUS pullback pairs based on 3D graph-based 

optimization [18]. Validation on 29 IVUS pullback pairs demonstrated registration 

performance statistically identical to that of human experts [18], [19]. This registration 

method is employed here, enabling focal studies of coronary atherosclerosis development. 

Such focal character of high-risk plaques has not been previously investigated.

Historically, prediction of plaque progression relied on statistical modeling, such as logistic 

regression [14], [17], generating interpretable results but suffering from lower accuracy 

compared to algorithmic models employing large numbers of mutually interacting variables 

[20], [21]. Algorithmic modeling, or machine learning [20], [22] allows estimation of 

prediction accuracy via cross-validation. Machine learning has been effective in coronary 

plaque component classification [23], classifying plaque erosion against intact fibrous 

plaques [24], and predicting disease recurrence or survival [21]. We have previously 

demonstrated a potential of machine learning for predicting subsequent development of 

TCFAs [19], [25]. Therefore, we hypothesized that machine learning approaches applied to 

serial studies of multimodality intravascular imaging data and clinical characteristics from 

patients allow prediction of future high-risk plaque locations and types. Besides TCFA [19], 

[25], the current study enables the prediction of PB≥70% and MLA≤4mm2, provides more 

sophisticated methodology including prediction task splitting, uses new VH-IVUS-based 

features and brings more comprehensive evaluation considering several feature selection and 

imbalance learning techniques in a larger number of patients with more accurate frame-level 

registration.

II. Materials and Methods

A. Study Patients and Protocol

61 patients fulfilling inclusion criteria were selected from a database of 121 patients with 

stable angina pectoris enrolled in one of 2 studies comparing statin therapy for 

atherosclerosis progression (HEAVEN [26] and PREDICT (NCT01773512), Charles 

University Hospital, Prague, Czech Republic). Patients were treated with lipid lowering 

therapy ranging from bnormal intensityb to bhigh-intensityb to cover plaque behavior for the 

full range of treatment strategies. The inclusion criteria were: (1) R-wave gated VH-IVUS 

image pullback performed in a native coronary artery with angiographically-determined 

maximum stenosis ≤ 50% at baseline with no indication for either percutaneous coronary 

intervention (PCI) or coronary artery bypass grafting (CABG), (2) both baseline and follow-

up IVUS-VH pullbacks of good quality, without noticeable pullback speed discontinuity 

and/or extended regions of calcification shadowing preventing wall boundary detection, at 

least 30mm long, with at least 25mm of the arterial image overlap between baseline and 

follow-up pullbacks. The main motivation of choosing 25mm was not to lose too many 

baseline/follow-up pairs while having a long-enough arterial segment. Major reason for 

patient exclusion was missing data, including loss of follow-up, damaged/unreadable VH 
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data, and loss of ECG. Additionally, two patients were excluded after baseline/follow-up 

registration, since no corresponding vessel structures could ensure reliable registration. As 

such, 61 of 121 enrolled patients satisfied the inclusion criteria. The study protocol conforms 

to the ethical guidelines of the Declaration of Helsinki, was approved by the Institutional 

Review Board of Charles University, and all patients provided written informed consent.

IVUS imaging was performed using the phased-array probe (Eagle Eye 20MHz 2.9F 

monorail, Volcano Corporation, San Diego, CA), IVUS InVision console for the HEAVEN 

study and s5 console for the PREDICT study, InVision Gold software, and motorized 

pullback at 0.5mm/s (research pullback device, model R-100, Volcano Corporation) were 

used in all acquisitions. For each patient baseline/follow-up pair, the same IVUS console 

was used. After administration of 200μg of intracoronary nitroglycerin, the IVUS catheter 

was inserted into the target vessel beyond a distal fiduciary point and then pulled back to the 

aorto-ostial junction. The proximal fiduciary point was the left main bifurcation in the left 

coronary artery and the first branch or a well-defined calcification in the right coronary 

artery. Patients underwent repeated angiography with VH-IVUS of the same coronary artery 

after 8–14 months (mean: 12 ± 2.1 months).

B. Study Design

The overall design of training and use of the predictive classifier is shown in Fig. 2. Baseline 

and follow-up VH-IVUS pullback data are first segmented and mutually registered. The 

location-specific (frame-level) features and systemic/demographic information at baseline 

undergo feature selection [27], [28] to form an optimal feature subset. A set of Support 

Vector Machine classifiers [SVM] [29], [30] is trained to predict focal plaque type at follow-

up. To predict three high-risk plaque forms (TCFA, PB≥70%, MLA≤4mm2) at follow-up, 

seven binary classifiers are trained (Fig. 1):

• Three classifiers predict whether focal plaque types (1) TCFA, (2) thick-cap 

fibroatheroma [ThCFA], and (3) non fibroatheroma [nonFA] at baseline 

transition to TCFA plaque type or not at follow-up (Fig. 1 (A), (B), (C));

• Two classifiers predict the follow-up plaque burden PB≥70% or not for local 

plaques with (4) PB≥70% or (5) 50%≤PB<70% at baseline (Fig. 1 (D), (E));

• For plaques with (6) MLA≤4mm2 or (7) 4mm2<MLA≤6mm2 at baseline, two 

classifiers predict whether MLA≤4mm2 or not at follow-up (Fig. 1 (F), (G)).

In all cases, training and testing sets were disjoint in a leave-one-patient-out (LOPO) cross-

validation manner. Each of the 61 training/validation sessions had a different patient bleft 

outb resulting in a complete separation of training and validation at the patient level and 

allowing validation on a sufficiently large set b-classification success therefore assessed as 

average performance of these 61 independently trained classifiers.

C. Segmentation and Registration of Baseline and Follow-Up IVUS Pullbacks

Lumen and external elastic membrane (EEM) borders (surfaces) were automatically 

segmented in R-wave gated baseline and follow-up IVUS pullbacks using our fully three-

dimensional graph-search approach followed by a highly efficient interactive refinement step 
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[31]. The obtained lumen and EEM surfaces/contours were fed into Volcano’s offline VH-

IVUS computation software (Volcano Corp., San Diego, CA). A geometrically correct fully 

3D representation of the vascular wall surfaces was obtained using our validated two-plane 

angiography and IVUS data fusion [32]. This 3D model served as a basis for quantitative 

morphologic analysis and quantitative assessment of plaque composition in every frame of 

the imaged vessel.

Our validated IVUS pullback registration method established one-to-one correspondences of 

baseline and follow-up IVUS frame pairs by globally optimizing the registered B-mode 

image similarity in a geometrically feasible manner [18], [19]. To ensure high registration 

accuracy for frame-level prediction, we have added a step of semi-automated editing by 

expert cardiologist. Evaluation on 383 landmarks on 61 patients demonstrated an average 

registration error of 0.45mm±0.78mm. The registration produced 6,341 registered IVUS 

frame pairs (46 to 191 frame pairs per patient) with 0.23 to 0.70mm frame-to-frame 

separation distances between adjacent frames depending on the heart rate. Quantitative 

indices of plaque morphology and composition were computed in every frame of the 

registered pullbacks [33] and all registered frames (locations) including those labeled as no 

lesion (plaque burden < 40%) were included in the prediction experiment.

D. Location-Specific and Patient-Specific Feature Extraction

Two categories of features including location-specific features (m=236) and systemic 

information (m=18) [3], [14], [34] were extracted to be used for training the prediction 

classifier (Table I). The location-specific features further contain four sub-types including 

basic clinical measurements (m=21), first-order descriptors (m=9), plaque textures (m=16), 

layered plaque components (m=72), and spatial contextual features (m=118). Among them, 

basic clinical measurements reflect local vascular disease severity and/or plaque 

development [3], [6], [8], [35], others were inspired by feature descriptors successfully used 

in computer-aided diagnosis applications (first-order descriptors, plaque textures) [36], [37] 

or incorporated spatial information in circumferential and axial directions (layered plaque 

components, spatial contextual features).

1) Basic Clinical Measurements—Using quantitative assessment of VH tissue types 

and lesion classification description [3], phenotypes of all frames were automatically 

classified into 6 categories (Fig. 3): no lesion [NL], pathological intimal thickening [PIT], 

fibrous plaque [FP], fibrocalcific plaque [FcP], ThCFA, and TCFA, according to the 

definitions of American Heart Association’s Committee on Vascular Lesions [38]. Each 

phenotype was assigned a vulnerability score in the range 0–5 (NL score=0, PIT =1, FP =2, 

FcP =3, ThCFA =4, TCFA score=5) (Fig. 3) [34]. Confluent NC>10% and NC abutting the 

lumen>30° in at least 3 consecutive frames defined the TCFA category b same as in the 

PROSPECT study [3]. The cross-sectional areas (CSAs) and percentages of each plaque 

component (dense calcium [DC], necrotic core [NC], fibrofatty [FF], and fibrotic tissue 

[FT]) were determined for each frame. Considering that large NC component and existence 

of a thin fibrous cap <65μm indicate instability of plaque [39], three NC- and NC-lumen-

related features were introduced, i.e., percentage of the maximal confluent NC region, angle 

and size (number of pixels) of NC-region abutting the vessel lumen. IVUS-based 
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measurements of CSAs of lumen, EEM, plaque (defined as EEM minus lumen CSA), plaque 

burden (plaque divided by EEM CSA), remodeling index (current frame EEM divided by 

mean reference EEM CSA) [35] and distance to current frame (from the coronary ostium, as 

derived from the reconstructed 3D vessel model) [32] were obtained for all frame locations. 

The mean and standard deviation of plaque thickness (defined as the distance between lumen 

and EEM borders at 360 circumferential wedges centered at the lumen centroid) were 

calculated. Eccentricity (defined as the ratio of minimal to maximal plaque thickness) [35] 

was determined to quantify the asymmetric distribution of plaque.

2) First-Order Descriptors—To represent the first-order statistics of plaque, the 

grayscale intensity based mean, standard deviation, median, maximum, minimum, and mode 

values; and the intensity histogram based first, median, and third quartiles in the plaque 

region were calculated for each IVUS frame.

3) Plaque Textures—To describe the texture distribution of plaque, the gray level co-

occurrence matrix [40] was computed. The 4-color-coded VH map of plaque 

(DC/NC/FF/FT) was used as a quantization of gray levels within the plaque, and four 

directions (θ = 0°, 45°, 90°, 135°) were used to generate 4 VH level co-occurrence matrices 

(VHLCMs) for each frame. Note that only VH-pixels from the plaque regions were included 

in the construction of texture indices. Second-order statistical texture features including 

contrast, correlation, energy, and homogeneity were calculated from each VHLCMs. Fig. 4 

shows examples of extraction of plaque textures in TCFA.

4) Layered Plaque Components—To enable a more detailed examination of plaque 

components, a layered analysis of different plaque depths in circumferential direction was 

performed in wall rings with adaptive radii of 10%, 20%, ..., 90% distance between the 

lumen and EEM borders. Percentages of DC/NC/FF/FT in the 10%~90% inner and outer 

rings were calculated, and therefore 72 layered plaque components features were obtained 

for each plaque. Fig. 5 shows examples of analysis of layered plaque components in a 

remaining TCFA and a healed TCFA, in which the schema and resulting features of the 20% 

adaptive ring are shown.

5) Spatial Contextual Features—To incorporate spatial context between adjacent 

locations in axial direction and also to limit the impact of noise (e.g., potentially inaccurate 

frame-to-frame registration), we further extended the above four feature sets by computing 

the average values of features in the adjacent distal and proximal frames, resulting in 118 

spatial contextual features. An example is shown in Fig. 6, where the spatial context features 

(e.g., plaque phenotype context) reflect disease severity in adjacent locations/frames, which 

potentially indicate future development of plaques (e.g., ThCFA progression or not). This 

hypothesis has been validated in a preliminary fashion by our previous studies of TCFA 

prediction [19], [25], where the plaque phenotype context shows superior performance.

E. Feature Selection and Predictive Classification

With the above feature set, feature selection was performed to increase the predictor 

performance and provide better understanding of the underlying factors/features that 
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contribute to development of high-risk plaque. Specifically, features from the complete 

feature set (M=254) were ordered by a support vector machine recursive feature elimination 

(SVM RFE) method according to the discrimination ability of feature subset [27]. SVM 

RFE is an application of RFE using the weight magnitudes of features in SVM [29], [30] 

training as the ranking criterion, and is very effective for discovering/ranking informative 

features while overfitting is prevented [27], [36]. In our implementation, each feature was 

first preprocessed/normalized by subtracting its minimum and dividing the result by its 

maximum minus minimum, then linear SVMs (parameter C=1) were trained followed by the 

iterative chunk-based elimination approach [27] to produce a final feature subset of 50 

features. Because of the imbalance in the class labels in our study (e.g., 55 TCFA remained 

while 353 TCFA healed), a different error costs (DEC) method [41] was utilized in SVM 

training, in which the individual class weights in the SVM model were assigned to be 

inversely proportional to the imbalance ratio.

After obtaining the 50 best-ranked features, an incremental leave-one-patient-out (LOPO) 

cross validation with incrementally increasing numbers of features was repeatedly 

performed until all 50 features were considered. During SVM (linear kernel with C=1, as in 

SVM RFE) training, in order to account for the imbalance problems of our specific tasks, 

several different imbalanced data learning approaches [42] including random 

undersampling, DEC, synthetic minority oversampling technique (SMOTE), and SMOTE 

with different costs (SDC) were compared and the one that yielded the best performance was 

selected. The prediction performance including sensitivity (SEN), specificity (SPE), and the 

area under a receiver operating characteristic curve (AUC) were calculated and recorded 

after testing all n patients. In addition, as is widely accepted in class imbalance learning 

literature [42], G-mean metric ( ) was used to quantify 

the prediction accuracy. Finally, the feature subset with the highest AUC was chosen as the 

final feature set, and the final prediction rates were obtained. We chose AUC because it is a 

good measure of classifier’s average performance and is insensitive to data distribution 

(Section 4.2 in [42]). The feature selection and predictive model validation procedure is 

shown in Fig. 7. Note that other combinations of feature selection (minimal-redundancy-

maximal-relevance [mRMR] based on mutual information [43]) and classification methods 

(random forests, RF [44]; multilayer perceptron, MLP [45]) were also examined (section III-

D).

The prediction strategy was designed to predict the future type of plaque for each IVUS 

frame location. Considering that a usual TCFA definition requires TCFA-frame presence in 

at least 3 consecutive frames, a post-processing step adjusts the local TCFA type labeling 

accordingly [25]. To take the current clinical practice scenario into account, we generalize 

our frame-level prediction to lesion- and patient-levels. A lesion was defined as at least three 

consecutive IVUS frames with PB≥40% [3], and lesions were considered separate if there 

was ≥5mm segment with PB<40% between them [12]. A lesion-/patient-level prediction 

would be labeled as TCFA, PB≥70%, or MLA≤4mm2 only if at least 3 consecutive frames in 

a lesion/patient were predicted to be labeled as TCFA, PB≥70%, or MLA≤4mm2.

Zhang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III. Results

A. Prediction of TCFA vs. Non-TCFA

At baseline, 61 VH-IVUS pullbacks from the 61 enrolled patients exhibited 408 TCFA, 

1068 ThCFA, and 4865 nonFA locations. At follow-up, 55 (13.5%) TCFAs remained TC-

FAs, 36 (3.4%) ThCFAs and 33 (0.7%) nonFAs progressed to TCFAs. During this period, 

353 (86.5%) TCFAs healed (transformed to non-TCFA), while 1032 (96.6%) ThCFAs and 

4832 (99.3%) nonFAs did not progress to TCFA at follow-up (Table II). Note that the 

numbers of TCFA, ThCFA and nonFA reported here and also the PB and MLA in the 

following sections are per image frame. If per lesion, our assessments are actually 

comparable with previously reported values. For example, at follow-up, our assessment 

yields 19 TCFA lesions from 61 patients, comparable with 17 TCFA lesions from 99 

patients in Kubo et al.’s study [11].

Our models predict (1) TCFA, (2) ThCFA, and (3) nonFA plaque types at follow-up with 

high G-mean values of 85.9%, 81.7%, and 77.0%, respectively (sensitivities and specificities 

ranging from 63.6% to 93.3%, Fig. 8(A)), employing 16, 13, and 37 optimal-feature-

selection sets, respectively (Table III).

B. Prediction of Plaque Burden ≥70% vs. <70%

There were 206 (3.2%) locations of (PB) ≥70% at baseline. The total number of frames with 

PB≥70% at follow-up decreased to 173 (2.7%): 112 locations (64.7%) with PB≥70% at 

baseline and 61 frames (35.3%) with PB<70%, despite lipid-lowering therapy (Table IV). 

Frames with baseline PB<50% never progressed to PB≥70% at follow-up, so were not 

considered in our experiment.

Our models predict the plaque burden categories (1) PB≥70% and (2) 50%≤PB<70% with 

high correctness (G-mean) of 80.8% and 85.6%, respectively (sensitivities and specificities 

ranging from 77.7% to 85.9%, Fig. 8(B)), employing 26 and 25 optimal features, 

respectively (Table III).

C. Prediction of MLA≤4mm2 vs. >4mm2

There were 303 (4.8%) frames with MLA≤4mm2 at baseline, decreasing to 267 frames 

(4.2%) at follow-up: 177 frames (66.3%) maintained MLA≤4mm2 and 90 frames (33.7%) 

progressed to MLA≤4mm2 (Table V). Frames with baseline MLA>6mm2 never regressed to 

MLA≤4mm2 at follow-up, so were not considered in our experiment.

Our models predict the lumen area (1) MLA≤4mm2 and (2) 4mm2<MLA≤6mm2 at follow-

up with high G-mean values of 81.6% and 80.2%, respectively (sensitivities and specificities 

ranging from 77.0% to 86.4%, Fig. 8(C)), employing 27 and 18 optimal features, 

respectively (Table III).

D. Comparison with Other Feature Selection and Classification Methods

Table VI compares different feature selection and classification methods. For imbalanced 

data learning in mRMR+SVM and RF, random undersampling and DEC were compared and 
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the one yielding the best performance was selected. For MLP, random undersampling was 

used. The built-in RF feature selection was utilized in RF classification. The parameters of 

MLP and RF are listed in Table VI. We tested other settings in an earlier preliminary study, 

but they did not improve performance. Overall, the reported setup SVM recursive feature 

elimination + SVM classifier performed best.

E. Visualization of Future High-Risk Plaque Locations

Fig. 9 shows our prediction method determining locations of future high-risk plaques. The 

baseline risk-plaque properties and follow-up predicted risk-plaque properties (TCFA, 

PB≥70%, and MLA≤4mm2) are overlaid on the baseline VH-IVUS rendering in red, blue, 

and purple.

F. Lesion- and Patient-Level Prediction

At follow-up, there were 19 TCFA, 18 PB≥70%, and 22 MLA≤4mm2 lesions. The 

corresponding per-patient numbers were 19, 17, and 21. We obtained G-mean values for 

lesion-level correctness of 82.9%, 83.8%, and 90.0% for prediction of future TCFA, 

PB≥70%, and MLA≤4mm2, respectively (Table VII). The corresponding G-mean for 

patient-level prediction correctness were 78.6%, 81.2%, and 84.5%, respectively (Table VII).

IV. Discussion

This work represents a novel pilot effort to develop a high-risk-plaque prediction approach 

with substantial clinical relevance. Our predictive models represent the first and –to the best 

of our knowledge – the only highly automated method to predict future locations of high-

risk MACE-causing plaque properties (TCFA, PB≥70%, MLA≤4mm2) [3] with 

quantitatively assessed prediction performance. The only step that requires user interaction 

is the IVUS segmentation refinement, which only requires 6 minutes of expert time on 

average (note that the registration step would not be needed in clinical setting once the 

predictive models are trained). Location-specific prediction of the development and healing 

of high risk plaques expands on our previous effort to predict healing or development of 

TCFA alone [19], [25], yielding a more accurate prediction model.

A. Comparison with Other Studies, Advantage of Our Approach

Our study predicts future MACE-related plaques phenotypes (TCFA, PB≥70%, 

MLA≤4mm2) with high sensitivity and specificity, unlike previous studies [11], [12], [14], 

[16], [17], which focused on relationships between baseline predictors and plaque 

progression/regression. The proposed approach achieved a more precise and frame-location-

specific prediction (≈0.5mm) compared to the segment level (≈3mm) [14] or lesion level 

(≈10mm) [11], [12] locational accuracy. Therefore, our approach avoids analysis of 

heterogeneous changes of plaque phenotypes [11], [12], and excessive averaging over longer 

distances while using a larger patient cohort (n=61) compared to past studies with typically 

enrolled about 20 patients [16], [17]. Although nearly half of the enrolled patients were 

excluded in our study, most of the exclusion criteria (e.g., loss or unreadable follow-up data, 

co-registration problem) do not detract from the applicability of our method since only the 

baseline data will be needed for the prediction purpose in the clinical setting. Information 
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context from the immediately adjacent frames is contributing to our prediction model. As a 

justification of the use of this spatial context, our frame-level model with spatial context 

generalizes well on lesion- and patient-level prediction tasks (Table VII). Our work also 

provides an insight into local and systemic factors combined that influence plaque behavior 

over time. Finally, our method is general, as it can predict three different plaque-type 

characteristics by employing the same machine learning approach for all of these three tasks 

(DEC performs better than other imbalance learning techniques in almost all tasks, except 

for task 1 with a G-mean=85.1%, slightly lower than SDC with a G-mean=85.9%). This 

characteristic makes our approach easily extendible to other plaque development prediction 

tasks, such as prediction of longitudinal remodeling patterns or — once larger datasets 

become available — prediction of cardiovascular events. Equally important, while we have 

developed and evaluated our predictive models using data from patients with stable angina, 

our strategy is not limited to this patient group.

Previous research on TCFA prediction by our group treated the prediction of whether 

existing TCFA will remain, heal, or whether a new TCFA plaque will occur a single task 

[19], [25]. Such a strategy results in a nearly perfect accuracy for predicting that TCFA 

remains but a very low predictive accuracy for locations with healed TCFA. This is because 

the majority of future TCFAs originate from remaining TCFAs but only a small number of 

future non-TCFA are coming from healed TCFAs. With such imbalanced data, the classifier 

tends to learn a decision boundary close to the healed TCFAs (classifies most of the healed 

TCFAs as remaining TCFAs). Actually, accurate prediction of TCFA healing might be more 

important than TCFA remaining since the identification of high-risk individuals that would 

benefit from a pharmaceutical treatment is desired. Our new strategy splits the single task 

into multiple sub-tasks, which help balance the positive and negative samples and therefore 

yield a more accurate prediction.

The proposed learning method mainly relies on SVM. Besides its strong theoretical 

foundations [29] and efficiency in implementation, SVM is especially fit for our specific 

imbalanced data learning problems for the following reasons: (1) It builds the decision 

function based only on those instances that are close to the “borderline” (i.e., support 

vectors), thus naturally avoiding the influence of the large number of majority instances. (2) 

There are well-established imbalanced data learning approaches for SVM, i.e., the DEC and 

SDC are demonstrated to be more theoretically-correct and practically-effective [42] than 

undersampling, which was used in our previous study [19], [25]. (3) The SVM RFE based 

feature selection approach has built-in regularization mechanism that prevent overfitting in 

its selection of feature subsets [27]. Our experiments demonstrated that by incorporating 

DEC into the SVM RFE based feature selection process, the selected optimal feature sets 

performed best in all the seven prediction tasks in comparison with other two feature-

selection approaches (mRMR and RF, Table VI).

B. Factors Leading to Development of High-Risk Plaques

Feature selection (Table III) showed that different optimal feature sets are suitable for 

different prediction tasks. For each prediction task, about 23 features were selected for each 

predictor and these features varied across the classification tasks. While we started with a 
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large number (254) of features on 6341 images, the features were subjected to a feature 

selection step identifying the most discriminative feature subset for each given task. Feature 

selection resulted in a dramatic feature-set size reduction that preceded each training 

process. Consequently, the predictive classifiers always utilized a relatively small set of 

features (23 on average) thus minimizing the risk of overfitting. Similar ratio between 

images and features can be found in [36] when using SVM in medical imaging: 3443 CT 

images using 5–50 features.

There are 162 features involved in all the seven predictors. Out of these 162 features, 9.3% 

reflect basic clinical measures, 8.6% first-order descriptors, 11.7% layered plaque 

components, 7.4% plaque textures, 42.6% spatial contexts, and 20.4% systemic/

demographic information. The spatial context of plaque characteristics in adjacent IVUS-

frame locations indicates that the cumulative plaque-risk severity derived from adjacent 

locations at baseline potentially determines the development of future high-risk plaques in 

that location. We also observed that local vascular factors must be combined with systemic 

risk factors. On average, the prediction G-mean values obtained by our method with local 

factors only and systemic factors only are 73.2% and 68.8%, respectively. Combining local 

and systemic factors improves the G-mean-assessed performance to 81.8%. For example, 

half of the optimal features to predict whether TCFA will remain or heal come from 

systemic risk factors, including BMI, baseline total/LDL cholesterol, family history, 

hypertension, statins during baseline, ACE inhibitors, and age (Table III).

Kubo et al. [11] and Zhao et al. [12] found distance from ostium to lesion and lumen/vessel/

plaque CSA predictive at the lesion/segment level to predict whether TCFA will remain or 

heal. Interestingly, none of these features were identified as important in our image-frame-

based optimal feature set. By training an SVM classifier that was based on these four 

features only, the reached G-mean correctness was only 17.5% compared to 85.9% achieved 

using our method. There may be several reasons for this observation. First, Kubo et al. [11] 

and Zhao et al. [12] included patients with acute myocardial infarction while no such 

patients were enrolled in our study. Second, their lesion-level analysis over-averaged vessel 

features and plaque phenotypes, therefore, the derived significant features were not 

discriminative in our local-image-frame-level prediction. In addition, Kubo et al. [11] found 

no difference between baseline VH-IVUS plaque components for TCFA phenotypes that 

remained or healed at follow-up. In agreement with their findings, our optimal feature set 

did not include any traditional VH plaque components either. However, our five layered-

plaque component features contributed substantially, demonstrating the prediction value of 

tissue components distributed at different plaque depths.

When predicting changes in PB and MLA, Stone et al. [14] identified endothelial shear 

stress (ESS), MLA, PB, distance from ostium, and vessel remodeling as useful indices. 

While ESS was not included in our study, our feature-selection-based predictors employ all 

of these features except ostial distance. By training SVM classifiers based on the Stone-

identified features (except ESS), the G-mean values were 60.6%, 77.7%, 57.8%, and 68.7% 

for our tasks (4), (5), (6), and (7), respectively. In comparison, our G-mean values were 

unquestionably higher at 80.8%, 85.6%, 81.6%, and 80.1%, respectively.
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To demonstrate the effects of the newly designed VH-IVUS-based features (F22–F236, 

Table I), we compared the performance of our method with that of using only basic clinical 

measures and demographics & biomarkers (F1–F21, F237–F254, Table I). The G-mean 
values were: 75.0%, 80.5%, 85.9%, 76.0%, 82.0%, 72.9%, and 69.6%, from task (1) to task 

(7), respectively, or 77.4% on average. Adding the newly-designed features improves the 

average G-mean to 81.8%. These results clearly show that our feature-selection-based, 

algorithmically-designed features help improve predictive accuracy in this difficult plaque-

risk prediction task.

C. Limitations

Limited resolution of VH-IVUS does not allow direct measurement of thin fibrous caps 

(<65μm), and recent study questions the accuracy of the histological correlation of VH-

IVUS characterization [46]. Nevertheless, we have clearly demonstrated that VH-IVUS-

derived local plaque features combined with patient-specific systemic/demographic 

information can predict future high-risk plaques (VH-TCFA, PB≥70%, MLA≤4mm2) that 

may be later responsible for MACE [3]–[5]. Although our analysis uses nearly three-fold 

larger number of patients than other similar studies, the study size remains a limiting factor. 

Moreover, due to the lack of clinical follow-up, we are unable to directly assess MACE 

prediction. While our methodology utilizes one of the most advanced and accurate 

intravascular image co-registration approaches [18], it is still possible that co-registration 

may not be perfect. Having added the expert-approval of co-registration to the analysis 

sequence for each pullback minimized this limitation. In addition, our prediction model is 

based on relatively short-term follow-up (approximately one year) in lesions of moderate 

severity with all patients receiving high intensity statin agents. Furthermore, our current 

framework is not predicting MACE-associated quantitative indices as continuous variables, 

this remains a task for future work. Note however that our approach provides a continuous 

probability value of location-specific plaquebs future risk. Finally, our model reached a 

promising accuracy in prediction of future MACE indices and location-specific risk-plaque 

properties under LOPO evaluation only (a popular error estimation procedure when sample 

size is small); K-fold cross-validation and bootstrap method may be considered in future 

work.

V. Conclusion

Our machine-learning approach demonstrated that location-specific prediction of future 

plaque phenotypes related to MACE is feasible, thus improving risk stratification in patients 

with established coronary artery disease. The newly designed IVUS-VH-based features 

improve the prediction accuracy compared to only-employing clinical measures. The useful 

features mainly describe local vascular characteristics in spatial context (42.6%) and 

systemic/demographic information (20.4%). The SVM-based feature selection and 

imbalanced-data learning approaches predict high-risk plaque locations better than the 

previously clinical predictors and underline the importance of local factors on development 

of high-risk plaques.
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Fig. 1. 
Evolution of high-risk plaques, including progression, regression and quiescence of: (A), 

(B), (C) TCFA; (D), (E) PB≥70%; (F), (G) MLA≤4mm2. Plaque tissue compositions are 

color-coded by virtual histology: dense calcium [DC] (white), necrotic core [NC] (red), 

fibrofatty [FF] (light green), and fibrotic tissue [FT] (dark green). ThCFA: thick-cap 

fibroatheroma; nonFA: non-fibroatheroma.
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Fig. 2. 
Prediction of future high-risk plaque locations. Lumen shown in orange, plaque tissue 

composition color-coded by VH. Seven separate classifiers are trained to predict high-risk 

plaques.
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Fig. 3. 
Automated determination of VH-IVUS plaque phenotypes.
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Fig. 4. 
Baseline VH-IVUS images (first column), corresponding VHLCMs (second column), 

plaque textures (third column), and follow-up VH-IVUS Images (fourth column). (A) TCFA 

unchanged. (B) TCFA regresses to PIT. K: contrast, R: correlation, E: Energy, H: 

homogeneity.
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Fig. 5. 
Baseline VH-IVUS images (first column), inner (green) and outer (orange) rings (second 

column), layered plaque components (third column), and follow-up VH-IVUS images 

(fourth column). (A) TCFA unchanged. (B) TCFA healed (regressed to ThCFA, 20% ring 

used).
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Fig. 6. 
Spatial context features. A: ThCFA progressed to TCFA. B: ThCFA regressed to PIT. 

Bounding box color: red: TCFA, orange: ThCFA, green: nonFA. Context feature of plaque 

phenotype is shown in this example.

Zhang et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Feature selection and predictive model validation.
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Fig. 8. 
LOPO cross-validation results (frame-level). (A) TCFA vs. ThCFA vs. nonFA; (B) PB≥70% 

vs. PB<70%; (C) MLA≤4mm2 vs. MLA>4mm2. For imbalanced learning, SDC (SMOTE 

with different costs) and DEC (different error costs) have similar performance. Finally, SDC 

with 100% oversampling was used in baseline TCFA prediction, and DEC was used in other 

predictions.
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Fig. 9. 
Future high-risk plaque locations. Upper panel: Baseline VH-IVUS pullback with high-risk 

plaque risk locations (first row), predicted follow-up high-risk plaque locations (second 

row), and ground-truth at follow-up (third row). TCFA in red; PB≥70% blue; MLA≤4mm2 

purple. Lower panel: Cross-sectional VH-IVUS frames at the six locations marked in the 

upper panel. A: TCFA healed, PB≥70% unchanged, and new MLA≤4mm2 occurred. B: 

TCFA healed. C: TCFA healed. D: PB≥70% and MLA≤4mm2 unchanged. E: PB≥70% 

unchanged while new MLA≤4mm2 present. F: No high-risk plaque with plaque rupture at 

follow-up.
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TABLE I

Location-specific features and systemic information used in this study.

Local

Basic Clinical Measures (F1–F21) Plaque composition: Plaque phenotype, DC/NC/FF/FT [CSA], DC/NC/FF/FT [%], 
max. confluent NC, max. NC angle, # NC abutting. Plaque morphology: 
Lumen/EEM/PM [CSA], PB, remodeling index, distance to ostium, mean plaque 
thickness, std. plaque thickness, eccentricity.

First-Order Descriptors (F22–F30) Plaque grayscale intensity: mean, median, std., max, min, mode. Plaque intensity 
histogram: first, median, third quartiles.

Plaque Textures (F31–F46) Contrast, correlation, energy, homogeneity [θ = 0°, 45°, 90°, 135°].

Layered Plaque Components (F47–F118) DC/NC/FF/FT [%] in 10%~90% inner & outer rings.

Spatial Contextual Features (F119–F236) Average feature value of one adjacent distal and one adjacent proximal frames. 
Calculate for all F1~F118.

Systemic Demographics & Biomarkers (F237–F254) Age, gender, weight, BMI, family history, smoking history, current smoker, 
hypertension, diabetes, hyperlipidemia, pervious MI, beta-blockers, ACE inhibitors, 
previous statin treatment, total cholesterol, LDL cholesterol, HDL cholesterol, 
triglycerides.

DC: dense calcium; NC: necrotic core; FF: fibrofatty; FT: fibrotic tissue; BMI: body mass index; MI: myocardial infarction; ACE: angiotensin-
converting enzyme; LDL: low-density lipoprotein; HDL: high-density lipoprotein.
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TABLE III

Final feature subsets in the seven predictors.

Task (1): TCFA→TCFA vs. TCFA→nonTCFA (m=16)

LPC/0.2outerDC%C, SYS/BMI, SYS/bl-choltotal, SYS/family-history, SYS/hypertension, SYS/bl-cholldl, PT/contrast135C, SYS/statins, LPC/

0.5innerFF%C, FOD/modec, LPC/0.1outerDC%C, PT/energy0, SYS/acinhibitors, LPC/0.3innerNC%, SYS/age, LPC/0.6innerFT%C

Task (2): ThCFA→TCFA vs. ThCFA→nonTCFA (m=13)

PT/contrast135, LPC/0.2innerNC%, LPC/0.7innerNC%, PT/correlation45, LPC/0.6outerNC%C, LPC/0.2innerDC%C, LPC/0.3innerDC%C, 

BASIC/phenotypeC, FOD/mean, BASIC/DC-CSA, BASIC/#NC-abutting-lumen, SYS/BMI, SYS/statins

Task (3): nonFA→TCFA vs. nonFA→nonTCFA (m=37)

PT/homogeneity0C, PT/homogeneity90C, PT/homogeneity90, PT/homogeneity45C, PT/homogeneity45, BASIC/eccentricity, SYS/current-

smoker, BASIC/lumen-CSA, BASIC/NC-CSA, BASIC/PBC, SYS/bl-tag, PT/homogeneity135C, FOD/maxC, FOD/3rdQC, BASIC/mean-

plaque-thickness, LPC/0.8outerFT%, SYS/bl-cholldl, SYS/bl-choltotal, BASIC/confluentNCC, LPC/0.7outerDC%, BASIC/lumen-CSAC, 

BASIC/FT-CSA, FOD/1stQ, BASIC/PB, LPC/0.5innerFTC, LPC/0.2innerFFC, BASIC/mean-plaque-thicknessC, FOD/3rdQ, FOD/meanC, 

FOD/median, PT/contrast90C, LPC/0.1innerFT%C, SYS/acinhibitors, LPC/0.5outerFF%, SYS/BMI, FOD/mean, BASIC/max-NC-angle

Task (4): PB≥70%→PB≥70% vs. PB≥70%→PB<70% (m=26)

BASIC/PB, SYS/bl-cholldl, BASIC/PBC, SYS/hypertension, BASIC/NC-CSAC, BASIC/confluentNCC, LPC/0.1innerNC%, FOD/1stQ, 

BASIC/phenotypeC, SYS/current-smoker, BASIC/std-plaque-thickness, BASIC/lumen-CSA, FOD/medianC, LPC/0.8outerFF%, LPC/

0.2innerFF%C, SYS/bl-choltotal, SYS/bl-tag, BASIC/eccentricityC, LPC/0.1innerDC%C, FOD/mode, SYS/betablockers, LPC/0.1innerFF%C, 

BASIC/std-plaque-thicknessC, BASIC/max-NC-angleC, LPC/0.7outerDC%, LPC/0.9outerDC%C

Task (5): PB<70%→PB≥70% vs. PB<70%→PB<70% (m=25)

BASIC/lumen-CSAC, BASIC/mean-plaque-thicknessC, PT/energy135, FOD/std, BASIC/PB, BASIC/eccentricityC, LPC/0.7outerDC%, FOD/

3rdQ, BASIC/RIC, PT/correlation135, PT/energy90, PT/contrast45, PT/homogeneity90C, PT/contrast45C, LPC/0.6outerFT%C, SYS/age, SYS/

acinhibitors, FOD/modeC, BASIC/PBC, LPC/0.9outerFT%, PT/correlation90C, LPC/0.9outerFF%C, LPC/0.3innerFT%C, LPC/0.6outerNC

%C, SYS/statins

Task (6): MLA≤4mm2→MLA≤4mm2 vs. MLA≤4mm2→MLA>4mm2 (m=27)

BASIC/lumen-CSAC, PT/correlation0C, SYS/bl-cholhdl, LPC/0.1innerNC%C, LPC/0.1innerFT%C, SYS/acinhibitors, BASIC/confluentNCC, 

BASIC/lumen-CSA, LPC/0.5outerFF%, LPC/0.8outerNC%, SYS/hyperlipidemia, SYS/BMI, PT/correlation135C, FOD/1stQC, LPC/

0.1innerNC%, FOD/3rdQ, SYS/bl-cholldl, SYS/betablockers, LPC/0.5innerNC%C, FOD/mode, LPC/0.2innerDC%C, LPC/0.4innerDC%C, 

LPC/0.5innerFT%C, LPC/0.2innerDC%, LPC/0.4innerDC%, LPC/0.9outerNC%, PT/contrast90

Task (7): MLA>4mm2→MLA≤4mm2 vs. MLA>4mm2→MLA>4mm2 (m=18)

PT/energy0, FOD/std, FOD/1stQ, BASIC/lumen-CSA, FOD/min, LPC/0.8outerDC%C, BASIC/confluentNCC, LPC/0.1innerDC%C, LPC/

0.4innerDC%C, SYS/hypertension, PT/contrast90, SYS/bl-cholhdl, LPC/0.9outerNC%C, LPC/0.5innerDC%, BASIC/FF-CSAC, BASIC/PBC, 

PT/energy135C, LPC/0.2innerDC%

Features are denoted in the following notation: category/feature.

BASIC: basic clinical measures; FOD: first-order descriptors; LPC: layered plaque components; PT: plaque textures; SYS: systemic information;

C
: contextual features.
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TABLE IV

Plaque burden changes (frame-level).

Baseline

Follow-up

PB≥70% PB<70%

PB≥70% 206 (3%) 112 94

50%≤PB<70% 2391 (38%) 61 2330

PB<50% 3744 (59%) 0 3744

Total 6341 173 (3%) 6168 (97%)

Values are n or n (%).

PB: plaque burden.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 29

TABLE V

Lumen area changes (frame-level).

Baseline

Follow-up

MLA≤4mm2 MLA>4mm2

MLA≤4mm2 303 (5%) 177 126

4mm2<MLA≤6mm2 1324 (21%) 90 1234

MLA>6mm2 4714 (74%) 0 4714

Total 6341 267 (4%) 6074 (96%)

Values are n or n (%).

MLA: minimal luminal area.
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