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Abstract

Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the 

hemodynamic information throughout the brain. However, due to multiple 3-D image volume 

acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing 

concerns. To address this issue, in this paper, based on the robust principal component analysis 

(RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging 

procedure, we propose a new DCPCT image reconstruction algorithm to improve low dose 

DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-

representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For 

simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-

RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise 

components to describe the maximum temporal coherence of spatial structure among phases in a 

tensor framework intrinsically. Moreover, the low-rank component corresponds to the 

“background” part with spatial–temporal correlations, e.g., static anatomical contribution, which is 

stationary over time about structure, and the sparse component represents the time-varying 

component with spatial–temporal continuity, e.g., dynamic perfusion enhanced information, which 

is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-

T-RPCA) model which describes the 3-D block groups of the “background” in a tensor is also 

proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT 

images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using 

alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-

T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, 

preclinical monkey data, and clinical patient data clearly demonstrate that the two proposed 

models can achieve more gains than the existing popular algorithms in terms of both quantitative 

and visual quality evaluations from low-dose acquisitions, especially as low as 20 mAs.

Index Terms

Computed tomography; cerebral perfusion; tensor; sparsity; regularization
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I. INTRODUCTION

Dynamic cerebral perfusion computed tomography (DCPCT) imaging is a promising tool 

for acute stroke evaluation because DCPCT can visualize and quantify hemodynamic 

information of tissue and vessels [1]. In clinics, after bolus injection of a contrast agent, 

continuous scans of the brain in cine mode are performed, then using the acquired sequential 

enhanced images, the contrast intake curves (or equivalently, time density curves, TDCs) can 

be estimated. And according to central volume principle, the physiological data, which is 

typically displayed in perfusion maps, including cerebral blood flow (CBF), cerebral blood 

volume (CBV), and mean transit time (MTT), can be derived from the contrast intake curves 

[1]. However, because of multiple three-dimensional image volume acquisitions, DCPCT 

imaging imposes high radiation dose on the patients, which might increase the underlying 

risk of cancer [2]. Based on as low as reasonably achievable (ALARA) principle, the benefit 

versus-harm ratio should be carefully assessed for all cases and excessive radiation dose 

should be reduced. Therefore, minimizing the radiation dose in DCPCT imaging is a useful 

and interesting topic with ongoing research activities.

In general, there are two representative approaches to reduce the radiation dose in DCPCT 

imaging, i.e., reducing tube current and/or decreasing the number of projections [2]. 

However, the associated DCPCT images from current standard filtered back-projection 

(FBP) reconstruction algorithm would be degraded by unavoidable noise-induced artifacts, 

which could also influence the perfusion maps calculation accuracy. To address this issue, 

many dedicated DCPCT imaging methods have been proposed [3]–[17]. For example, one 

major category is to directly reduce the noise of DCPCT image reconstructed by the FBP 

algorithm, including the edge preserving spatial-temporal filters such as the anisotropic 

diffusion filter [3], the bilateral filter [4] and the non-local means filter [5], and the spatial-

temporal filters such as the highly constrained back projection (HYPR) filter [6] and the 

multiband filter (MBF), followed by the standard deconvolution algorithms, such as the 

singular value decomposition (SVD)-based algorithms [18]. These methods have shown a 

good capability to suppress both the noise of DCPCT images and perfusion maps to some 

extent, but they might result in spatial resolution loss because the noise in DCPCT is non-

uniform and the SVD-based deconvolution algorithms are also sensitive to the noise [19]. 

Another major category is to combine the stable deconvolution procedure with image noise 

suppression procedures in perfusion maps estimation, such as the spatial-temporal model 

[7], Bayesian probabilistic frame work [8], online dictionary learning approach [9], and total 

variation (TV)-based regularization [10], [11]. The phantom and patient studies 

demonstrated the ability of these methods on improving the residue functions estimation 

accuracy as well as the perfusion maps quality. Last major category is to obtain the high 

quality DCPCT images via the statistical iterative reconstruction (SIR) methods, and then 

the desired perfusion maps are estimated from these images via the existing deconvolution 

algorithms [12]–[17]. These methods have the capabilities of suppressing noise-induced 

artifacts in the desired images because the SIR methods incorporate both accurate CT 

system modelling and statistics modelling of projection measurements. Thus, high quality 

CT image reconstruction and robust perfusion maps estimation via the SIR method are one 

of the most potential strategies for low-dose DCPCT imaging.
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In this study, according to the robust principal component analysis (RPCA, or equivalently 

the low-rank plus sparsity decomposition) [20] and the DCPCT imaging procedure, we 

propose a new DCPCT image reconstruction algorithm to improve low-dose DCPCT images 

and perfusion maps quality via using a powerful regularization, called Kronecker-basis 

representation (KBR) tensor sparsity measure, for representing low-rank essence of a tensor. 

This measure has been very recently proposed, and been substantiated to be effective in 

multiple applications in computer vision. Similar to the RPCA model, the proposed model 

views the DCPCT sequential images as a mixture of low-rank and sparse components to 

describe the maximum temporal coherence of spatial structure among phases in a tensor 

framework intrinsically. For simplicity, the new model is called as the tensor-based RPCA 

(T-RPCA) model. Specifically, the low-rank component corresponds to the “background” 

with spatial-temporal correlations, e.g. static anatomical contribution, which is stationary 

over time about structure, and the sparse component represents the time-varying component 

with spatial-temporal continuity, e.g. dynamic perfusion enhanced information, which is 

approximately sparse over time [20], [21]. In the T-RPCA model, the tensor-based 

decomposition (i.e., Tucker decomposition [22] and CANDE-COMP/PARAFAC (CP) 

decomposition [23]) operator is utilized to describe “background” part of DCPCT image and 

the tensor total variation (TTV) is utilized to regularize the dynamic perfusion information 

in the DCPCT image. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-

RPCA) model which describes the 3D block groups of the “background” in a tensor is also 

proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the 

DCPCT images, i.e., nonlocal self-similarity and global correlation. Moreover, we present 

two effective iterative algorithms for the two models with a robust convergence result, 

respectively. In addition, we study the performance of two proposed algorithms on a digital 

brain perfusion phantom, preclinical monkey data and patient data in low-dose cases, 

especially as low as 20 mAs.

II. METHODS AND MATERIALS

A. DCPCT Imaging Model

As shown in Fig. 1, the DCPCT image volume can be viewed as a 4-order tensor where first 

three dimensions are about spatial and the forth dimension is about time. For simplicity, only 

a desired 3-order DCPCT object with T frames  ∈ ℝI1×I2×I3 (  = {xi, i ≤ T}) where xi 

represents the i-th two dimensional frame of the DCPCT images) is utilized. Without loss of 

generality, the relationship between the available 3-order DCPCT projection data y and the 

desired 3-order DCPCT images X can be expressed as follows:

(1)

where Ai denotes the system matrix and is assumed to be independent of the index i. Ni 

denotes the noise disturbance. In this study, the goal of DCPCT images reconstruction is to 

estimate the desired 3D DCPCT images X from the measured projections y via penalized 

weighted least-squares (PWLS) objective function, i.e.,
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(2)

where A represents a linear operator composed of system matrices {Ai}. W = diag{Wi}, 1 ≤ 

i ≤ T denotes the weighting matrix. Wi is the diagonal weighting matrix at the i-th frame and 

can be defined as , and  is a diagonal matrix.  is the element in the , 

representing the variance of the projection measurement yi at detector bin k. In this study, 

the variance  is determined based on our previous research [24].

In Eq. (2), R( ) denotes the penalty term which has the ability to integrate prior information 

in image reconstruction procedure. β is the penalty weight which controls the optimal 

solution of Eq. (2). In this study, the major contribution is to introduce two new spatial-

temporal models from the tensor perspective. The description of the two models will be 

discussed in Sec. II-B.

B. Tensor-Based RPCA Models

It is noted that the low-rank component of a 3D CT image tensor corresponds to the 

“background” with spatial-temporal correlations, e.g. static anatomical contribution, which 

is stationary over time about structure and its sparse component represents the time-varying 

component with spatial-temporal continuity, e.g. dynamic perfusion information, which is 

approximately sparse over time [20], [21]. Motivated by these observations, the 3-order 

tensor  can be intrinsically composed of low-rank component ℬ (i.e., the ideal static 

anatomical contribution), sparse component ℱ (i.e., the dynamic perfusion enhanced 

information) and noise disturbance N, which is defined as follows:

(3)

Accordingly, the DCPCT image reconstruction model can be defined as follows:

(4)

where λ and γ are the penalty weights. Ω1(ℱ), Ω2(ℬ) and Ω3( ) denote the penalty terms 

regularizing the prior information of the dynamic perfusion changes, static anatomical 

contribution and noise disturbance, respectively. Generally for the noise disturbance , 

Ω3( ) is specified as  where ‖·‖F denotes the Frobenius norm. Because the dynamic 

perfusion information is different and sparse over time, the tensor-based total variation 

(TTV) regularization [10] is introduced to model the ℱ, which can be defined as follows:
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(5)

where ∇ is the forward finite difference operator. ‖·‖1 denotes the l1 norm. As the static 

anatomical contribution is temporally correlated, in 2011, Gao et al. characterized the static 

anatomical component as low-rank matrix mathematically and utilized nuclear norm to 

penalize the rank of the specific matrix [20]. However, the low-rank formulation neglects the 

structure information among spatial dimension. One of the promising solutions is to utilize 

the tensor properties in the static anatomical component ℬ [21], [25]. In this study, two 

tensor-based models are introduced to describe the static anatomical component ℬ, i.e., 

Tensor-based regularization model and Nonlocal Tensor-based regularization model

1) Tensor-Based Regularization Model—Because both Tucker decomposition [22] 

and CP decomposition [23] contain insightful tensor sparsity, by integrating rational sparsity 

understanding elements from both decomposition forms, the low-rankness characteristic of 

the static anatomical component ℬ can be constructed by a powerful KBR measure, for 

measuring low-rankness extent of a tensor, which is proposed in [25]:

(6)

where  denotes the core tensor of ℬ in the Tucker decomposition. B(i) represents the mode-

i (1 ≤ i ≤ 3) unfolding matrix, and ζ is the penalty parameter controlling the tradeoff 

between two terms B(i) = unfoldi(ℬ). ‖·‖0 denotes the l0 norm. Compared with the 

conventional low-rank matrix model, the tensor-based regularization model fully introduces 

the spatial and temporal correlations within the static anatomical component ℬ. In addition, 

it is noted that the R(ℬ) in Eq. (6) takes both intrinsic sparsity existing in Tucker and CP 

decompositions into consideration, i.e., the first term constrains the number of Kronecker 

bases that describe the static anatomical component ℬ, and the second term physically 

represents the size of core tensor in the Tucker decomposition by penalizing the low-rank 

property along each tensor mode [25].

Therefore, by integrating the modeling of the dynamic perfusion changes Ω1(ℱ), static 

anatomical contribution Ω2(ℬ) in Eq. (6) and noise disturbance Ω3( ), the objective function 

in Eq. (4) can be written as follows:

(7)
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the model is referred as Tensor-based RPCA (T-RPCA) in the following sections.

2) Nonlocal Tensor-Based Regularization Model—It is noted that the use of image 

nonlocal (NL) self-similarity prior, referring to the fact that a local patch often exists many 

nonlocal similar patches to it across the image, has significantly enhance the processing 

performance [5], [26]. In general, the patch-based strategies applied on the 2D matrix can be 

extended to 3-order tensor. For a 3-order tensor patch , we can find a 

collection of 3-order tensor , (2 ≤ p ≤ P + 1) where P denotes the number of 

the similar patches) similar to , across the static anatomical component ℬ 
via K-nearest neighbor method after static anatomical contribution ℬ is segmented into 

many overlapped 3D patches and then cluster them into a 4-order tensor C i which can 

defined as follows:

(8)

Where C represents the operation that first extract all 3-order tensor patches similar to the 

selected one and then cluster the selected patch and all 3-order similar tensor patches into a 

4-order tensor. Therefore, the static anatomical component B can be penalized as follows:

(9)

where R(C i) reflects the priori knowledge of the i–th 4-order tensor C i. More details are 

listed in our supplementary material.

Therefore, by integrating the modeling of the dynamic perfusion changes Ω1(ℱ) same to 

these in the T-RPCA model, static anatomical contribution Ω2(ℬ) in Eq. (9) and noise 

disturbance Ω3( ), the objective function in Eq. (4) can be written as follows:

(10)

the model is referred as Nonlocal-Tensor-based RPCA (NL-T-RPCA) in the following 

sections.
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C. Optimization Approach

To minimize the objective function in Eq. (7), an alternating direction method of multipliers 

(ADMM) was specifically designe [27]. In particular, the T-RPCA model in Eq. (7) can be 

rewritten as follows:

(11)

where the factor matrices Ui(i = 1,2,3) denote orthogonal in columns. It is noted that the 

objective function in Eq. (11) can be solved by its Lagrangian dual form. Then its 

augmented Lagrangian function can be written as follows:

(12)

where , Λℬ and Λ  are the Lagrange multipliers and , ηℱ and η  are positive penalty 

scalars. The objective function in Eq. (12) can be solved with the ADMM framework, and 

the optimization sub-problem with respect to each variable can be solved by the following 

sub-problems:

1)  Sub-Problem—With respect to , the L( , , B(i), U(i), ℱ, ) can be solved as 

follows:

Zeng et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13)

It is obvious that Eq. (13) can be solved by the conjugate gradient algorithm, and the 

corresponding solution can be written as follows:

(14)

2)  and Ui Sub-Problems—With respect to  and Ui (i = 1,2,3), the L( , , B(i), Ui, ℱ, 

) can be solved as follows: (i)for :

(15)

where  is the log-sum norm of the vector, 

approximating the ‖ ‖0 [28]. After multiplying mode-i  on each mode, the solution of Eq. 

(15) can be written as follows:

(16)

where  wherein σ1=|ω|−τ2 and σ2 = (σ1)2 − 4(τ1 

− ε|ω|) [29].

(ii) for Ui : With respect to Ui, the L( , , B(i), Ui, ℱ, ) can be solved as follows:

(17)

Then, Eq.(17) can be transformed into as follows:
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where

(18)

According to Xie’s work [25], the solution of Eq. (18) can be written as , where 

 is the SVD decomposition of A1.

3) B(i) Sub-Problems—With respect to B(i), L( , , B(i), Ui, ℱ, ) can be solved as 

follows:

(19)

In this work,  is introduced to approximate rank (B(i)), 

where ρj(B(i)) is the j-th singular of B(i) [28]. Therefore, for B(1), Eq. (19) can be written as 

follows:

(20)

Where . According to Xie’s work [25], the solution of Eq.

(20) can be written as  where Σϑ = diag (Rϑ, ε(σi)), 1 ≤ i ≤ n and 

unfold .

4)  Sub-Problems—With respect to , the L( , , B(i), Ui, ℱ, ) can be solved as 

follows:
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(21)

Then Eq.(21) can be solved by soft shrinkage operator as follows:

(22)

where soft(b, k) = sgn(b).max(|b| − k, 0).

5) ℱ Sub-Problems—With respect to ℱ, L( , , B(i), Ui, ℱ, ) can be solved as 

follows:

(23)

According to the Cao’s work [21], the solution of Eq. (23) can be written as follows:

(24)

where fftn and ifftn indicate cast 3D Fourier transform and its inverse transform respectively. 

∇* denotes the adjoint of ∇.

In summary, the optimization algorithm for the T-PRCA algorithm can be presented as 

Algorithm 1. In the implementation, ζ and γ are set to be 2 and 0.1 for all the cases, and the 

other parameters, i.e., , ηℱ and η  were empirically set for different cases.

Algorithm 1

T-RPCA for DCPCT Reconstruction

Require: , , ζ, γ and the other parameters

Ensure: 

1: While the stopping criteria are not satisfied do

2: Update  using Eq. (14);

3: Update  and Ui using Eqs. (16) and (18);

4: Update B(i) using Eq. (20);

5: Update  using Eq. (22);

6: Update ℱ using Eq. (24);

7: Update the Lagrange multipliers.
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8: End while

Algorithm 1 can be slightly modified to solve the objection function of NL-T-RPCA model 

in Eq. (10). The major modification is that the solution to  and Ui sub-problems is replaced 

as follows:

(25)

Eq. (25) can be approximately solved by alternatively updating as follows:

(26)

(27)

(28)

(29)

(30)

where SVD(O, s) denotes top s singular vectors of matrix O and eigs(O, s) denotes top 

eigenvectors of matrix O.
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Algorithm 2

NL-T-RPCA for DCPCT Reconstruction

Require: , A, γ and the other parameters

Ensure: 

1: While the stopping criteria are not satisfied do

2: Update  using Eq. (14);

3: Update , U1i, U2i, U3 and U4i using Eqs. (16), (27), (28), (30) and (29);

4: Update B(i) using Eq. (20);

5: Update  using Eq. (22);

6: Update ℱ using Eq. (24);

7: Update the Lagrange multipliers.

8: End while

In summary, the optimization algorithm for the NL-T-PRCA algorithm can be described as 

Algorithm 2. In the implementation, γ are set to be 0.2 for all the cases, and the rank 

parameters, i.e., s1, s2, and s4 are set to be 10, 10 and 20, respectively. s3 are empirically 

tuned to achieve satisfactory performance for different cases. In addition, the size of tensor 

patch sm, sn and st, and the size of search window, the number of the similar patches P are 

determined by trying several combinations of parameters.

D. Comparison Methods

To validate and evaluate the performance of the two proposed tensor-based RPCA 

algorithms, analytical reconstruction with FBP algorithm, statistical iterative reconstruction 

with TTV regularization [10], tensor-based dictionary learning (TDL) regularization [30], 

and RPCA regularization [20] are carried out for comparison. Specifically, in the TDL 

algorithm, the number of atoms is set to be 2014, and sparsity is set to be 8. The hyper-

parameters in TTV, TDL and RPCA algorithms are empirically set for different cases.

III. RESULTS

A. Digital Brain Perfusion Phantom Study

Fig. 2 shows the digital brain perfusion phantom used in this study which consists of user-

defined regions of white matter, gray matter, penumbra, and stroke core [12]. We simulated 

the same phantom with the size of 256×256×40 as the previous work [11], which was 

designed to simulate a complex structure in real human brain. Specifically, a fan-beam CT 

imaging geometry was used in the simulation study, and the imaging parameters are set as 

follows: (1) each scan includes 1160 projection views evenly distributed over 2 π, (2) the 

number of channels per view is 672, and (3) the source-to-axis distance is 570 mm and the 

source-to-imager is 1040 mm. After the noise-free sinogram data ŷ, then noisy 

measurements z can be generated as follows:
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(31)

where z0 denotes the incident flux and set to be 6.88×104, 1.23×105, and 1.58×105 for 20 

mAs, 40 mAs, and 50 mAs, respectively.  denotes the electronic background noise 

variance and is set to be 11. Three noise levels related to the projection data acquired about 

20, 40 and 50 mAs at a fixed kVp were simulated.

Fig. 3 shows the reconstructed four representative DCPCT frames of the digital brain 

phantom at 40 mAs. The first column shows the noise-free images that are used as the 

reference. As visualized in the results, the FBP reconstructed images are corrupted by severe 

noise-induced artifacts, and the TTV reconstructed images have a non-uniform intensity 

distribution in the homogeneous area and some details are smoothed out. Although the TDL 

algorithm can suppress noise-induced artifacts to some degree, some details were still lost. 

Furthermore, the RPCA-based algorithms can provide significantly improved image quality 

from the FBP and TTV algorithms. Note that the infarct core and penumbra tissue regions 

can be clearly observed in the T-RPCA and NL-T-RPCA images, suggesting that the spatial 

resolution is well preserved.

To better demonstrate the advantage of the proposed T-RPCA and NL-T-RPCA algorithms 

over the other algorithms, Fig. 4 illustrates the quantitative assessment of the low-dose 

DCPCT reconstructed images in terms of global root mean squared error (RMSE) and global 

feature similarity (FSIM) index [31] measurements. From Fig. 4 (a), it can be seen that the 

proposed T-RPCA algorithms exhibit an average of more than 29.8%, 7.84% and 28.6% 

gains over the TTV, TDL and RPCA algorithms, and the proposed NL-T-RPCA algorithms 

exhibit an average of more than 51.5%, 25.8% and 50.0% gains over the TTV, TDL and 

RPCA algorithms, respectively. In Fig. 4 (b), the T-RPCA and NL-T-RPCA algorithms 

obtain remarkably larger FSIM measurements than other three competing algorithms in all 

frames, confirming the visual observations. To further compare the performance of the 

various algorithms, Fig. 5 shows the local normalized standard deviation (NSD) versus Bias 

tradeoff curves of low dose reconstructed DCPCT images for all the SIR algorithms wherein 

a homogeneous region of interest (ROI) with the penumbra 1 is selected. It can be seen that 

the proposed NL-T-RPCA algorithm followed by the proposed T-RPCA algorithm has the 

best NSD-versus-Bias trade-off.

To further validate the proposed T-RPCA and NL-T-RPCA algorithms for hemodynamic 

parameter maps estimation, the reconstructed DCPCT images are utilized to estimate the 

CBF maps using the image-based deconvolution algorithm [18], i.e., bSVD. Fig. 6 illustrates 

representative CBF maps calculated from the ground truth and low-dose DCPCT images 

reconstructed by the different algorithms, the universal quality index (UQI) measurements 

being given in Table I. All the SIR algorithms can suppress the serious noise-induced 

artifacts effectively and show more accurate CBF estimates than the FBP algorithm. 

Moreover, the proposed T-RPCA and NL-T-RPCA algorithms are able to estimate the actual 

CBF maps with greater accuracy than the other algorithms. More details are listed in our 

supplementary material.
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B. Preclinical Study

In this study, the preclinical monkey study was approved by the institutional clinical trials 

review and the institutional animal care and use committee. In the preclinical experiment, 

two male monkeys with the middle cerebral artery occlusion were carried on a DCPCT 

examination with a GE Lightspeed pro 16 CT scanner. The monkeys were scanned before 20 

mL iohexol (370 mgI/mL) was injected at 2 mL/second and then 98 second acquisition at 1 

rotation per second, with FOV of 18 cm×18 cm, tube voltage of 80 kVp, and tube current of 

200 mA. These acquired DCPCT data at high-dose were considered the reference standard 

for comparison to lower-dose DCPCT. To reduce radiation dose, instead of scanning the 

monkeys twice, we simulated the low-dose DCPCT data from these acquired DCPCT data. 

For low-dose DCPCT data, we simulate them from the reference standard using the 

simulation technique based on [11] which is similar to the simulation in Sec. III-A, and the 

noise levels related to the projection data acquired about 50 mA at a fixed kV p were 

simulated.

Fig. 7 illustrates the results from the preclinical monkey 1 data for different algorithms. The 

first row is the normal-dose DCPCT images used as the ground truth for evaluation. It was 

found that all the SIR reconstructed DCPCT images exhibit less noise-induced artifacts than 

the FBP results.

Fig. 8 shows the TDCs from the normal-dose DCPCT images and low-dose DCPCT images 

reconstructed by different algorithms. The selective ROI is indicated by red box in Fig. 7. It 

can be observed that the proposed T-RPCA and NL-T-RPCA algorithms show more accurate 

TDCs estimates than the other algorithms comparing with the ground truth.

In addition, Fig. 9 shows representative CBF maps from the normal-dose and low-dose 

DCPCT images reconstructed by different competing algorithms. From the results, it can be 

observed that the SIR-based algorithms have led to significant improvements in the CBF 

map quality. In particular, the proposed T-RPCA and NL-T-RPCA algorithms exhibit 

smaller relative l2-errors [32] in the estimated CBF in comparison to other algorithms, and 

the corresponding results are listed in Table II.

In this study, the preclinical monkey data can be used to calculate the blood-brain barrier 

permeability (BBBP) map that is a valuable indicator to predict hemorrhagic transformation 

in the acute stroke region. Fig. 10 shows the BBBP maps calculated from the normal-dose 

and low-dose DCPCT images reconstructed by the different algorithms. It can be seen that 

the clearly delineated signal with clear-cut edges in the two proposed tensor-based RPCA 

images are better that those from the other algorithms.

C. Clinical Patient Study

Under written consent, the projection data of five patients with brain deficits were acquired 

using a GE Discovery CT750 HD scanner with helical scanning mode, and these clinical 

data serve as a pilot clinical study. The patients were scanned before approximately 45 mL 
nonionic iodinated contrast was administered intravenously at 4 mL/second. The CTP 

protocol consisted of 27 volumetric acquisitions which started with a high dose acquisition 

at 200 mA, 5 s after contrast injection, followed by 26 scans every 0.4 s at 70 mA. The X-
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ray tube voltage was 80 kV p, and the tube current was about 28 mAs which was considered 

as low-dose scan in clinic.

Fig. 11 shows the reconstructed DCPCT images in four representative frames from the 

clinical patient 1 data for the different algorithms. From the results, it can be observed that 

the image noise is effectively suppressed by the SIR-based algorithms. It is worth 

mentioning that the proposed T-RPCA and NL-T-RPCA algorithms can achieve great noise 

suppression at the same time preserve detail information. More details are listed in our 

supplementary material.

To further qualitatively illustrate the clinic application of the CBF maps calculated from the 

reconstructed DCPCT images for the competing algorithms as shown in Fig. 12, 5 

experienced physicians are asked to score the low-dose CBF maps from 0 (worst) to 5 (best) 

in terms of the following attributes: image noise, artifacts, edge and structure, and stroke 

region estimation. In this work, the low-dose CBF maps estimated by all utilized comparison 

algorithms are displayed on the screen randomly, therefore, the test was a completely blind 

process for all the physicians. The corresponding physicians scores are listed in Table III. It 

is evident that the CBF maps calculated by the proposed T-RPCA and NL-T-RPCA 

algorithms compare favorably to the other algorithms in terms of visual inspection and 

subjective assessment scores. More details are listed in our supplementary material.

IV. DISCUSSIONS AND CONCLUSIONS

In clinic, the DCPCT images can be inherently represented as a superposition of 

“background” component, which is almost static over time, and a dynamic component, 

which is rapidly changing over time. The “background” component corresponds to high 

spatial-temporal correlations among frames which can be assumed to be low-rank (L), and 

the dynamic component is time-varying and spatial-temporal consecutive which can be 

assumed to be sparse (S) or transform-sparse [20], [21]. The L+S decomposition can be 

utilized to perform RPCA to recover the principal components of a data matrix with missing 

or corrupted entries [20]. Up to now, RPCA (or, equivalently the L+S decomposition) has 

been successfully applied to computer vision, such as video sequence [33], image alignment 

[34], and medical imaging [20]. To better take the spatial and temporal structure of 

“background” component into consideration more comprehensively, in this work, we extend 

matrix-based “background” component representation to the tensor-based “background” 

component representation, and then present two tensor-based RPCA models, i.e., T-RPCA 

and NL-T-RPCA, for low-dose DCPCT images reconstruction. The two proposed models 

are performed on the entire spatial-temporal DCPCT data, instead of each frame 

individually. In particular, the NL-T-RPCA model further considers the intrinsic 

characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global 

correlation, describing the 3D block groups of the “background” part in a tensor. To the best 

of our knowledge, this is the first study to investigate the impact of tensor-based RPCA 

model as applied to the DCPCT images for quantification of the TDC curves and CBF maps. 

The experiments are conducted with a digital brain phantom, preclinical monkey data and 

clinical patient data from low-dose acquisitions. Results of visualization and quantitative 

studies in Section III demonstrated that the two proposed tensor-based RPCA models work 
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remarkably better than the other algorithms in terms of several quality-measure-utility 

metrics used in low-dose cases, especially as low as 20 mAs.

In the two proposed tensor-based models, some parameters, i.e., hyper-parameters ζ and γ 
in the T-RPCA model, and the size of tensor patch sm, sn and st, and the size of search 

window, the number of the similar patches P, rank parameters s1, s2, s3 and s4, and hyper-

parameter γ in the NL-T-RPCA model, should be optimally selected to yield acceptable 

results. It should be noted that determining the optimal them for the proposed models is still 

an open question. In this study, we have adopted an empirical method to select the hyper 

parameters and rank parameters, choosing those presenting the best reconstruction 

performance over a broader range of possible values. Although this process might be time-

consuming, the parameters might be varied by the given dataset, and special care is 

necessary to select the right ones to obtain acceptable results, it needs to be undertaken only 

once for each target object, i.e., digital phantom, preclinical data, or patient data; and the 

same parameters can be used for subsequent studies with similar dynamic information. Of 

particular note is some strategies on automatic parameters selection of matrix completion 

might be applied to the proposed tensor-based models. In addition, the size of tensor patch 

sm, sn and st, and the size of search window, the number of the similar patches P are 

determined by trying several combinations of parameters. Shared with other SIR algorithms, 

combing with tensor-based operation, the two proposed tensor-based models are iterative 

and computational expensive, especially for the NL-T-RPCA model that includes the search 

of 3D similar patches and joint Tucker decomposition. The computational cost of the T-

RPCA and NL-T-RPCA algorithms were approximately 18.2 and 27.3 minutes in processing 

the digital brain perfusion phantom with the size of 256 × 256 × 40 at each iteration step. 

Fast computer with GPU-assisted implementation is expected to dramatically accelerate the 

associated computation for possible clinical practice.

The work suggests other interesting points meriting future study. In our study, all the cases 

are assumed no motion, indicting two consecutive scans should not differ significantly (i.e., 

only form noise), and therefore motion is of minimal concern. However, some involuntary 

motion may be sometimes unavoidable during vivo scanning. To address this issue, 

techniques should be developed to incorporate motion compensation along with the SIR 

framework to improve image quality further. In addition, the data were acquired from 

limited sample of patients and potential selection bias is unknown. Review of a clinical 

study with a variety of patients would be beneficial to demonstrate whether the proposed 

tensorbased models can be extended to a broader population. In the future, to improve the 

performance, the image-domain iterative deconvolution algorithm [9]–[11] can be 

introduced into the proposed tensor-based model framework to obtain better CBF maps.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the DCPCT imaging procedure.
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Fig. 2. 
Illustration for the digital brain perfusion phantom (a), and corresponding TDCs (b).
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Fig. 3. 
The noise-free images and low-dose CT images reconstructed by the different algorithms at 

time frames #1, #10, #30, and #40 at 40 mAs. All the images are displayed with the same 

window: [10 60] HU.
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Fig. 4. 
The global RMSE (a) and FSIM(b) measurements of the DCPCT images reconstructed by 

the different algorithms at 40 mAs.
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Fig. 5. 
The NSD versus Bias tradeoff curves of low-dose reconstructed DCPCT images for all the 

SIR algorithms at 40 mAs.
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Fig. 6. 
The CBF maps calculated by the bSVD algorithm from the different algorithms at 40 mAs. 

The unit is ml/100g/min.
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Fig. 7. 
The normal-dose DCPCT images and low-dose DCPCT images reconstructed by the 

different algorithms at time frames #1, #20, #60, and #90 from the preclinical monkey 1 

data. All the images are displayed with the same window: [800 1800]HU.
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Fig. 8. 
The TDC’s curve calculated from normal-dose DCPCT images and low-dose DCPCT 

images reconstructed by the different algorithms from the preclinical monkey 1 data.
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Fig. 9. 
The CBF maps calculated from all competing algorithms from the preclinical monkey 1 

data: (a) Normal dose; (b) FBP; (c) TTV; (d) TDL;(e) RPCA; (f) T-RPCA; and (g) NL-T-

RPCA. The unit is ml/100g/min.

Zeng et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
The BBBP maps calculated from all competing algorithms from the preclinical monkey 1 

data: (a) Normal dose; (b) FBP; (c) TTV; (d) TDL;(e) RPCA; (f) T-RPCA; and (g) NL-T-

RPCA. The unit is HU.
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Fig. 11. 
The clinical patient 1 data reconstructed by the FBP, TTV, TDL RPCA, T-RPCA and 

proposed NL-T-algorithms at time frames #1, #10, #15 and #26. All the images are 

displayed with the same window: [1000 1300] HU.
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Fig. 12. 
The CBF maps calculated from the low-dose DCPCT images from the clinical patient 1 data 

reconstructed by the different algorithms: (a) TTV; (b) TDL; (c) RPCA; (d) T-RPCA; and (e) 

NL-T-RPCA. The unit is ml/100g/min.
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