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Abstract

We present a direct (noniterative) algorithm for one dimensional (1-D) quadratic data fitting with 

neighboring intensity differences penalized by the Huber function. Applications of such an 

algorithm include 1-D processing of medical signals, such as smoothing of tissue time 

concentration curves in kinetic data analysis or sinogram preprocessing, and using it as a 

subproblem solver for 2-D or 3-D image restoration and reconstruction. Dynamic programming 

(DP) was used to develop the direct algorithm. The problem was reformulated as a sequence of 

univariate optimization problems, for k = 1, ···, N, where N is the number of data points. The 

solution to the univariate problem at index k is parameterized by the solution at k + 1, except at k 
= N. Solving the univariate optimization problem at k = N yields the solution to each problem in 

the sequence using backtracking. Computational issues and memory cost are discussed in detail. 

Two numerical studies, tissue concentration curve smoothing and sinogram preprocessing for 

image reconstruction, are used to validate the direct algorithm and illustrate its practical 

applications. In the example of 1-D curve smoothing, the efficiency of the direct algorithm is 

compared with four iterative methods: the iterative coordinate descent, Nesterov’s accelerated 

gradient descent algorithm, FISTA, and an off-the-shelf second order method. The first two 

methods were applied to the primal problem, the others to the dual problem. The comparisons 

show that the direct algorithm outperforms all other methods by a significant factor, which rapidly 

grows with the curvature of the Huber function. The second example, sinogram preprocessing, 

showed that robustness and speed of the direct algorithm are maintained over a wide range of 

signal variations, and that noise and streaking artifacts could be reduced with almost no increase in 

computation time. We also outline the application of the proposed 1-D solver for imaging 

applications.
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I. Introduction

Smoothing or denoising is a ubiquitous problem in one-dimensional (1-D) signal processing. 

This problem also finds applications in 2-D or 3-D as signal smoothing can be used as 

subproblem solvers for image restoration and reconstruction. Novel results on signal 

smoothing were recently published [1]–[4]: direct, noniterative solutions based on dynamic 

programming (DP) were proposed for 1-D signal smoothing with quadratic data fitting and 

total variation (TV) penalty. These DP-based solutions are effective for 1-D signal 

smoothing [1], [2]. When used as subproblem solvers, they also enable fast 2-D image 

processing [4], [5].

The TV penalty encourages piecewise constant signals and may not be suitable for some 

applications. One example is smoothing of tissue time concentration curves obtained in 

dynamic contrast-enhanced imaging. These signals, by their kinetic material exchange 

nature, are not piecewise constant but smooth with sharp transitions. Another example is 

sinogram smoothing [6], which preprocesses the sinogram before image reconstruction. The 

object can often be assumed to be piecewise constant, then the sinogram is smooth with 

sharp transitions at organ boundaries. Thus there is a need to consider alternative 

regularization functions that encourage such signal properties. We propose extensions of the 

previous results [1]–[4] for this purpose. Specifically, we consider quadratic data fitting with 

the Huber function instead of TV to penalize neighboring intensity differences.

The utility of the Huber penalty in imaging applications is extensive. It can serve as a 

generic edge preserving penalty [7]–[10], or as an approximation to the nondifferentiable 

TV penalty [11]–[13] to deal with the computation challenge, or as an effective means of 

reducing staircasing or the patchy artifacts of the TV penalty [14], [15]. These published 

works motivate the search for a dedicated solver for problems involving the Huber penalty. 

Our development is a first step in this direction.

The objective function we seek to minimize is:

(1)

where x ≜ {x1, ···, xN} is the unknown, N is the signal length, and {y1, ···, yN} is the noisy 

input signal. The weight, wk > 0, in the data fitting term is typically the inverse variance of 

the data yk. The penalty term involves the Huber function with parameter δ ≥ 0, namely

(2)

The parameter δ controls the transition between the quadratic region (|s| < δ) and the linear 

region (|s| ≥ δ). As δ tends to zero, H(·, δ) approaches the absolute value, |·|, so that problem 
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(1) becomes 1-D quadratic fitting with TV penalty, which was discussed in previous 

publications [1]–[4], except that here we further allow pixel-dependent weights in the data 

fitting term as well as in the penalty term, denoted as wk and βk > 0, respectively.

Iterative algorithms can minimize (1). Indeed, the performance of the direct TV algorithm 

[1] was compared with FISTA [16] as applied to the dual problem of 1-D TV smoothing. It 

is simple to derive that the dual problem to (1), for δk ≠ 0 as well as δk = 0, is a least squares 

problem with interval constraints. Then not only are the first order methods such as FISTA 

applicable, but also the second-order methods such as the active-set method [17]. Also, 

unlike the TV special case, the Huber penalty makes the (primal) objective (1) a smooth 
convex function, thus both the gradient descent and the coordinate descent algorithms can be 

applied. In fact, it can be shown that the Huber penalty is a special case of the smoothing 

technique in [18] for dealing with the nonsmooth TV term, so that the accelerated gradient 

descent (AGD) method [19] can be used to solve (1).

We emphasize that the existing algorithms to solve (1) are all iterative in nature. The number 

of iterations will depend on the parameters of the problem, i.e., βk, δk, and the required 

accuracy of a solution. In contrast, we propose in this work a direct, noniterative algorithm 

to compute the exact solution to (1), and we demonstrate using extensive numerical 

comparisons the algorithm’s high computational efficiency.

The rest of the paper is organized as follows. Sec II describes the solution to problem (1). In 

Sec III we introduce four methods (two for solving the primal problem, two for the dual) 

used for efficiency comparison. Sec IV presents numerical results of applying the direct 

algorithm to 1-D curve smoothing and sinogram smoothing. Sec V discusses potential future 

extensions of the 1-D algorithm, including pathways to 2-D (3-D) imaging applications. Sec 

VI concludes the paper.

II. A DP-based direct algorithm

Since the objective function (1) is strong convex, the existence and uniqueness of a global 

minimum is guaranteed. As mentioned earlier, we adopted a dynamic programming (DP) 

approach to find the minimum of (1). An overview of this approach is first given for readers 

who are not familiar with DP. Next, the solution and the associated algorithm are given in 

detail, including an analysis of the relationship with 1-D quadratic fitting with TV penalty,

A. Overview

DP transforms the problem of minimizing (1) into a sequence of (simpler) minimization 

problems [20], [21]. First, we introduce some short hand notation for convenience. Let the 

unary terms in (1) be Ek(xk) ≜ wk(yk − xk)2/2, and Hk(xk − xk+1) ≜ H(xk − xk+1, δk), 

Expanding all terms in (1), we have
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(3)

Since x1 only appears in the first two terms of (3), its influence on the solution can be 

summarized by defining a new function, Φ2, where

(4)

Due to the interaction between x1 and x2 from the Huber function, the solution to (4), , 

depends on x2 and so does the function value Φ2. We can use (4) to eliminate all occurrences 

of x1 in (3), which becomes

(5)

Doing so, we have reduced the original N-variable minimization problem of equation (3) to 

a minimization problem with N − 1 variables. This procedure can be repeated by introducing

(6)

for k = 1, ···, N − 1, each time reducing the problem size by one. For consistency, we let 

Φ1(x1) ≡ 0 in (4). At the last step, we have the following univariate minimization problem

(7)

Thus the solution to (3) is equivalent to solving (a) the sequence of univariate minimization 

problems in (6), whose solution depends on the “future” variable xk+1, and (b) the terminal 

problem, (7). Both (a) and (b) admit closed-form solutions because the minimization 

problems only involve piecewise quadratic convex functions. This claim can be established 

by induction after studying the solution to (6).
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B. Solution to (6)

To reduce notation clutter, we first rewrite (6) as the following generic problem, which omits 

dependence on k:

(8a)

(8b)

The unary function E(s) ≜ w(y − s)2/2 is quadratic. We also define Q(s) ≜ Φ(s) + E(s), and 

implicitly H(·) ≡ H(·, δ).

It is easy to see that if Φ(s) is convex, then Ω(s, t) is (strongly) convex in (s, t). From convex 

analysis, Ψ(t) in (8a) is convex in t; see e.g. [22, page 51] or [23, page 87]. Also, there exists 

a unique minimizer s* such that

(9)

Note that s* is a function of t, but this dependence is not written explicitly.

Assume for now that Φ is continuously differentiable, convex, and piecewise quadratic with 

a finite number, B, of knots. Its gradient, ϕ, is then piecewise linear, continuous, and non-

decreasing, which implies that ϕ is fully characterized by its knots: ( ), i = 1, ···, B. 

That is,

Let the gradient of Q(s) be q(s), then q(s) is also piecewise linear and continuous with knots 

at locations  and , i = 1 ··· B. Moreover, q(s) is increasing and 

unbounded, i.e., q(s) → −∞ as s → −∞, and q(s) → ∞ as s → ∞. Similar to ϕ(s), the 

value of q(s) at any s can be obtained using a linear interpolation formula.

The solution (9) satisfies

(10)

where h(·) is the gradient of the Huber function (2), i.e.,
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Note that, as with H(·), the dependence of h on δ is not written explicitly in this section. 

Since h is bounded between ±1, q(s*) ∈ [−β, β] in (10). As q(s) is piecewise linear, strictly 

increasing, and unbounded, there exists s− and s+, and s− < s+, such that

(11a)

(11b)

and s* ∈ [s−, s+]. Whereas s* depends on t, s− and s+ are independent of t since they are 

determined by q(s) only.

A closed-form expression for s* can be obtained by considering t in three cases as illustrated 

in Fig. 1.

1. If t − δ ≥ s+, then s* = s+. As s* remains a constant, and s+ − t ≤ −δ, Ψ(t) = Q(s+) 

+ βH(s+ − t) is a linear function of t with gradient equal to β.

2. If t + δ ≤ s−, s* = s− and Ψ(t) = Q(s−) + βH(s− − t) is linear in t, with gradient 

equal to −β.

3. If s− − δ < t < δ + s+, then s* ∈ (t − δ, t + δ), and q(s*) ∈ (−β, β). Thus, the 

Huber function operates in the quadratic region, and s* satisfies [Fig. 1(c)]

(12)

which is equivalent to

(13a)

(13b)

Given the properties of q, s* is a piecewise linear, continuous and increasing 

function of t; and the knots of s* are at positions
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(14)

Now we evaluate

(15)

using its gradient ψ(t). By the chain rule,

(16)

Since ∂Ψ/∂s* = 0 from (12), we have

(17a)

(17b)

Thus ψ(t) is a piecewise linear, continuous and increasing function of t with 

knots at  (14). As t increases from s− − δ to s+ + δ, ψ(t) increases from −β to β. 

Combining (17a) with (14), we get the gradient value at the knots:

(18)

(18) and (14) characterize the piecewise linear ψ(t).

Summarizing key points from all three cases, we have s* = s− when t ≤ s− − δ and s* = s+ 

when t ≥ s+ + δ; otherwise, s* is a piecewise linear function of t. Correspondingly, Ψ(t) is 

linear for t ≤ s− − δ and t ≥ s+ + δ, and piecewise quadratic otherwise. Also, Ψ(t) is 

continuously differentiable and convex. Its gradient ψ(t) is bounded below by −β and above 

by β; otherwise it is piecewise linear and continuous. Combine (13) and (17), we have

(19)

Thus ψ(t) is obtained by clipping q(s) at ±β, and relabeling the axis (and the knots) 

according to (19), a stretching operation anchored at the point s0 where q(s0) = 0. These key 
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points are depicted in Fig. 2. Further, If ϕ(s) has B knots, then ψ(t) has at most B + 2 knots, 

two of which are at (s− −δ, −β) and (s+ + δ, β), whereas the others, ( ), are 

transferred from the knots ( ) by (14) and (18).

C. Algorithm description

The analysis of Sec II-B can be repeatedly applied to (6), by making the substitutions for 

each k = 1, ··· N − 1.

starting from Φ1(·) ≡ 0 which is continuously differentiable, convex, and piecewise quadratic 

with a finite number of knots. We also define  and qk(xk) such that

Thus, for all k = 1, ···, N, Φk is a continuous, convex, and piecewise quadratic function, 

whose gradient is bounded between [−βk, βk] and piecewise linear with knots 

( ).

The DP-based algorithm consists of two sweeps, a forward sweep that builds the list of knots 

( ), k = 1, ··· N, as the sequence continues, and a backward sweep to trace back 

values of , k < N once  is obtained at the end of the forward sweep. Now we discuss in 

more detail the two sweeps.

Assume we know ( ), which are the knots for ϕk(xk). We obtain 

( ) by applying two steps to the knots of ϕk(xk), (1) trimming and (2) 

transfer, and by inserting two knots coming from qk(s) = ±βk. In the trimming step, we 

identify and retain the knots of ϕk(xk) for which  yields qk(s) = ϕk(s) + wk (s − yk) ∈ 
(−βk, βk), see Fig. 3. In the transfer step, we use (14) and (18) to transfer the retained knots 

 to , and  to , and also copy the knot’s function value  to 

.

At k = N, we need the solution to (7), i.e.,  such that . 

Since qN(·) is piecewise linear, continuous and increasing, we can obtain the exact  by 

searching for the zero-crossing linear section of qN(xN) and linear interpolation. We will also 

need  to initiate the backtracking process, which is obtained as 

.
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Once  is obtained, we trace back values , k = N − 1, ··· 1 following the three cases in 

Sec II-B.

1. If , then , and since  we 

have

(20)

2. If , then , and since , 

we have

(21)

3. If , then from (17)

(22)

(23)

To summarize, the backtracking of  is

(24)

where . We recursively apply (24) until k = 1. At the same time, we 

also need to calculate .

D. A special case: TV smoothing

When δk = 0, (1) reduces to 1-D smoothing with quadratic data fitting and a TV penalty. 

This special case simplifies the analysis and algorithm implementation as there is a simpler 

relation for the knots transfer. Considering δk = 0 and Fig. 1, we need to make some 

adjustment to the analysis in Sec II-B as follows.

1. If , then ,
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which is linear with slope βk.

2. If , then , and

which is linear with slope −βk.

3. If , then  as this value gives  and 

, where ∂|· −xk+1| is the subgradient of the absolute 

value function evaluated at . As , we have

(25)

From (25), the knot locations of Φk+1(xk+1) are exactly those of Φk(xk), i.e., 

.

Summarizing all three cases, the solution  is again a piecewise linear function of xk+1, but 

it contains exactly 3 linear sections: (1) , (2) , and (3) . Using Fig. 

2(a) as a reference, the complicated multi-section middle portion is compressed to overlap 

with the diagonal line s = t as δ → 0. This observation has implications for the difference in 

the worst case memory cost and computational complexity between the Huber penalty and 

the TV penalty.

During the forward sweep, we build the list of knots by

(26)

(27)

and by inserting the two incoming knots at  and . Note that (26) can be obtained from 

(14) by setting δk = 0, and (27) is the same as (18).

To obtain the solution, we need all knots of ϕN (xN) to search for  such that 

. Afterwards, tracing back values , for k = N − 1, ···, 1 

is much simpler as we have
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(28)

This special case discussion is in essence Algorithm-1 in [2], except that here we consider 

weighted data fitting terms and possibly pixel-dependent TV parameter βk.

Comparing (28) and (24), we notice that by setting δk = 0 in (24), the DP algorithm for the 

Huber penalty immediately reduces to the DP algorithm for TV penalty. This was used to 

generate the numerical results that are based on TV in Sec IV.

E. Implementation, memory and computational cost

One way to implement (24) is to combine it with (20),(21) and (23). To do this, we need to 

keep track of (a) the set of knots ( ) at k = N for searching , and (b) the 

boundary values,  and , for k = 1, ··· N − 1. In the worst case, the number of knots 

grows linearly in k. Thus the worst case memory requirement for implementing (24) is 

O(N), the same as for the TV penalty [2], [4].

However, we have observed that the implementation just described is not always numerically 

stable, especially for large values of δk. A possible reason can be inferred from the recursion 

(23) as follows. Combine (22) with (23) to eliminate , then (23) is equivalent to

(29)

In (29), the multiplicative factor of  is larger than 1 for δk > 0, thus any round-off 

error of  will grow as k decreases, which appears consistent with our 

observations.

To avoid the numerical stability issue, we did not use (23) to back-track . Instead, 

after obtaining  using (22), we use linear interpolation to calculate  from the knots 

locations ( ). This method was numerically validated to be stable and was used 

to produce all results in this paper. But this numerical stability comes at a memory cost. 

Instead of the worst case O(N) memory cost, we now have a worst case O(N2) memory cost, 

corresponding to keeping all knots in memory: ( ) for all k = 1, ··· N. For TV 

smoothing, since δk = 0, and since the recursion (28) does not need to keep track of , 

this issue of numerical instability does not exist.

In practice, as we only need to consider the range  for which qk(xk) ∈ [−βk, 

βk], the number of knots does not necessarily increase with the sequence length (the 

trimming step, Fig 3). Thus, the empirical memory cost will be usually much smaller than 

Xu et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



O(N2). For instance, the maximum number of knots (for all k) in the example of Fig. 4 was 4 

even though N = 400.

Now we discuss computational cost. Defining an operation as either a multiplication, an 

addition, or a comparison, we estimate the computational cost to be O(Σk Bk), where Bk is 

the number of knots at each index k = 1, …, N. This is independent of the method used to 

back-track . In the worst case when Bk grows linearly, the cost can thus be O(N2). 

However, just as with the memory cost discussion, in practice, Bk may often remain small 

and essentially independent of N, as observed in our numerical studies, in which case the 

effort becomes O(N).

III. Methods for comparison

In Sec IV-A, our direct algorithm is compared with four iterative methods for efficiency 

evaluation. Two methods were used to solve the primal problem, namely iterative coordinate 

descent (ICD) and Nesterov’s accelerated gradient descent (AGD) [19], and two for the dual 

problem. When δk > 0, ∀k, the objective function (1) is convex and smooth, thus both ICD 

and accelerated gradient algorithms converge to the global minimum [24], [25]. To apply 

Nesterov’s method, the Lipschitz constant of the gradient of the objective (1) was estimated 

as Lp = ||{w}d + DT {β/δ}dD||2, where

(30)

(31)

and D is the finite difference operator, i.e.,

(32)

for x = {x1, ···, xN}. We point out that the smaller the smoothing constant δ (if δk = δ > 0), 

the larger the Lipschitz constant Lp, which reduces the step size and also the convergence 

speed.

To obtain the dual problem to (1), we start from the following equivalent expression for the 

Huber function (2),

(33)
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The first equality in (33) can be obtained by direct evaluation from the minimizer (a soft-

thresholding on s), see, e.g., [26]; the second equality in (33) can be derived using the 

conjugate function of the Moreau envelope (the Moreau-Yosida regularization) [27, page 

135] of the function |·|.

We plug (33) into the objective function (1), switch the order of minimization and 

maximization, and upon minimizing with respect to x, we obtain the following dual 

minimization problem:1

(34)

and u = {u1, ···, uN−1}, y = {y1, ···, yN}. The primal optimal x* and the dual optimal u* are 

related by

(35)

The problem (34) is a least squares problem with simple interval constraints. Thus, second 

order algorithms such as those in quadratic programming are applicable. For the numerical 

examples in IV-A, we applied Matlab implementation (R2015b) of lsqlin, a built-in 

function for constrained least squares minimization. We compared the three available 

algorithm options trust region, interior point and active set and found that the 

active set option (with analytical gradient and Hessian) consistently performed the best. 

This option executes the quadratic programming active-set algorithm [17], [28] that at each 

iteration solves an unconstrained least squares problem. In addition to applying this off-the-

shelf algorithm, we also implemented FISTA [16] to solve (34). The required Lipschitz 

constant was estimated as .

To initialize the two primal algorithms (ICD and Nesterov’s AGD), we set x0 = y, i.e., the 

initial value was the same as the input; to initialize the dual algorithms, we set u0 = 0, a 

vector of all zeros which is a feasible solution to (34). From (35), these two settings are 

compatible.

IV. Numerical results

We consider two example applications of the direct 1-D algorithm, tissue concentration 

curve smoothing in dynamic contrast-enhanced MR studies and sinogram smoothing, which 

1The dual variable u is related to t in (33) by uk = βktk.
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are both effective preprocessing steps to improve subsequent kinetic data analysis or image 

reconstruction.

A. Smoothing of 1-D signal

The noisy tissue curves were generated using a parametric model for brain kinetic data 

analysis [29]. The signal length was N = 400. The curves were denoised using wk = 1, βk = 

0.1, and δk = δ for all k. We experimented with four δ values, 0.1, 10−2, 10−3, and 10−4. For 

performance evaluation, we generated 10 noise realizations for each δ.

Fig. 4 (a) shows a sample denoising result from one noise realization when δ = 0.01. 

Comparing with the TV smoothing result in Fig 4(b), i.e., δ = 0, the characteristic staircase 

artifact in Fig. 4(b) is absent in Fig. 4(a), which is smooth and physiologically more 

reasonable.

We use the direct DP solution to assess convergence speed of the four methods in Sec III. 

For the three in-house methods, ICD, Nesterov’s AGD, FISTA applied to the dual problem 

(FISTA-d), we used the maximum absolute difference (MAD) over all data points ε between 

the iterative solution and the direct DP solution as a stopping criterion, and recorded the 

number of iterations and computation time when ε reached below 10−10. For Matlab 

implementation of the lsqlin algorithm with active set option, we set maximum 

iteration number to be 100, and other tolerance settings to default values. We then calculated 

the MAD between the output of the algorithm and the direct DP solution and report the 

computation time and iteration numbers.

Fig. 4(c) and (d) show the MAD versus iteration numbers (c) and wall clock time (d) for 

each combination of δ and the iterative method, with clustered symbols representing the 10 

noise realizations. The wall clock time results take into account the complexity of the four 

algorithms, which is critical here since second order methods are computationally more 

costly per iteration than first order methods.

Fig. 4(c) shows that the second order active set method requires far fewer iterations than the 

other three methods to reach an accuracy of 10−15. For δ = 0.1, there are problem instances 

such that the active set method converged in one iteration. Moreover, the convergence of all 

four methods is affected by δ: the smaller the value of δ, the more iterations it takes to 

converge.

As shown in Fig. 4(d), the advantage of the active set method is much diminished once the 

computational complexity is taken into account, as one iteration of the active set method (0.1 

sec) is already as costly as hundreds of iterations of FISTA. For reference, the vertical 

dashed line in Fig. 4(d) marks the runtime for the DP algorithm (0.012 sec), which is more 

than 8 times faster than one iteration of active set. For δ = 0.01, which was used to create the 

result in (a), the fastest method out of the four turns out to be FISTA-d. Depending on the 

noise realization, this method is still 9–15 times slower than the DP algorithm. It is also 

obvious from Fig. 4(c) and (d) that ICD is competitive with FISTA or AGD if measured by 

number of iterations, but its sequential update nature makes it unfavorable in terms of 

runtime.2
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As a measure of the memory cost of the DP algorithm, we looked at how the number of 

knots Bk varied with the sequence index k. In general, the number of knots depends on the 

parameter values, i.e., δ and β. For the Huber smoothing result in Fig. 4(a), the progression 

of Bk as a function of the sequence index k is plotted in Fig. 5. Due to the trimming and 

knots removal, the number of knots does not necessarily increase as the sequence 

progresses. The maximum number of knots in this example was 4.

B. Sinogram smoothing

The second example was sinogram smoothing followed by image reconstruction. The fan-

beam sinograms of a physical phantom obtained for a previous study [30], [31] were reused 

here. The data were acquired on a Siemens SOMATOM® Sensation™ 64 CT scanner with 

the x-ray tube settings of 25 mAs and 120 kVp. The acquisition was repeated to obtain 186 

noise realizations. More details of the acquisitions and of the phantom can be found in our 

previous publications [30], [31].

The phantom data were reconstructed using a fanbeam filtered-backprojection (FFBP) 

algorithm with and without sinogram smoothing. Internally, the FFBP algorithm performed 

fan-to-parallel beam rebinning, filtering of the parallel beam data, and backprojection in the 

parallel geometry. We applied sinogram smoothing to the ramp-filtered parallel beam data 

(no apodization) before backprojection.

Note that fan-to-parallel beam rebinning and ramp filtering induce slight correlations. Here, 

we assume these correlations can be neglected and apply objective function (1) to such 

preprocessed data, acknowledging that such an approach could potentially be sub-optimal.

Conventionally, sinogram smoothing is applied to the original data rather than the filtered 

data. Our approach is justified for objects that can be reasonably modeled as a combination 

of pill-box like elemental objects. Indeed, the filtered parallel-beam projection of such an 

elemental object is constant over the object support and slowly-varying outside, with sharp 

transitions between the two regions. Such signal features are well amenable to using the 

Huber penalty as in (1).

To estimate the statistical weights wk in (1), the empirical variance of the 186 filtered 

sinograms was calculated. The inverse variance was smoothed by a Gaussian function, then 

the result was normalized to have a mean value of one and used as the statistical weights.

An example of FFBP reconstruction obtained after sinogram preprocessing is shown side-

by-side with the original FFBP image in Fig. 6(a). There is a substantial reduction in noise 

magnitude and in the horizontal noise streaks connecting the arms.

To quantitatively compare image quality, we calculated task performance versus resolution 

tradeoffs using (1) different parameter settings for the Huber penalty, and (2) different 

apodization windows in the FFBP algorithm. The task was estimation of the mean intensity 

2AGD and FISTA relied on Matlab’s parallel implementation of matrix-vector or vector-vector dot product. In a sequential 
implementation of such operations (as is often done in C), the wall clock time comparison between AGD, FISTA and ICD should be 
similar to the comparison in iterations.
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of a 7 × 7 region-of-interest (ROI). The task performance metric was the ensemble RMSE 

for this mean intensity estimated from the 186 noise realizations. The average of RMSE 

results obtained for the 16 ROIs shown as yellow boxes in Fig. 6(a) was used as final figure 

of merit. The ground truth (needed for the bias component of RMSE) was estimated by 

applying the original FFBP reconstruction with no apodization to the average of the 186 

noise realizations. For image resolution, we extracted and averaged radial profiles across the 

200 HU insert (Fig. 6(a), green box) to obtain the modulation transfer function (MTF). The 

frequency where the MTF is at 50% of its maximum was used as a metric for resolution.

Fig. 6(b) compares the tradeoff curves generated by varying β for different values of δ, from 

δ = 0 to δ = 1.3 The comparison includes the tradeoff curve for variations in the FFBP 

apodization window with no sinogram preprocessing. At high resolution (region A), we see 

that the Huber penalty with large δ provides higher task performance (lower RMSE). At 

moderate resolution (region B), using a smaller edge-preserving δ, around 0.02, is more 

favorable. Additional data (not shown) demonstrate that the tradeoff curve changes 

continuously as δ varies. For the parameters used for the image in Fig 6(a), β= 0.005 and δ = 

0.02, the gain in RMSE over FFBP is about 15%.

The original sinogram (before smoothing) contains a wide range of signal variations. Fig. 7 

plots the maximum number of knots maxk Bk calculated for each projection view; in the 

worse case, this number was 7. Again, the number of knots depends on the β and δ values. 

The small number of knots makes sinogram smoothing using the direct algorithm very 

efficient. The total time for processing all 1160 views was 600 msec, thus negligible 

compared to the reconstruction time of analytic FFBP (17 sec), using a single CPU 

implementation (Intel Xeon® CPU, 2.4 GHz, 48 GB RAM).4

V. Discussion

The worst case computational complexity of our algorithm is O(N2). In the literature, the 

direct TV algorithm of Condat [1] has a worst case complexity of O(N2). But the direct 

algorithms presented in Johnson [2] and Kolmogorov et. al. [4] both have a worst case 

complexity of O(N); these algorithms are based on a reparameterization of the knots. Direct 

adoption of such reparameterization will not reduce the computational complexity for the 

Huber penalty, because the location of the knots will change, and relabeling all knots at each 

index k, with the worst case linear increase of knots, will still incur an O(N2) computation. 

Condat [1] gave a numerical example with the worst case complexity for his algorithm. We 

empirically tested that, when δk’s are small, signals with similar characteristics (a linear 

signal with a slope of O(1/N2)) will have O(N) knots, hence O(N2) complexity. Such signals 

are obviously contrived. In our numerical studies, the number of knots was not a function of 

the signal length, and the numerical complexity was O(N).

3When δ = 1, we essentially have quadratic smoothing as very few neighboring differences of the filtered line integrals are outside the 
range [−1, 1]. Further increase of δ did not change the tradeoff curve.
4The speed difference between this and those in Fig. 4 is due to the computation platforms. The DP implementation for producing Fig. 
4 was based on Matlab. The sinogram smoothing example was implemented in C.
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The several existing DP-based algorithms for TV penalized quadratic fitting can be divided 

into the primal approach, as in this work, or the dual approach [1], [3]. A dual approach 

using the objective function (34) can be developed similar to [3]. An interesting topic for 

future research could be to compare the numerical properties of both primal and dual 

algorithms.

There are a number of interesting aspects to our development. First, our direct algorithm 

calculates the exact solution, unlike any other existing ones which are iterative in nature. 

Researchers can use the output of the direct algorithm as a benchmark for iterative 

algorithms. Our comparisons demonstrate strong computational advantages over iterative 

counterparts. Note that these advantages will remain if an alternative penalty is used, such as 

, which is twice-differentiable and thus enables the use of second-order methods. 

We have conducted a number of experiments (not reported here) that support this claim.

Notably, the Huber function is the Moreau envelope of the absolute value function. The 

Huber penalty indeed comes out as a special case of applying the smoothing technique of 

Nesterov [18, eqn. (4.17)] to the TV penalty. Such a connection between Huber and TV 

penalties does not exist for other mollified versions of TV, e.g., .

The examples we presented, namely tissue concentration curve smoothing and sinogram 

smoothing, are two promising applications of the proposed algorithm. For each application, 

more systematic and task-performance based parameter tuning is warranted to exploit the 

benefit in image (signal) quality. Our focus in this paper was algorithm development, not 

evaluation. Regarding sinogram smoothing, we do not currently have evidence showing that 

denoising the filtered data rather than the original data provides better results. It would be 

interesting to compare the performance of our approach to that in [6], where the image 

quality benefits of sinogram smoothing with Huber penalty were thoroughly demonstrated.

Another important application for our algorithm is as a subproblem solver in an iterative 

algorithm for 2-D or 3-D applications such as image restoration or reconstruction. Such an 

approach has been suggested for 2-D denoising using the TV penalty [4], [5]; a substantial 

speed advantage was achieved over the primal-dual algorithm [4], [32].

Here we outline the idea using x-ray CT image reconstruction. The objective function can be 

written as

(36)

where x = {xi}, xi is the unknown linear attenuation coefficient at pixel i, i = 1, ···, NxNy is 

the linear index of the pixel, and Nx and Ny are the number of rows and columns of a 2-D 

image. We use 2-D reconstruction as an example for its notational convenience; extension to 

3-D problems is straightforward. The input y is the set of line integrals, and A is the forward 

projection operator. The Huber penalty H penalizes intensity differences within a pixel’s 
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neighborhood Ni. For 2D problems with a first-order neighborhood, the Huber penalty can 

be expanded as

(37)

where we switched from the linear indexing to the row, column indexing i′, j′, i′ = 1, ···, 

Nx, j′ = 1, ···, Ny. To apply our direct algorithm as a subproblem solver, we introduce 

auxiliary variables x1, x2 together with the following constraints

(38)

Then minimizing (36) is equivalent to

(39)

subject to (38).

Note that the Huber penalty in the row (i′) and column (j′) directions is applied to each 

individual auxiliary variable x1, x2, respectively. If we apply the alternating direction method 

of multipliers (ADMM) to the above constrained problem, then the subproblems involve 1-D 

Huber smoothing that are column-wise (j′) or row-wise (i′) separable, to which our 

proposed algorithm can be directly applied.

We implemented this idea for a special case of (36) where A is the identity matrix, which 

means we considered an image denoising problem. We ran the algorithm with 1000 

iterations to define the converged solution. Then, we calculated the RMSE for the first 100 

iterations. For comparison, we also ran the accelerated gradient descent (AGD) algorithm on 

the same image. The denoised image obtained with δ = 5 HU and β= 6.7 is shown together 

with the original image in Fig. 8. The convergence plot is shown in Fig. 9: it respectively 

takes 6 and 44 iterations for the proposed method and AGD to reach an accuracy of 0.01 

HU. For higher accuracy requirements, the difference is even bigger.

Further extensions of the DP-based algorithms could consider generalized unary terms, such 

as piecewise linear or piecewise quadratic functions. For example, the quadratic unary terms 

could be replaced by the Huber function to achieve robust data fitting while rejecting 

outliers. Moreover, hard constraints, such as non-negativity or finite bounds on the variables, 

which are relevant for both tissue curve smoothing and sinogram or image smoothing, could 

be incorporated into the problem formulation. These extensions are of high interest to us and 

are also being pursued.
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VI. Conclusions

We developed a direct (noniterative) algorithm for 1-D signal smoothing using quadratic 

data fitting with a penalty term based on the Huber function. The direct algorithm was 

derived from a dynamic programming reformulation of the objective function. We discussed 

in detail the solution method and computational cost. Two example applications, tissue 

concentration curve smoothing and sinogram smoothing, were used to demonstrate the 

effectiveness of the direct algorithm. Further applications such as using it as subproblem 

solvers in 2-D or 3-D image restoration and reconstruction were discussed, as well as 

possible extensions of the algorithm, such as including interval constraints.
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Fig. 1. 
The three cases for the solution s* as a function of t. The dashed (brown) ramp represents 

βh(s − t, δ). The solid piecewise linear function represents q(s). The solution s* (vertical 

dash-dot blue line) is such that q(s*) + βh(s* −t, δ) = 0. The point s0 is where q(s0) = 0.
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Fig. 2. 
(a) The solution s*(t) is a piecewise linear, non-decreasing function of t. The vertical 

distance between the diagonal line s = t and s*(t) is equal to δq(s*)/β or δψ(t)/β. See (13) 

and (18). The point s0 is such that q(s0) = 0. As δ → 0, the distance between the diagonal 

line s = t and the multi-linear section between s− − δ and s+ + δ would reduce to 0. (b) The 

function ψ(t) is obtained from q(s) by (i) clipping it at (s±, ±β) and (ii) relabeling the axis; 

ψ(t) is bounded between ±β.
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Fig. 3. 
We assume that ϕk has five knots (filled red diamond markers). Depending on the data 

related term wk(xk − yk), some knots may be removed (trimmed) from qk(xk) since we are 

only concerned in the range of xk such that |qk(xk)| ≤ βk. In this example, the two knots at 

 and  are removed (open face red diamond markers); two new knots (filled green 

square markers) are inserted at the boundary ±βk.

Xu et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Tissue concentration curve smooching. (a) Huber smoothing, βk = 0.1 and δk = 0.01 for all k 
= 1, ··· N − 1. (b) TV smoothing (δk = 0) generated a piecewise constant result, which is not 

physiologically reasonable. The insets in (a) and (b) zoom in to the time range [4, 7] min. (c) 

and (d) are comparisons of accuracy versus computation cost in terms of (c) iteration 

numbers and (d) wall clock time for the four methods, ICD, FISTA applied to the dual 

problem (FISTA-d), accelerated gradient descent (AGD), and Matlab’s active set applied to 

the dual problem. The vertical axis, maximum absolute difference (ε), is measured with 

respect to the DP solution. The three methods, ICD, FISTA-d, and AGD, were stopped at ε = 

10−10, thus they all are located near the top of the figure. Each cluster of symbols represents 

10 noise realizations. The dashed line in (c) is a symbolic representation of DP at one 

iteration; and the dashed line in (d) marks the average runtime of DP (0.012 sec).
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Fig. 5. 
The number of knots Bk as a function of the sequence index k for the DP result in Fig. 4(a). 

The maximum number of knots is 4. In general, the number of knots depends on the values 

of δ and β.
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Fig. 6. 
(a) A side-by-side comparison of FFBP reconstruction with (left) and without (right) 

sinogram smoothing. The horizontal streaks due to photon starvation are greatly reduced. 

The parameters used in sinogram smoothing were β= 0.005, δ = 0.02. The yellow and green 

boxes mark the locations of the ROIs for RMSE and resolution calculation. (b) RMSE 

versus resolution tradeoffs for different values of δ in the Huber penalty and different 

apodization windows of FFBP. For each δ, the range of β includes the point with the lowest 

RMSE. The green arrow points to the parameter choice that produced the image on the left 

in (a). (C, W) = (0, 300) HU.
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Fig. 7. 
The maximum number of knots MAXk Bk for each projection view when β= 0.005 and δ = 

0.02.
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Fig. 8. 
Image denoising. (a) A tessellation of the original (quadrants I, IV) and the denoised patient 

image (quadrants II, III). (b) The ROI around the liver, pancreas, and the kidney of the 

original (top) and the denoised image (bottom). (C, W) = (10, 400) HU.
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Fig. 9. 
The root mean squared error (RMSE) in HU as a function of the iteration number for the 

accelerated gradient descent (AGD) and the proposed method outlined in (39).
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