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Abstract

An approach using direct regularization from co-registered DCE-MR images (DRI) was used to 

reconstruct Near-Infrared Spectral Tomography (NIRST) patient images, which does not need 

image segmentation. Twenty patients with mammography/ultrasound confirmed breast 

abnormalities were involved in this study, and the resulting images indicated that tumor HbT 

contrast differentiated malignant from benign cases (p-value=0.021). The approach produced 

reconstructed images which significantly reduced surface artifacts near the source-detector 

locations (p-value=4.16e-6).
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I. Introduction

Breast cancer is the most common cancer among women in the US with an estimated of 

252,710 new cases in 2017 [1]. Based on clinical research, odds of long-term survival are 

increased by early detection and treatment prior to tumor metastasis [2].

Current and emerging breast imaging techniques include X-ray mammography, 

Tomosynthesis, breast CT, ultrasound, and Magnetic Resonance Imaging (MRI), among 

others. X-ray mammography/Tomosynthesis are the current standard of care for breast 

cancer screening, and full-field digital mammography has an overall sensitivity and 

specificity reported to be 77% and 97% in a randomized multi-center trial [3]. However, 

mammography is much less effective in women with radiographically dense breasts [4], and 

cumulative radiation exposure limits its screening recommendations for younger women. 

Breast CT provides three-dimensional data by capturing multiple views of the breast at 

different angles, and offers new possibilities for detecting breast cancers. However, the 

radiation dose and false positive rates have limited its application as a clinical breast cancer 

screening tool to date. As a non-ionizing radiation modality, ultrasound is commonly used 

alongside mammography because of its differing contrast mechanisms, which makes it 

possible to detect lesions missed by x-ray imaging. A study found that when ultrasound was 

combined with X-ray mammography for screening dense breasts, ROC analysis yielded an 

Area Under the Curve (AUC) of 0.9 compared with 0.78 for mammography alone [5]. 

Though the combination of ultrasound and mammography has generated high sensitivity, the 

latter is not as high as it is for a contrast MRI exam [6].

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) offers the highest 

sensitivity for breast lesion detection [5], and has experienced widespread implementation 

and rapid growth over the past 15 years [8]. Yet, universal adoption has been tempered by 

moderate specificity, which leads to excessive biopsies and related uncertainty about the 

value of the technique [9]. MRI is sensitive to changes in blood flow and blood volume as 

well as variations in blood oxygenation, but quantitative relationships between MRI signal 

and blood oxygenation are still unclear. Uncertainty in the value of MRI also exists in the 

setting of imaging treatment responses, where the signals are not as directly interpreted 

[10]–[12]. Still, methods to improve the specificity of breast DCE-MRI are of high interest 

given its exquisite sensitivity, and approaches which improve its specificity would be 

important, especially if they also improve the molecular and structural sensitivity of the 

technique, such as near-infrared spectral tomography (NIRST). While NIRST has potential, 

it suffers from low spatial resolution due to diffuse signal propagation in tissue, which is 

similar to other molecular sensing methods. Recently, we introduced a new approach for 

reconstructing NIRST data from DCE-MRI [13] which inputs images as templates for 

matrix regularization. In this paper, the new direct regularization from images (DRI) method 

is evaluated with clinical data to investigate its impact on the specificity of the MRI data.

Many molecular sensing methods suffer from spatial resolution limitations because of lack 

of signal strength, and the choice is often made to amplify the signal by averaging larger 

voxels as in MR spectroscopy [14], [15], diffusion MR [15], [16], positron emission 

tomography [17], [18]. However, the spatial limitation in NIRST arises from the diffuse 
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nature of the signal propagation which makes the inverse image reconstruction problem ill-

posed mathematically [19]–[21]. Many methods to compensate for the ill-posed matrix 

inversion problem have been described, but most have invoked some assumptions about the 

tissue and how it can be segmented [22]–[29]. In the method studied here, DCE-MRI, itself, 

is used as the template for a regularization pattern of matrix voxels [13], [30], which 

incorporates an exponential weighting function based on voxel intensity. The application of 

this regularization approach has been studied in numerical simulations and a patient example 

[13], which showed that it offers two major benefits – suppression of surface artifacts and 

improved contrast in interior regions. These benefits compensate for two well-known 

concerns in NIRST, which limit its potential value. In this study, the methodology was 

applied to a data set of 20 subjects from a previously completed clinical trial. Methods to 

optimize the NIRST reconstruction accuracy from this data have yielded minor 

improvements in specificity [31], and the resulting NIRST images are still confounded by 

surface artifacts and low contrast recovery. The new method described here has potential to 

produce more accurate images with higher molecular specificity, and thereby to add 

diagnostic value to the DCE-MRI scans.

Equally important as the results is the concept that this new approach could be applied to a 

number of hybrid imaging modalities where one influences the recovered image accuracy of 

the other. Introduction of DRI regularization is a novel approach to combining images where 

values from one image guide recovery of the other image without requiring human 

intervention or manual segmentation.

II. Methods

A. Human Subject Imaging

The imaging protocol for human subject examination was approved by the Committee for 

the protection of human subjects at Dartmouth College and at Xijing Hospital in Xi’an, 

China. The study was carried out at Xijing Hospital in Xi’an, China. All patients received an 

explanation about the imaging process and signed a consent form before the imaging session 

was started. A total of 20 patients were involved in the study. Subsequent surgical pathology 

analysis confirmed 13 cases were malignant and 7 were benign.

B. Imaging System and Instrumentation

Patient data was collected using an MRI coupled NIRST system [32]. In this study, we 

prioritized the ease in which our optical interface was adapted to fit into commercially 

available breast MRI coils. Thus, in the present setting, MRI coupled NIRST has some of 

the same tissue coverage limitations as breast MRI. Fig. 1. provides an overview of the 

imaging system. Briefly, the subject was placed in prone position on a commercial MR 

breast coil (Fig. 1. top right). The breast with the abnormality was placed in a specially 

designed adjustable triangular interface which was attached within the open area of the coil 

(Fig. 1. bottom right). Six intensity-modulated (at 100MHz) and three continuous 

wavelength (CW) laser diodes, operating in the 660–950nm wavelength range, were used to 

generate light for signal transmissions. A set of 15 photo-multiplier tube (PMT) detectors 

(H9305-3, Hamamatsu) acquired both amplitude and phase data at wavelengths below 
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850nm, and a set of 15 silicon photodiode (PD) detectors (C10439-03, Hamamatsu) 

recorded only amplitude data in the longer wavelength range (900–950nm, Fig. 1. left). 

These data were used to estimate concentrations of oxy-hemoglobin (HbO2), deoxy-

hemoglobin (Hb), water, lipid and scattering properties (i.e., scattering power and scattering 

amplitude) in the breast. The triangular patient interface was designed to place 16 optical 

fiber bundles on the breast uniformly. Each time the source light was delivered to the breast 

through one of the fiber bundles, the diffused light resulting from the tissue was measured in 

parallel by the 15 PMT/PD detectors, coupled through the other 15 fiber bundles. MRI 

fiducial markers were placed at the ends of the fiber bundles for co-registration between 

MRI and optical images. MRI scans and optical measurements were performed 

simultaneously without interference between the two imaging modalities. Imaging time for a 

complete MRI and optical scan was about 30 mins and 15 mins, respectively.

C. Image Reconstruction and Analysis

Breast images were processed and reconstructed using NIR-FAST [33], an open source 

platform developed at Dartmouth. A direct regularization from co-registered DCE-MRI was 

used to reconstruct NIRST data [13]. In this image reconstruction approach, anatomical 

information from DCE-MRI was implemented directly in the inversion matrix regularization 

by encoding gray-scale image data into NIRST through a method termed Direct 

Regularization from Images (DRI). As described in detail in the previous paper [13], instead 

of setting the regularization matrix (L) to be an identity matrix as in the standard “no prior” 

reconstruction, DRI defines L as

Lij =
1 i = j

− 1
Mi

exp −
|γi − γ j|

2

2σg
, otherwise

(1)

where γi is the anatomical image grayscale value in MRI mapped to position i in the NIRST 

image (grayscale values were normalized to the maximum within the image), σg is the 

characteristic grayscale difference over which to apply regularization, and Mi is a 

normalization factor chosen for each row.

Based on previous work [13], the regularization parameters λ and σg should be carefully 

selected to attain proper balance between stability and accuracy of the optical image 

reconstruction. Here, the initially fixed parameters λ = 1 and λ = 10, σg = 0.001 are used for 

no-priors and DRI methods, respectively.

Tumor region of interest (ROI) was defined for each patient by the reading radiologists 

according to the subject’s DCE-MRI exam. For quantitative comparison of DRI and no-prior 

methods, tumor HbT contrast, which is the ratio of the average HbT inside to outside of the 

ROI was calculated.

A common problem with reconstructed NIRST images is the appearance of surface artifacts 

near the optical sources and detectors. To compare quantitatively the surface artifacts 
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generated by “no-prior” and DRI approaches, nodes per area within a distance of 15 mm 

from each fiber bundles were evaluated and the Standard Error (=Standard deviation/mean) 

of HbT was calculated as a performance measure.

D. Statistical Analysis

Patient results were analyzed by comparing malignant (n = 13) and benign (n = 7) groups, 

and a student’s t-test was utilized to evaluate the performance of the DRI method. A two-

tailed distribution was considered with significance achieved at the 95% confidence interval. 

Receiver-operating characteristic (ROC) curve analysis was carried out and the Area-Under-

the-Curve (AUC) was examined as a way to quantify test performance [34], [35].

III. Results

Figure 2 shows the DCE-MRI and NIRST HbT (total hemoglobin concentration) images of 

a 46 year old patient with cancer. Axial, coronal and sagittal DCE-MRI (Fig. 2(a)) presented 

a 11 × 16× 14 mm lump in the top central portion (11:00 clock-face) of the right breast. The 

surgical pathology results from her mastectomy confirmed the lump was an invasive ductal 

carcinoma (IDC). Relative to HbT images reconstructed with no prior information, the DRI 

method significantly improved tumor to normal tissue contrast, as well as the localization of 

malignant lesion position and size. In addition, the artifacts in Fig. 2(b) have been 

significantly abated by encoding DCE-MRI structure into NIRST image reconstruction (Fig. 

2 (c)).

Similar improvement occurred in a patient with a benign abnormality. Figure 3 illustrates the 

DCE-MRI and HbT images of 23-year-old patient with a regionally distributed benign lesion 

(adenosis) in the right half of the left breast. Artifacts appear (hot spot in the axial view) in 

HbT images reconstructed with no priors (Fig. 3(b)) that are suppressed with the DRI 

method (Fig. 3 (c)). Compared to the malignant case shown in Fig. 2, contrast in this benign 

lesion was reduced by the DRI method relative to the no-priors approach.

For a quantitative comparison of the surface artifacts in the images reconstructed by the “no-

prior” and DRI methods, boxplots of standard errors are shown in Figure 4. DRI 

reconstruction yielded a significant reduction in surface artifacts (P-value ≪ 0.001).

Table 1 lists the HbT tumor to normal tissue contrast for each patient, obtained by DRI and 

“no prior” methods, respectively. Correspondingly, the means and standard deviations for the 

malignant and benign groups are summarized in Table 2.

Boxplots of tumor HbT contrast for the two groups are illustrated in Figure 5. In Table 2 and 

Figure 5, mean HbT contrast was significantly higher in malignant relative to benign cases. 

Figure 5 shows that compared with the “no-prior” method HbT contrast obtained by DRI for 

malignant cancers had considerably more variation. The ratio of mean malignant contrast to 

mean benign contrast was 2.25× and 1.54× for DRI vs. “no prior” methods. The P-values, 

AUC, sensitivity and specificity obtained by DRI, No priors and DCE are listed in Table III. 

While the “no-prior” reconstructed HbT contrast provided border-line significance (p-value 

= 0.05), the P-value of DRI was 0.02, indicating that tumor HbT contrast can differentiate 

Zhang et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



malignant from the benign lesions. The AUC value is 0.77 using DRI only. When DCE-MRI 

and DCE-guided NIRST(DRI) are combined for diagnosis, the AUC increased from 0.82 to 

0.9. Although the specificity obtained by DRI was optimal (1.00), it was dominated by the 

DCE value of 0.71, when the DRI and DCE-MRI data were combined and the statistical 

analysis returned a cutoff value that maximized the sum of sensitivity and specificity. 

Alternately, when maximizing specificity alone, the combined DRI and DCE-MRI data 

achieved a value of 1.00, but sensitivity suffered significantly (as shown in parentheses in 

Table III). No particularly attractive compromise between sensitivity and specificity was 

available in the combined DRI and DCE-MRI data, likely because of the relatively small 

sample size used in the study.

Further, figure 6 shows images of HbO2 and Hb for the case studies shown in Fig. 2 and Fig. 

3. Tumors are localized in Hband HbO2 as well. P-values of 0.03 and 0.33 for Hb and HbO2 

resulted from comparisons of means between the benign and malignant groups, indicating 

that only Hb had statistical significance in differentiating malignant from benign cases in the 

small group of patients enrolled in the study.

IV. DISCUSSION

Results from 20 patient cases indicate that tumor contrast estimated from the images 

reconstructed by the DRI method can distinguish malignant from benign lesions. To date, 

optical image recovery in MRI-guided NIRST has been based on procedures that require 

segmentation, which is time consuming for users and requires radiological or anatomical 

training. Although the significance levels used to distinguish malignant from benign lesions 

examined here were lower than those for the previous segmentation-based methods, the DRI 

method is a fully automated image reconstruction process.

Without using DCE-MRI information, tumor HbT contrast obtained by the “no-prior” 

method was marginally significant in distinguishing malignant from benign lesions. 

Additionally, as shown in Fig 2(b) and Fig 3 (b), surface artifacts are significant, and affect 

the accuracy of identifying tumor size and location. In some cases, artifacts appeared in the 

abnormal ROI and resulted in HbT values being incorrect. By directly encoding structural 

information from DCE-MRI, the DRI method effectively suppressed artifacts so that image 

quality was improved. As discussed in our previous paper [13], image reconstruction 

artifacts are suppressed with the DRI approach (more than without it) because the structural 

prior information incorporated from DCE-MRI encodes spatial shapes in the image updates, 

which mimic the (MRI) gray scale intensity map. A Tikhonov framework is used as the 

regularization method

S(x) = ‖ f (x) − d‖2
2 + λ‖Lx‖2

2 (2)

where L is the regularization matrix. The first term, defined as model error, represents the 

deviation of the observed image from the model observation. The second term, defined as 

the prior error, is the deviation of the image estimate from prior knowledge. L is an identity 

matrix in a no prior case, whereas in the DRI case, L is a weighting function based on the 
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anatomical (MRI) image grayscale map. Since the reconstructed image is constrained by 

structural priors through the regularization matrix, artifacts can be suppressed in DRI cases 

relative to a no-prior image reconstruction. However, the artifacts that do or do not appear 

arise from a combination of the gray scale patterns in the MRI data, as well as noise in the 

measured optical signals. Predicting the dominant effect (artifact suppression through spatial 

priors versus artifact amplification through optical measurement noise) is difficult; however, 

our results suggest that when the lower gray scale values from a benign case are included, 

the overall number of artifacts which appear in the image is reduced.

From HbT images obtained by the DRI method, (Fig. 2(c) and Fig. 3(c)), tumor size was 

smaller than the size estimated from DCE-MRI. The reduction in tumor size is likely due to 

limitations in mesh size used to keep computation time in a moderate range. This limitation 

caused loss of DCE-MRI information in some pixels in the regularization matrix. In 

addition, the loss of MRI information resulted in less or no improvement in some cases, 

relative to the “no-prior” method.

In Table 1, seven cases resulted in HbT contrast values below 1 with the DRI method was 

used. From a physiological point of the view, HbT tumor contrast is anticipated to be greater 

than unity because of increased tumor vascularization relative to the surrounding normal 

tissue. Because of the small number of patients considered here and the limited pathology 

data that were available from these subjects, a cause for the low HbT tumor contrast in some 

cases cannot be identified. One possible explanation would be that the tumor location is not 

perfectly well-demarcated by DCE-MRI in these cases, and as a result, is not recovered 

accurately by NIRST image reconstruction which is weighted by the MRI image gray scale.

The HbT contrasts of patients 8, 4 and18 are lower in the DRI relative to that in “no prior”. 

The possible reason may due to the fact that the DRI method relies on the tumor grey scale 

contrast in DCE-MRI. Although the contrast values in a small portion of the patient cases 

are lower than that of “no prior”, the overall p-values of HbT contrasts obtained by DRI has 

been obviously improved as compared to than that of “no prior” case, since DRI reduced the 

artifacts appearing in the images.

In addition to the clinical data obtained from DCE-MRI, HbT as well as other parameters 

(i.e., blood oxygenation, water and lipid) acquired with NIRST provides information on 

tissue function beyond contrast was-in/wash-out kinetics.

V. Conclusion

Results presented in this paper demonstrate the feasibility and robustness of a hybrid MRI-

NIRST approach for breast imaging. The fully-automated DRI method increased tumor 

contrast in HbT, improved the accuracy of tumor position and size, and decreased the 

presence of surface artifact relative to using “no prior” in diffuse tomography. Importantly, 

HbT contrast showed a significant difference between malignant lesions and benign 

conditions. The result is a step towards non-invasive assessment of benign/malignant tumors.
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Fig. 1. 
Overview of NIRST system. Six frequency domain laser diodes are driven by RF signal 

generators at 100MHz and three CW lasers are driven directly by computer generated 

currents. Light is delivered to the breast through 16 sequential source fibers. An array of 15 

PMTs and 15 Photodetectors measure amplitude and phase of collected light. Optical fibers 

are housed within an MRI breast coil (right bottom) and the optical and MRI exam are 

conducted simultaneously.
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Fig. 2. 
DCE-MRI and NIRST HbT images of a patient with a 11 × 16 × 14 mm invasive ductal 

carcinoma (IDC) in the right breast. (a) DCE-MRI and optical images reconstructed by no-

priors (b) and DRI (c). HbT images are overlaid on the DCE- MRI slices.
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Fig. 3. 
DCE-MRI and NIRST HbT images of a patient with adenosis (benign). (a) The DCE-MRI; 

and optical images reconstructed by nopriors (b) and DRI (c). The HbT images 

reconstructed with λ = 1 for no priors and DRI methods with λ = 10 and σg = 0.001, 

respectively.
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Fig. 4. 
Boxplots of standard errors near the source and detector fiber bundles.

Zhang et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Boxplots of HbT contrast in malignant (n = 13) and benign (n = 7) groups, obtained by DRI 

and “no prior” methods.
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Fig. 6. 
The oxy-hemoglobin (HBO2) and deoxy-hemoglobin (Hb) images of IDC (a) and benign (b) 

calculated by DRI method, corresponding to the patients in Fig. 2 and Fig. 3 respectively.
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TABLE I

List of Tumor HbT Contrast for Each Patient, Obtained by DRI and No Prior Methods, Respectively

Pt # Pathology
HBT Contrast

DRI method No priors

1 IDC 1.24 1.23

2 IDC 0.67 0.57

3 IDC 0.64 0.36

4 IDC 5.36 1.75

5 IDC 3.72 1.59

6 IDC 1.80 1.04

7 IDC 1.43 1.10

8 DC 0.91 1.24

9 IDC 1.84 1.85

10 IDC 1.69 1.41

11 IDC 1.73 1.37

12 IDC 2.76 1.86

13 IDC 5.75 3.68

14 adenosis 0.68 0.83

15 Fibroadenoma 1.25 1.25

16 adenosis 1.17 1.01

17 Fibroadenoma 0.96 0.94

18 Fibroadenoma 0.76 1.00

19 Intraductal papilloma 1.45 1.07

20 Cystic hyperplasia 0.88 0.64
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TABLE II

The Means and Standard Deviations of HbT Contrast for the Malignant and Benign

DRI No-prior

Malignant
(n=13)

Benign
(n=7)

Malignant
(n=13)

Benign
(n=7)

Mean 2.29 1.02 1.48 0.96

Standard Deviation 1.76 0.28 0.84 0.19
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TABLE III

P-Values, AUC, Optimal Cutoff, Sensitivity and Specificity Obtained by DRI, No Priors and DCE-MRI

DRI No priors DCE DRI+DCE

P-values 0.02 0.05 0.005 0.012

AUC 0.77 0.79 0.82 0.90

Optimal cutoff 1.57 1.09 / /

Sensitivity 0.60 0.77 0.92 1.00(0.62*)

Specificity 1.00 0.86 0.71 0.71(1.00*)

*
Specificity and sensitivity when maximizing specificity alone.
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