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Abstract

This editorial introduces the Special Issue on Simulation and Synthesis in Medical Imaging. In this 

editorial, we define so-far ambiguous terms of simulation and synthesis in medical imaging. We 

also briefly discuss the synergistic importance of mechanistic (hypothesis-driven) and 

phenomenological (data-driven) models of medical image generation. Finally, we introduce the 

twelve papers published in this issue covering both mechanistic (5) and phenomenological (7) 

medical image generation. This rich selection of papers covers applications in cardiology, 

retinopathy, histopathology, neurosciences, and oncology. It also covers all mainstream diagnostic 

medical imaging modalities. We conclude the editorial with a personal view on the field and 

highlight some existing challenges and future research opportunities.
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I. INTRODUCTION

THE medical image community has always been fascinated by the possibility of creating 

simulated or synthetic data upon which to understand, develop, assess, and validate image 

analysis and reconstruction algorithms. From very basic digital phantoms all the way to very 

realistic in silico models of medical imaging and physiology, our community has progressed 

enormously in the available techniques and their applications. For instance, mechanistic 

models (imaging simulations) emulating the geometrical and physical aspects of the 

acquisition process have been used now for a long time. Advances on computational 

anatomy and physiology have further enhanced the potential of such simulation platforms by 

incorporating structural and functional realism to the simulations that can now account for 
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complex spatio-temporal dynamics due to changes in anatomy, physiology, disease 

progression, patient and organ motion, etc.

More recently, developments in machine learning together with the growing availability of 

ever larger-scale databases have provided the theoretical underpinning and the practical data 

access to develop phenomenologic models (image synthesis) that learn models directly from 

data associations across subjects, time, modalities, resolutions, etc. These techniques may 

provide ways to address challenging tasks in medical image analysis such as cross-cohort 

normalization, image imputation in the presence of missing or corrupted data, transfer of 

knowledge across imaging modalities, views or domains.

To this date, however, these two main research avenues (simulation and synthesis) remain 

independent efforts despite sharing common challenges. For instance, both modeling 

approaches involve dealing with large scale optimization problems (e.g. in learning 

processes or physical equations), involve the use of regularization and priors (e.g. either 

based on mathematical or physical properties), need to generalize well, adapt to new 

scenarios, and degrade gracefully beyond the original learning set or modeling assumptions, 

require the definition of meaningful figures of merit to assess the quality, accuracy, or 

realism of simulated/synthesized data, in both approaches there is a growing emphasis on 

open source implementations, open data benchmarks, and evaluation challenges, just to 

name a few. These and other challenges have been discussed at the successful SASHIMI 

Satellite Workshop1 held in conjunction with the Medical Image Computing and Computer 

Assisted Interventions (MICCAI) Conference in 2016 (Athens, Greece) and 2017 (Quebec, 

Canada). We look forward to the future editions of this Workshop as a forum for identifying 

new research challenges and avenues, and tackling them as a community.

This special issue provides an overview of the state-of-theart in methods and algorithms at 

the bleeding edge of synthesis and simulation in/for medical imaging research. We hope this 

collection will stimulate new ideas leading to theoretical links, practical synergies, and best 

practices in evaluation and assessment common to these two research directions. We 

solicited contributions from cross-disciplinary teams with expertise, among others, on 

machine learning, statistical modeling, information theory, computational mechanics, 

computational physics, computer graphics, applied mathematics, etc.

In the sequel, we first aim to formally define simulation and synthesis in medical imaging 

and then discuss similarities and differences between simulation (mechanistic) vs. synthesis 

(phenomenologic) approaches. We then give the main highlights of the published papers 

within this issue and conclude by offering our perspective on some trends and challenges, 

and point our to some open problems awaiting future research.

II. CONTEXT AND DEFINITIONS

It is helpful at this point to be specific about the concepts of simulation and synthesis in this 

special issue, that is, in medical imaging and medical image computing. We found out that 

1http://www.cistib.org/sashimi
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the concept of simulation is, in general, very ample and unspecific to medical imaging, and 

that there was virtually no formal definition of medical image synthesis. We could find none 

of these terms defined in the Dictionary of Computer Vision and Image Processing [item 1) 

in the Appendix].

The concepts of image simulation and synthesis can be ambiguous (or even interchangeable) 

if one attends to dictionary definitions of these terms by authoritative references such as 

Oxford (OED)2 and Merriam-Webster (MWD)3:

Simulation [OED] n • 3. The technique of imitating the behaviour of some situation 

or process (whether economic, military, mechanical, etc.) by means of a suitably 

analogous situation or apparatus, esp. for the purpose of study or personnel training.

Simulation [MWD] n • 3a: the imitative representation of the functioning of one 

system or process by means of the functioning of another – a computer simulation of 

an industrial process; b: examination of a problem often not subject to direct 

experimentation by means of a simulating device.

Synthesis [OED] n • 1. Logic, Philos., etc.: a. The action of proceeding in thought 

from causes to effects, or from laws or principles to their consequences. (Opposed to 

analysis n. 3).

Synthesis [MWD] n • 1 a : the composition or combination of parts or elements so as 

to form a whole.

The concept of synthesis currently in use in computer vision and medical image analysis 

contrasts strikingly as almost opposite to that traditionally used in philosophy or science.4 In 

computer graphics, the “goal in realistic image synthesis is to generate an image that evokes 

from the visual perception system a response indistinguishable from that evoked by the 

actual environment” [item 2) in the Appendix] [item 3) in the Appendix]. However, 

computer graphics is focused on perceptual accuracy. Glassner, in his classical book states: 

“our job as image synthesists is to create an illusion of reality – to make a picture that carries 

our message, not necessarily one that matches some objective standard. It’s a creative job” 

[item 4) in the Appendix]. While medical imaging does not neglect visual realism (e.g. for 

conventional radiographic assessment this remains important), the key concern is one of 

quantitative accuracy of the synthesised images or, at least, in accuracy in terms of figures of 

merit that are meaningful for the intended task (e.g. diagnostics, planning, prognosis, etc.). 

In the sequel, we attempt to provide some distinction between and propose a definition to the 

concepts of image synthesis and image simulation based on the literature and praxis of our 

medical imaging community.

2 http://www.oed.com
3 http://www.merriam-webster.com
4 The Oxford English Dictionary provides contextual quotes that illustrate this contrast. For instance, from T. Hobbes in Elements 
Philos. iii. xx. 230, 1656: “Synthesis is Ratiocination from the first causes of the Construction, continued through all the middle causes 
till we come to the thing itself which is constructed or generated.”, and from I. Newton in Opticks (ed. 2) iii. i. 380, 1718: “The 
Synthesis consists in assuming the Causes discover’d, and establish’d as Principles, and by them explaining the Phnomena proceeding 
from them.” Source: http://www.oed.com/view/Entry/196574.
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At one level, in using the concepts of simulation and synthesis, our community usually 

makes a fundamental ontological distinction best described by referring to mechanistic and 

phenomenologic models, respectively. In simulation, we usually adopt first principles for 

image generation while in synthesis we start off with abundant data (with the notion of 

abundance changing through the years). We also usually assume behind these concepts a 

natural information processing direction: from data to models with synthesis; and from 

models to data with simulation (Fig. 1). Simulation implies the existence of an abstraction of 

the knowledge we possess, usually in the form of first principles, that is used to derive 

instances of that knowledge in a scenario that is fully controlled by the selection of 

simulation parameters. Synthesis, on the contrary, implies the ability to abstract or 

summarise (synthesise) knowledge from a collection of exemplars that are representative of 

a wider population, phenotype or phenomenon. This is usually accomplished through 

statistical or phenomenologic models. If a mechanistic model is available, one can perform 

data assimilation or parameter identification resulting in a customised or individualised 

mechanistic model. Conversely, one can simulate new image (or shape) examples from an 

image (or shape) synthesis method but we talk then of data-driven models and these are 

usually phenomenologic in nature. At this point, we make explicit that the notion of 

“medical image” we use here refers to any spatially (or spatio-temporally) resolved mapping 

or function [item 5) in the Appendix] to any physical or physiological parameter space, even 

if that space is non-measurable and hence derived from a computer-based synthesis or 

simulation. In this case, we can refer to “virtual” or “in silico” medical imaging [item 6) in 

the Appendix]. This has as a side-effect that while phenomenologic model can issue 

forecasts (i.e. are regressive or extrapolative), only mechanistic models are truly predictive 

(Latin: præ-, “before,” and dicere, “to say”).

Here, we offer these two definitions:

(Image) Synthesis [ours] n • The generation of visually realistic and quantitatively accurate 

images through learning phenomenologic models with application to problems like 

interpolation, super resolution, image normalisation, modality propagation, data 

augmentation, etc.

(Image-based) Simulation [ours] n • The application of mechanistic first principles from 

imaging physics, organ physiology, and/or their interaction, to produce virtual images that 

are informed by individualised data; these result on both visually realistic and physically/

clinically plausible images, and are generated under controlled hypothetical imaging 

conditions.

Synthetic images are generally useful in structuring information and capturing knowledge 

from vast image data sets when little is known about the underlying mechanisms. They are 

particularly useful as a modeling approach when data is abundant and we have few 

hypothesis to make about the underlying mechanisms. They are hypothesis-free but data-

driven: this means the extracted knowledge must be cautiously interpreted in light of the way 

the data has been collected (e.g. what population is represented by this sample?, which 

inclusion and exclusion criteria underlie the data?, etc.). Virtual images derived from image-

based simulations, in turn, produce images with strong mechanistic priors and are a great 
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approach when acquiring (large amounts of) images is impractical, ethically unjustifiable, or 

simply impossible. Here, the data generated from simulations must also be cautiously 

interpreted checking the epistemological validity of the underlying modeling assumptions 

and mechanisms. In brief, both approaches have strengths and limitations. Synthetic images 

play a key role in data-driven information processing and knowledge discovery while image-

based simulations are valuable in hypothesis-driven research in image-based diagnosis and 

treatment.

III. MECHANISTIC OR PHENOMENOLOGIC?

It is beyond the scope of this editorial to review the considerable progress made over the past 

decades in both physical models of image formation and in machine learning techniques for 

image synthesis. This special issue is a modern and exciting excerpt of the most recent 

developments. We would like, however, to put these two approaches underpinning these 

special issue in the wider context of current trends in science and data science.

There are opportunities and limitations in approaching image generation from a mechanistic 

or a phenomenologic standpoint, some of epistemological reach. Some would argue with 

increasing availability of big data, computational resources, and breakthroughs in artificial 

intelligence, data-driven phenomenologic models will eventually supersede the need of 

mechanistic theories [item 7) in the Appendix], while others seriously contest this viewpoint 

[item 8) in the Appendix]. The complexity of image generation process, the need to model 

detailed and accurately the geometry and physics of imaging, and the variability and 

uncertainty associated with anatomical and physiological factors, all seem to favour those 

challenging the need or feasibility of generating truly accurate medical images from first 

principles. In Chapter 12 of his book, Helbing [item 9) in the Appendix] presents an 

interesting cautionary argument that contrasts with Anderson’s vision of Big Data (assuming 

that we no longer will need theory and science). Fig. 2 shows Helbing’s model for digital 

growth in computational resources doubling about every 18 months (Moore’s law), and data 

resources doubling about every 12 months (soon every 12 hours!). While these two 

resources follow an exponential growth, the complexity of the processes that these resources 

help to elucidate or decide on (e.g. parametric complexity of the computational methods, 

ontological complexity of health data) follow a factorial growth as they are based on 

combinatorial combinations and system networks, respectively. The above implies the 

problem of “dark data”, i.e. the share of data we cannot process is increasing with time. As a 

consequence, we must know what data to process and how, which requires hypothesis-driven 

science and understanding of the underlying mechanisms relating data and phenomena so 

that algorithmic complexity is dealt with tractably.

IV. SPECIAL ISSUE STATISTICS

Twenty-four manuscripts were received for this special issue. Two were immediately 

rejected while another ten were rejected after a revision round. Twelve papers were finally 

accepted after peer-review covering both mechanistic (5) and phenomenologic (7) modeling 

and data generation. This rich selection of papers covers applications in cardiology, 

retinopathy, histopathology, neurosciences, and oncology. It also covers all mainstream 
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diagnostic medical imaging modalities. Two manuscripts were handled by Associate Editors 

Mehrdad Gangeh and Hayit Greenspan to avoid potential conflicts of interest. Each paper 

was reviewed, at least, by three expert reviewers.

V. SPECIAL ISSUE OVERVIEW

This special issue comprises 12 papers covering both image-based simulation and synthesis.

A. Image-Based Simulation

Simulation papers focus on either devising computational phantoms of anatomy or 

physiology in health and disease, or aim at developing computational phantoms in image 

formation.

In the first category of simulation papers, Segars et al. start off by reviewing what is 

arguably one of the most widespread digital phantoms in computational human anatomy and 

physiology of the human thorax. The authors overview the four dimensional (4D) eXtended 

CArdiac-Torso (XCAT) series of phantoms, which cover a vast population of phantoms of 

varying ages from newborn to adult, each including parametrised models for the cardiac and 

respiratory motions. This paper illustrates how these phantoms found great use in radiation 

dosimetry, radiation therapy, medical device design, and even the security and defence 

industry. Abadi et al. extend upon the capabilities of the XCAT series of computational 

phantoms, and propose a detailed lung architecture including airways and pulmonary 

vasculature. Eleven XCAT phantoms of varying anatomy were used to characterize the lung 

architecture. The XCAT phantoms were utilized to simulate CT images for validation 

against true clinical data. As the number of organs described as numerical phantoms as 

XCAT models increases, the potential use of such models as a tool to virtually evaluate the 

current and emerging medical imaging technologies increases. Polycarpou et al. propose a 

digital phantom to synthesise 3D+t PET data using a fast analytic method. The proposed 

method derives models of cardiac respiration and motion based on real respiratory signals 

derived from PET-CT images are combined with MRI-derived motion modeling and high 

resolution MRI images. In addition, this study incorporates changes in lung attenuation at 

different respiratory cycle positions. The proposed methodology and derived simulated 

datasets can be useful in the development and benchmarking of motion-compensated PET 

reconstruction algorithms by providing associated ground-truth of various controlled 

imaging scenarios.

Others consider the role of models in disease processes. For example, in the paper by García 

et al., the authors consider the challenging task of evaluating the correlation of parenchymal 

patterns (i.e. local breast density) as provided by mammography with MRI volume 

information. Differences in distributions (MRI versus x-ray) and radical deformation present 

(due to how the breast is imaged during mammography and MR) render this problem also 

relevant from a registration perspective. The authors in tackling this challenge, employ a 

subject-specific biomechanical model of the breast to assist the MRI volumes to X-ray 

mammograms. When converged, a direct projection of the MR-derived glandular tissue 

permits the comparison to the corresponding mammogram. Along the same theme, Roque et 
al. propose a reaction-diffusion model of tumour growth. Predicting tumour growth (based 
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on models) and particularly its response to therapy is a critical aspect of cancer care and a 

challenge in cancer research. In this work, the authors derive an image-driven reaction-

diffusion model of avascular tumour growth, which permits proliferation, death and spread 

of tumour cells, and accounts for nutrient distribution and hypoxia. The model parameters 

are learned (and evaluated) based on longitudinal time series of DCE-MRI images. Rodrigo 

et al. study the influence of anatomical inaccuracy in the reconstruction of 

Electrocardiographic Images (ECGI) in non-invasive diagnosis of cardiac arrhythmias. The 

precise position of the heart inside the body is important for accurate reconstructions but 

often not accurately known. They explored the curvature of L-curve from the Tikhonov 

regularization approach, which is one methodology used to solved the inverse problem, and 

discovered that optimization of the maximum curvature minimizes inaccuracies in the atrial 

position an orientation. Such automatic method to remove inaccuracies in atrial position 

improves the results of ECGI. Moreover, it allows to apply ECGI technology also where the 

electric recording, usually done via Body Surface Potential Mapping (BSPM) and the 

anatomical CT/MRI images are not recorded one after another, which could potentialy 

expand ECGI use to a larger group of patients.

B. Image Synthesis

This issue also comprises several papers using phenomenologic or data-driven methods for 

image synthesis or generating annotated reference datasets.

It is interesting to see that some methods are hybrid, i.e. they combine both data-driven with 

mechanistic approaches. Zhou et al., for instance, undertake to generate realistic synthetic 

cardiac images, of both ultrasound (US), and cine and tagged Magnetic Resonance Imaging 

(MRI), corresponding to the same virtual patient. This method develops a synthesis-by-

registration approach where an initial dataset is segmented, transformed and warped (as 

needed) to generate a motion and deformation-informed set of cMRI, tMRI, and US images. 

Only the motion model in this method is derived from an actual physical model while the 

image intensity is created through mapping reference values from literature. In a related 

paper, Duchateau et al. also focus on the automatic generation of a large database of 

annotated cardiac MRI image sequences. Their approach, like the one of Zhou et al., 
combines both mechanistic motion models of cardiac electro-mechanics with anatomical 

augmentation via data-driven non-rigid deformations. The proposed method requires the 

existence of a small database of cine CMR sequences that serve as seed to augment the 

anatomical variability by creating simulations of cardiac electro-mechanics under diverse 

conditions. Augmented data is created by warping image intensities in the original sequence 

through the electromechanical simulation. This method ensures the material point 

correspondence between frames complies with a mechanistic electromechanical model yet 

image appearance is not altered compared to that of the original dataset used. The authors 

apply this approach to generate a database of subjects myocardial infarction under controlled 

conditions in infarct location and size. Finally, Mattausch and Goksel’s paper focuses on 

how to reconstruct the distribution of ultrasound image scatterers of tissue samples non-

invasively. The recovered scatterer map will inform a realistic ultrasound image simulation 

under different viewing angles or transducer profiles. The robustness of this technique relies 

on obtaining images from multiple view points to accurately assess scatterer distribution, 
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without which the forward problem is not accurately solved. Besides an inversion strategy, 

the authors contribute a novel beam-steering technique to insonify the tissue rapidly and 

conveniently acquiring multiple images of the same tissue. The authors also demonstrate that 

the scatterer map offers a new tissue representation that can be edited to create controlled 

variations.

Several papers focus on machine learning for image synthesis to tackle problems as diverse 

as generating benchmark data, image normalisation, super resolution, or cross-modality 

synthesis, to name just a few. One technique prominent among several submissions is 

adversarial learning. For instance, Costa et al. propose a combination of adversarial 

networks and adversarial auto-encoders to develop synthetic retinal colour images. 

Adversarial auto-encoders are used to learn a latent representation of retinal vascular trees 

and generate corresponding retinal vascular tree masks. Adversarial learning, in turn, is used 

to map these vascular masks into colour retinographies. The authors present a learning 

approach that jointly learns the parameters of the adversarial network and auto-encoder. The 

authors extensively validated of the quality of their synthetic images. The data produced can 

help in the generation of valuable labelled ground-truth data for testing or training retinal 

image analysis methods. Ben Taieb and Hamarneh also use adversarial learning to address 

the problem of histopathology normalisation. Recognizing the large variability between 

staining processes in different histopathology laboratories, the authors propose a method that 

aims to emulate stain characteristics from one laboratory to the other. Treated as a style 

transfer problem (to adopt the term from computer vision literature) the authors proposed a 

deep neural network that learns to map input images to output images that best match the 

distribution characteristics of a reference set of data, thus achieving stain normalization. A 

combination of generative, discriminative and task specific networks jointly optimized 

achieve the desired objective of finding stain normalizations suitable for segmentation or 

classification tasks.

Chartsias et al. propose an approach to MRI synthesis that is both multi-input and multi-

output and uses fully convolutional neural networks. The model has two interesting 

properties: it is robust to handle missing data, and, while it benefits from, does not require, 

additional input modalities. The model was evaluated on the ISLES and BRATS datasets and 

demonstrated statistically significant improvements over state-of-theart methods for single 

input tasks. Using dictionary learning, Huang et al. present a method that can synthesize data 

across modalities using paired and unpaired data. Relying on the power of cross modal 

dictionaries they establish matching functions that can discover cross-modal sparse 

embeddings even when unpaired and unregistered data are available. Considering that across 

modalities different distributions may be present, a manifold geometry formulation term is 

considered. They extensively evaluate their method on two publicly available brain MRI 

datasets.

C. Outlook and Conclusions

We hope with this special issue we have successfully consolidated current efforts in image-

based simulation and synthesis, and stimulate future research. Image-based simulation and 

image synthesis will only gain relevance in the years to come: consider the tsunami of 
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healthcare data, [item 10) in the Appendix] emerging large-scale population imaging and its 

analytics [item 10) in the Appendix], [item 10) in the Appendix] and the growing role of 

machine learning [item 13) in the Appendix]–[item 15) in the Appendix] and computational 

medicine [item 16) in the Appendix], [item17) in the Appendix], just to name a few trends. 

As perhaps never before, intensive industrial innovation in this area fuels translation of these 

technologies into clinical applications and commercial products. Tractica [item 16) in the 

Appendix], for instance, forecasts global software revenue from 21 key healthcare AI use 

cases will grow from $165 million in 2017 to $5.6 billion annually by 2025. Including the 

hardware and services sales driven by these software implementations, the firm anticipates 

the total revenue opportunity for the healthcare AI market will reach $19.3 billion by 2025.

By unambiguously defining these terms and putting them in context, we will be in a better 

position to see the research gaps and synergies, address common challenges, and better track 

the evolution of these methods. With data becoming pervasive and machine learning a 

commodity, we expect image synthesis research to grow. As our discussion above shows, 

mechanistic understanding and interpretation of the available data will have to develop on 

par to data-driven approaches. Mechanism-driven priors will remain a foundation of 

Bayesian inference or physics-based approaches to data interpretation and reconstruction. 

Some methods presented do in fact combine both mechanistic and data-driven models, but 

the gap still exists and more research is needed here.

Evaluation of machine learning and computational modeling remain crucial if these models 

are to percolate to the clinical community with credibility. As machine learning, artificial 

intelligence, computational medicine, etc. turn into buzzwords even among clinicians and 

market analysts [item 19) in the Appendix], [item 20) in the Appendix], and the threshold to 

access and (mis)use these technologies lowers, they become commodities [item 21) in the 

Appendix] [item 22) in the Appendix] with the potential risk of confusing reality with 

fiction. Well-designed community challenges5 for performance assessment and cross-

algorithmic benchmarking should keep us grounded in reality and grow their importance. 

For these challenges to be successful in this aim, larger and more diverse datasets must be 

developed and made openly available, alongside with standards ensuring transparent 

analysis and reporting protocols.

More benchmark data only part addresses the problem. Preprocessing, training, and testing 

largely remain ad hoc processes with non-negligible impact on performance comparisons. 

Standardised evaluation protocols are as key as standardised datasets. There are insufficient 

reference implementations of key algorithms that everyone uses in open benchmarks. This 

leads to considerable algorithmic re-implementation further obfuscating genuine 

contributions and the origin of improved performance. Reference open-source 

implementations of benchmark protocols are helpful but still remain the exception rather 

than the norm (e.g. only a fraction of the papers in the special issue offer that). Of course, 

this challenge holds both for simulation and synthesis approaches.

5 https://grand-challenge.org
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Computational sciences are increasingly pervasive in our lives. It is reassuring to see 

growing awareness on the importance of model verification and validation across 

engineering, [item 23) in the Appendix], [item 24) in the Appendix] medicine, [item 25) in 

the Appendix] [item 26) in the Appendix] and biology [item 27) in the Appendix]. While 

recent years have seen very positive initiatives in this arena, [item 28) in the Appendix]–

[item 30) in the Appendix] our community of medical imaging and medical image 

computing will have to give even more consideration to these topics and develop and 

promote best practices in the assessment and benchmarking of simulation and synthesis 

methods.

One other area we believe is worth investigating is the definition of appropriate evaluation 

criteria. Numerical fidelity in reconstruction is rather common (e.g. mean square error and 

its variants) yet does not necessarily translate to best visual results. In computer vision 

research, human observers are recruited via crowd sourcing and visually score the results of 

image synthesis. In our domain (medical imaging), this would ideally require the 

involvement of clinical experts, which is costly and time consuming. Perhaps more suitable 

evaluations can be those that are application-driven, i.e. those that assess whether simulated/

synthesised data can be used in lieu of real data in an analysis task (or several tasks). Some 

papers in this special issue did in fact use such application-driven evaluations, but these 

approaches are not standardised across methods or applications, which adds another layer of 

obfuscation to the assessment of performance.

In summary, simulation and synthesis are evolving areas in our field. Thankfully, specialised 

workshops such as the MICCAI SASHIMI series can facilitate cross-disciplinary exchange, 

visualise the progress made, and advance upon the challenges described earlier.
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Fig. 1. 
Data-Information-Knowledge-Wisdom (DIKW) pyramid and how phenomenologic and 

mechanistic approaches relate to it. Adapted from [item 6) in the Appendix]
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Fig. 2. 
Helbing’s model for digital growth where systemic complexity (e.g. algorithmic parametric 

complexity and complexity of health data) grows at a factorial rate compared to the 

exponential rate of data and computing resources. Courtesy of D Helbing. Reprinted with 

permission.
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Fig. 3. 
Top five healthcare artificial intelligence use cases revenue. World Markets: 2016–2025. 

Medical image analysis has the lion’s share of revenues; other use cases are likely to also 

involve image analytics of some sort. Courtesy of Tractica [item 18) in the Appendix]. 

Reprinted with permission.
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