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Abstract

The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate 

dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two 

important molecular indicators associated with better prognosis. Traditionally, the statuses of 

MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical 

implementation. Accurate presurgical prediction of their statuses based on preoperative 

multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the 

available data set associated with this study has several challenges, such as small sample size and 

complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we 

propose a novel multi-label non linear matrix completion (MNMC) model to jointly predict both 

MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear 

random Fourier feature mapping to improve the linear separability of the data, and then use 

transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to 

refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. 

We further design an optimization algorithm with a guaranteed convergence ability based on a 

block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, 

multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional 

and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results 

demonstrate that our proposed method outperforms the previously widely used single- and multi-

task machine learning methods. This paper also shows the promise of utilizing brain connectomics 

for HGG prognosis in a non-invasive manner.
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I. Introduction

Gliomas account for approximately 45% of primary brain tumors. The most deadly gliomas 

are classified by World Health Organization (WHO) as Grades III and IV using 

histopathological criteria, which are referred to as high-grade gliomas (HGG) and account 

for about 75% of all gliomas [1], [2]. Related clinical studies have shown that the O6-

methylguanine-DNA methyltransferase promoter methylation (MGMT-m) and isocitrate 

dehydrogenase 1 mutation (IDH1-m) are the two strong molecular indicators associated with 

better prognosis for HGG compared to their counterparts, MGMT promoter unmethylation 

(MGMT-u) and IDH1 wild-type (IDH1-w) [3], [4]. Specifically, MGMT methylation can 

reduce the deoxyribonucleic acid (DNA) repair activity of glioma cells, overcoming their 

resistance to alkylating agents, thus is a strong predictor of response to temozolomide-based 

therapy [5]. With such an increased sensitivity to the therapy, MGMT-m is associated with a 

longer survival time for HGG [3]. IDH1-m is another important molecular biomarker for 

gliomas. It has been suggested that the patients with IDH1-m have significantly longer 

survival time when compared with those with IDH1-w [6], [7]. To date, the identification of 
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MGMT and IDH1 statuses (i.e., MGMT-m vs. MGMT-u, and IDH1-m vs. IDH1-w) is 

becoming a clinical routine and is mainly derived from molecular pathological analysis 

based on invasively acquired tumor tissue specimen, which may sometimes cause severe 

brain injury, and increase the risk of infection and even severe complications (e.g., 

neurological deficits). Moreover, obtaining such molecular information is expensive, 

requiring special examination devices and taking a long waiting time. All these 

shortcomings have limited the extensive clinical applications of these molecular biomarkers, 

especially in the hospitals without cutting-edge testing devices. Non-invasive and 

preoperative prediction of MGMT and IDH1 statuses is convenient and time-saving, thus 

highly desired.

A few studies have been carried out to predict either MGMT or IDH1 status based on the 

tumor characteristics from preoperative brain images. For example, Drabycz et al. extracted 

tumor texture features from T1- and T2-weighted Magnetic Resonance Images (MRIs), and 

employed simple linear discriminant analysis to predict MGMT status [8]. Korfiatis et al. 
also extracted tumor texture features from a single T2-weighted MRI (T2-MRI) modality 

and trained a linear support vector machine (SVM) to predict MGMT status [9]. Yamashita 

et al. extracted both functional features (i.e., cerebral blood flow) based on perfusion MRI 

and morphometric features based on T1-weighted MRI (T1-MRI) from the tumor regions, 

and employed a group-level statistical approach to examine each feature’s association with 

the IDH1 status [10]. Zhang et al. extracted more voxelwise and histogram-based features 

from the tumor areas using T1-/T2-MRI and diffusion-weighted images (DWI), and 

employed a more sophisticated Random Forest (RF) classifier to predict IDH1 status [11]. It 

is worth noting that all the above studies are based predominantly on local appearance/

morphometric features by extracting features from structural MRI, ignoring that the brain is 

actually an integrated system and its organization and connections could also be associated 

with genes and molecular indicators. Abundant evidence has indicated that neurological and 

psychiatric diseases could alter brain functional connectivity (FC) and structural 

connectivity (SC), as measured by resting-state functional MRI (RS-fMRI) and diffusion 

tensor imaging (DTI), respectively [12], [13]. High-grade gliomas, as fast-growing, highly 

invasive neoplasms with diffusive infiltration along the white matter, has been recently found 

to significantly affect largescale brain connectomics [14]‒[21]. In our previous works, we 

have found that the glioma’s influence on the brain connectomics could be informative for 

outcome prediction [21]. Therefore, it is worth investigating whether such macro-scale, 

systems-level changes could also be associated with microscale information such as 

genotype or molecular pathology. Moreover, the local “radiomics” features could bear large 

variability due to highly heterogeneous tumor characteristics; however, the “connectomics” 

features extracted based on large-scale network analysis could more consistently and 

sensitively reflect individual differences in different MGMT and IDH1 statuses. Thus, how 

to design an effective classification framework based on the connectomics features is non-

trivial. We found that all the previous studies are limited to predict either MGMT or IDH1 

status by using a simple, single-task inductive machine learning method, ignoring the 

potential relationship between the two molecular indicators which could help each other in 

achieving more accurate prediction results [22]. It is desirable to use a multi-task learning 

approach to jointly predict MGMT and IDH1 statuses to improve the overall accuracy. In 
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our case, if we treat the MGMT statuses (i.e., ‘MGMT-m vs. MGMT-u’) and the IDH1 

statuses (i.e., ‘IDH1-m vs. IDH1-w’) as two groups of binary molecular labels, then the 

MGMG and IDH1 status prediction problem can be regarded as a multi-task binary 

classification problem, with one task to predict the molecular labels ‘MGMT-m vs. MGMT-

u’ and another task to predict other molecular labels (‘IDH1-m vs. IDH1-w’). However, such 

a study still faces at least two challenges for the currently available dataset. First, since the 

molecular pathology testing was not included as clinical routine during the data collection a 

few years ago, the available data used in this paper has limited sample size. Second, in 

clinical practice, complete molecular pathological tests may not always be conducted; in 

some cases, only one biopsy-proven MGMT or IDH1 status is available, making the 

prediction become an incomplete annotation or missing data problem. Traditional methods 

usually simply discarded the subjects with missing labels, which, however, further reduced 

the number of training samples. The recently proposed Multi-label Transductive Matrix 

Completion (MTMC) [23] model is a suitable transductive multi-task classification 

approach, which simultaneously explores feature distributions of both the training samples 

with (partially) known labels and the testing samples with unknown labels in the training 

stage, thus producing good performance in many previous computational vision or medical 

imaging analysis problems [23]‒[26]. However, such a model is difficult to be generalized if 

a study has a limited sample size due to the increasing overfitting concern that many 

phenotypegenotype association studies may suffer. In order to address this challenge, in our 

preliminary work [27], we introduced an online inductive learning strategy into the 

conventional MTMC model, which resulted in a Multi-label Inductive Matrix Completion 

(MIMC) model for joint prediction of MGMT and IDH1 statuses. However, the MIMC 

model conducts transductive multi-task feature selection in a noisy feature space, rather than 

in a more ideal, noise-free feature space. Moreover, the MIMC model is essentially a linear 
model that heavily assumes a linear relationship between features and labels; however, this 

is not always guaranteed for real applications. In the current study, the relationship could be 

much more complex and probably nonlinear.

To address these limitations, in this study, we employ nonlinear feature transformation in 

conjunction with transductive multi-task feature selection in the denoised feature space, 

which is substantially different from the MIMC model. We thus propose a novel Multi-label 

Nonlinear Matrix Completion (MNMC) model. Specifically, we first conduct explicit 

random Fourier feature mapping to improve the linear separability of the data, and then 

conduct transductive multi-task feature selection in the denoised nonlinear feature space, 

which leverages the unlabeled testing subjects together with the (partially) labeled training 

subjects to make them simultaneously participate in the denoised nonlinear feature selection. 

We step further to learn a shared representation across the related tasks, hence selecting 

important nonlinear features from all subjects and alleviating the overfitting problem. Unlike 

the previous MIMC model, which is jointly convex and can be easily solved by a standard 

Block Coordinate Descent method, the proposed MNMC framework in this paper is a non-

convex model, which makes its solution non-trivial. Therefore, we turn to employ a recently 

proposed Block Prox-Linear (BPL) method [28] to design an efficient algorithm for solving 

the non-convex MNMC model, and also demonstrate that the designed algorithm is 

guaranteed to be convergent. Finally, by using a 10-fold cross-validation strategy on a 
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single-center, multi-modality brain imaging and molecular pathology dataset from HGG 

patients, we perform two experiments based on the single modality and multiple modalities, 

separately. We show our new method has significant performance improvement for both 

experiments, compared with several state-of-the-art methods for MGMT and IDH1 status 

prediction.

Our proposed MNMC model is significantly different from the existing multi-task learning 

models used in medical image analysis [29]–[31]. Specifically, the existing multi-task 

learning models are usually the inductive learning models, while our proposed MNMC 

model is a transductive multi-task learning model and can simultaneously explore feature 

distributions of both training and testing samples in the training stage. Therefore, the 

MNMC model could help improve the generalization performance of the testing samples. In 

addition, although our MNMC model is proposed just for predicting MGMT and IDH1 

statuses, it is actually a generic multi-task binary classification model that is also applicable 

for other small-sample-size applications such as heart rate estimation from face videos [25], 

multi-atlas patch-based label fusion [26], emotion recognition from abstract paintings [32], 

cancer survival prediction [33], and neurodegenerative disease diagnosis [34], to name a few.

II. Materials

A. Summary

In this study, we use T1-MRI, RS-fMRI and DTI data from a glioma brain imaging database 

collected by Huashan Hospital, Shanghai, during 2010–2015. Informed written consents 

were acquired from all the participants before imaging. The imaging study was also 

approved by the local ethical committee at Huashan hospital. A total of 54 HGG patients 

who had all three imaging modalities were originally included in this study. We excluded 2 

subjects with significant imaging artifacts based on T1-MRI, 1 subjects with severe tumor 

mass effect and normal brain tissue distortion (which could severely affect the spatial 

registration), and 4 subjects with excessive head motion during RS-fMRI. The subject 

exclusion was based on the consensus of three raters (HZ, JL and LL). Finally, 47 HGG 

subjects with at least one biopsy-proven MGMT or IDH1 status were included in this study. 

That is, among 47 subjects, 45 subjects have both known MGMT and IDH1 status, one 

subject has only known IDH1 status, and another subject has only known MGMT status. 

Table I summarizes the demographic and clinical information of these 47 subjects. In 

addition, we also check statistical significance of the demographic and clinical information 

by conducting the statistical comparison at 95% significance level between the age (with 

two-sample t-test), gender (with chi-square test), and WHO grade (with chi-square test) of 

the patients with MGMT-m (IDH1-m) and those with MGMT-u (IDH1-w), with the 

corresponding p-values shown in Table I. The results indicate that (1) gender and WHO 

grade of the patients with MGMT-m (or IDH1-m) are not statistically different from those of 

the patients with MGMT-u (or IDH1-w), and (2) IDH1-m matches IDH1-w with respect to 

age on a trend level, i.e., close to be statistically significant (with p = 0.074). To the best of 

our knowledge, there is no paper clearly showing that age is a contributing factor to different 

MGMT statuses. According to all the existing MGMT-related tumor studies, we found that 

MGMT promoter methylation seems to be randomly distributed among different age groups 
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of glioma patients [35]. Specifically, previous studies have been separately focusing on 

young patients and old patients (>70 years old), but with few studies on the elderly group. 

The current studies have suggested that MGMT-m is also a beneficial biomarker for the 

elderly group [36]. In addition, although some literature indicated that the patients with 

IDH1-m have both younger age and longer survival time [37], the IDH1-m has been found 

as independent predictor for better outcome [38]. Taken together, we think that age 

difference might not act as a sole contributing factor to successful genomic classification 

results.

All the T1-MRI, RS-MRI and DTI data were collected preoperatively with a 3.0-Tesla 

scanner (MAGNETOM Verio, Siemens Healthcare, Siemens AG, Germany) with the 

following parameters: (1) T1-MRI: TR (repetition time) = 1900 ms, TE (echo time) = 2.3 

ms, FA (flip angle) = 9°, FOV (field of view) = 240 × 240 mm2, matrix size = 256 × 215, 

slice thickness = 1 mm; (2) RS-fMRI: TR = 2000 ms, TE = 35 ms, FA = 90°, number of 

slices = 33, slice thickness = 4 mm, inter-slice gap = 0; FOV = 210 × 210 mm2, matrix size 

= 64×64, number of acquisitions = 240, voxel size = 3.4×3.4×4 mm3. (3) DTI: 20 diffusion-

weighted directions, voxel size = 2 × 2 × 2 mm3, b = 1000 s/mm2, and multiple acquisition 

factor = 2. The T1-MRI was used to guide spatial registration of all subject’s images (see 

Section B), and RS-fMRI and DTI were used to extract functional and structural 

connectomics information, respectively. Fig. 1 illustrates the pipeline of imaging data 

preprocessing (as detailed in Section B), brain structural and functional network 

construction (as detailed in Section C), and connectomics feature extraction based on graph 

theory (as detailed in Section D).

B. Data Preprocessing

For RS-fMRI, data preprocessing was conducted similarly as for our previous works [21], 

[39] by widely-used fMRI data analysis software: SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), 

Data Processing Assistant for Resting-State fMRI (DPARSF) [40], and REsting-State fMRI 

data analysis Toolkit (REST) [41]. Specifically, it includes discarding the first 5 volumes for 

scanner calibration, correction for slice acquisition timing and head motion, spatial 

registration to the standard Montreal Neurological Institute (MNI) space by using the 

deformation field obtained from “New Segmentation” (an extension of unified segmentation 

which obtains more robust brain tissue segmentation result) [42] and DARTEL (a fast 

diffeomorphic registration algorithm which achieves better performance on lesion brain 

group-wise registration) [43] to the co-registered T1-MRI, spatial smoothing using an 

isotropic Gaussian kernel with FWHM (full-width-athalf-maximum) of 6 mm3, removal of 

temporal linear trend, temporal band-pass filtering (0.01–0.08 Hz), and regressing out 

nuisance signals including the head motion profiles (Friston-24 model) and other 

physiological noise (averaged white-matter signals and averaged cerebrospinal-fluid 

signals).

For each subject, T1 MRI is used to guide spatial normalization of RS-fMRI. Specifically, 

individual T1 MRI is first registered to each patient’s averaged RS-fMRI data after head 

motion correction and then spatially normalized to the MNI standard space based on tissue 

segmentation and group-wise registration as implemented in SPM (New Segment + DAR-
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TEL). As different subjects have different tumor locations, and the group-wise registration 

iteratively registers each subject to a group-averaged template gradually, the tumor effect 

(spatial misregistration) could be minimized. The registration quality was visually inspected 

by experts on MRI analysis (HZ, JL, and LL) with consensus [21], [27], [44]. One subject 

who have visible tumor-induced distortion in the registered T1 MRI were excluded from 

further study. The processed RS-fMRI data with good registration are used for FC network 

construction, which will be described in detail in Section C.

For DTI, we use a pipeline toolbox for analyzing brain diffusion images (PANDA) [45] 

based on the FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/), as detailed 

before [46]. The procedures include brain tissue extraction using bet command, eddy-current 

correction, diffusion tensor calculation using dtifit command, and deterministic tractography 

using fact command in FSL, which generates all possible fibers within the putative white 

matter tissue (fractional anisotropy (FA) > 0.2) with angle threshold = 45° and two seeds for 

each voxel. All above processing steps are carried out in each subject’s native space. To 

construct SC networks, each subject’s T1 image is first co-registered to its respective b = 0 

s/mm2 (T2-weighted) image based on flirt in FSL and then spatially registered to the 

standard MNI space with the same method as used for RS-fMRI registration. The resultant 

deformation field is then applied to map the brain parcellation atlas from the MNI space to 

each individual’s native space, which is used to construct SC networks described in Section 

C.

Note that the same T1 image is used to guide both the RS-fMRI and DTI registrations, so 

that multimodal imaging data can be registered in a consistent manner.

C. Brain Network Construction

To construct brain functional networks based on RS-fMRI, we use the Automated 

Anatomical Labeling (AAL) atlas, which defines 90 regions of interest (ROIs) in the 

cerebral gray matter area in a standard MNI space [47]. For each subject, we first extract the 

ROI mean blood oxygenation level-dependent (BOLD) time series si(i ∈ N) based on the 

AAL atlas; then, we construct the functional network N f by defining the FC strength 

between nodes i and j as:

wi j
f = Corr si, s j , (1)

where i, j ∈ N ≡ {1,2, · · ·, 90} and i ≠ j, and Corr(si, sj) denotes the Pearson’s correlation 

between the two BOLD time series from any ROI pair (i, j) of the 90 brain regions.

For construction of DTI-based SC network, Ns, we apply a warped individual AAL template 

in each subject’s native space to each subject’s DTI tractography results, and calculate the 

SC between the ROIs i and j using PANDA as the normalized total number of fibers 

connecting the ROI pair (i, j):
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wi j
s = ∑i, j ∈ N, i ≠ j n( f )/(

ai + a j
2 ), (2)

where n( f ) is the total number of fibers (i.e., the mainstreams generated by tractography) 

linking ROIs i and j, and ai is the surface area of the ROI i in its interface between gray 

matter and white matter. Dividing the fiber counts with 
ai + a j

2  corrects the bias in the SC-

strength estimation caused by different ROI sizes.

For both FC and SC networks of each subject, there are the same 90 “nodes”. The “edges” 

connecting every pair of the nodes form two weighted networks (Nf and Ns), namely, 

functional and structural brain “connectomics”.

D. Connectomics Feature Extraction

After construction of the brain connectomics (i.e., N f and Ns), we use a graph theoretical 

network analysis (GRETNA) toolbox [48] to extract various network properties, including 

nodal degree, small-world properties (shortest path length and clustering coefficient), 

network efficiency properties (global and local efficiency), and betweenness centrality [49]. 

These network properties are extracted as connectomics features for each node from each 

network of each subject.

Specifically, we extract 540 (6 metrics × 90 regions) FC features and the same number of SC 

features for each subject. In addition, we also use 12 clinical features (CL for short) from 

each subject as they have been extensively used in prognosis evaluation in the clinical 

practice, including patient’s age, gender, tumor size, WHO grade, tumor’s main and specific 

locations (in each of the five brain lobes), epilepsy or not, and the involved hemisphere.

III. Method

We first introduce the notations used in this section. X = [x1, · · ·, xm] ∈ ℝd×m denotes the 

feature matrix with m samples and d features (for each sample). Each sample (i.e., a column 

in X) represents one subject with SC, FC or/and CL features. Y = [y1, · · ·, ym] ∈ {−1, 

1,?}t×m denotes the corresponding label matrix with t labels (here t = 2, i.e., MGMT status 

and IDH1 status; 1 for MGMT-m and IDH1-m, −1 for MGMT-u and IDH1-w; and ‘?’ for 

unknown status). Furthermore, X is divided into Xtrain and Xtest, where Xtrain is for training 

and Xtest is for testing samples. Correspondingly, Y is also divided into Ytrain and Ytest, 

where Ytrain may be partially unknown. Our purpose is to predict Ytest for the testing 

samples. We also let Xlast denotes the last row of matrix X. Xij denotes the element in the i-
th row and j-th column of matrix X. 1 denotes the all-ones row vector. Id×d denotes the d × 

d identity matrix. XT denotes the transpose of matrix X. In addition, we denote the 

Frobenius norm, ℓ2,1-norm, and nuclear norm of matrix X as ‖X‖F = (∑i ∑ jXi j
2 )1/2

, 

‖X‖2,1 = ∑i (∑ jXi j
2 )1/2

, and X * = ∑iσi(X) respectively, where σi(X) denotes the i-th 

largest singular value of matrix X. Finally, we let X0 ∈ ℝd×m denote the true underlying 
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feature matrix corresponding to X. Let Y0 ∈ ℝt×m and sign Y0 respectively denote the true 

underlying soft label (i.e., the continuous value in ℝ) matrix, and the true underlying hard 

label (i.e., the discrete value 1 or −1) matrix, where sign (·) is the element-wise sign 

function.

A. Multi-Label Transductive Matrix Completion (MTMC)

The MTMC is a well-known multi-label matrix completion model, which is developed with 

two assumptions. First, linear dependence relationship is assumed between X0 and Y0, i.e., 

Y0 = WT [X0; 1], where W ∈ ℝ(d+1)×t is an implicit weight matrix. Second, X0 is also 

assumed to be low-rank, i.e., rows (columns) of X0 could be represented by other rows 

(columns). Letting M0 = [Y0;X0; 1] denote the true underlying feature-label matrix 

corresponding to the observed feature-label matrix M = [Y;X; 1], then, from rank (M0) ≤ 
rank (X0)+1, we can infer that M0 is also low-rank. The goal of MTMC is to impute M0 

given M. In real applications, M is usually contaminated by noise, so the MTMC is 

formulated as:

min
Z

μ‖Z‖* + 1
2 ZX − X

F
2 + γℒ ZY, Y s.t. Zlast = 1 (3)

where Z= [ZY; ZX; Zlast] ∈ ℝ(t+d+1)×m denotes the objective matrix to be optimized, ZX 

denotes the feature submatrix, and ZY denotes the soft label submatrix. 

ℒ ZY, Y = ∑(i, j) ∈ ΩY
l ZY i j

, Yi j , where ΩY denotes the index set of known labels in Y, 

and l (·,·) denotes the element-wise logistic loss function:

l(u, v) = log(1 + exp( − uv)) . (4)

Once the optimal objective matrix Zopt is determined, the labels Ytest of the testing subjects 

can then be imputed by sign ZYtest
opt , where ZYtest

opt  is the submatrix of Zopt and denotes the 

optimal soft labels for the testing subjects. Based on the formulation of MTMC, we know 

that ZYtest
opt  is implicitly obtained from ZYtest

opt = Wopt T Xtest
opt; 1 , where Xtest

opt is the optimal 

denoised counterpart of Xtest, and Wopt is the optimal estimation of the weight matrix W. 

Although Wopt is not explicitly computed, it is implicitly determined by the training subjects 

and their known labels via low-rank approximation in Eq. (3). Therefore, for multi-label 

classification tasks with insufficient training subjects, as in our case, the MTMC will have 

the inherent overfitting problem.

Moreover, as mentioned before, the formulation of the MTMC greatly relies on the 

assumptions of low rank and linear setting. Though the low-rank assumption is relatively 

solid and widely accepted, as real data usually lie on low-dimensional manifolds, the linear 

feature-to-label relationship assumption implying all subjects to be linearly separable in the 
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original feature space is too ideal for the complex nonlinear classification problems, as in 

this study.

In order to address the limitation of linear classification setting of MTMC, Alameda et al. 
employed a popular kernel-based approach and proposed the first kernel-based Nonlinear 

Transductive Matrix Completion (NTMC) model [32]. The primary theoretical motivation 

for the use of kernel tricks is the famous Cover’s Theorem [50], which states that, given a set 

of data that is not linearly separable on the original feature space, one can, with high 

probability, transform it to a new dataset that is linearly separable, by projecting it to a 

higher-dimensional space via nonlinear feature transformation. However, though NTMC 

benefits from possible linear separability of the data in the mapped kernel feature space, it 

also suffers the increased overfitting risk caused by lifting the original features to a higher 

dimensional Reproducing Kernel Hilbert Space. Moreover, since the NTMC employs the 

kernel trick to conduct the implicit nonlinear feature transformation, it is difficult to further 

adopt any overfitting-resistant technique to alleviate the overfitting deficiency.

B. Multi-Label Nonlinear Matrix Completion (MNMC)

The alternative method of making linear models work for nonlinear classification is using 

kernel approximation [51], which explicitly maps the original data to a finite dimensional 

feature transformation space:

Φ xi :ℝd ℝh, (5)

and assures that the expectation of the inner product of any two points in the transformed 

feature space is an unbiased estimation of the corresponding kernel function, i.e.,

K xi, x j = E Φ xi , Φ x j . (6)

The random Fourier feature mapping is a widely used kernel approximation technique [51], 

which can help revealing nonlinear features of data when used in conjunction with linear 

algorithms and, for basic tasks such as regression or classification, using nonlinear random 

Fourier features incurs little or no loss in performance compared with the exact kernel 

methods [52], [53].

Theoretically, for shift-invariant kernels, Bochner’s theorem [54] implies that the random 

Fourier feature mapping Φ(·) can be written as:

Φ xi = (1/ h) cos u1
Txi + b1 , ⋯, cos uh

Txi + bh , (7)

where {u1, · · ·, uh} are the projection directions sampled according to the distribution from 

the Fourier transform of the kernel function using Monte Carlo method, and {b1, · · ·, bh} are 
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drawn uniformly from [0, 2π]. For instance, for the popularly used Radial Basis Function 

(RBF) kernel with δ representing the kernel width,

K xi, x j = exp −δ xi − x j
2 , (8)

its sampling distribution is a Gaussian distribution 𝒩 0, 2δId × d .

In this study, we propose a Multi-label Nonlinear Matrix Completion (MNMC) model, 

which is a modification of the conventional MTMC model by introducing random Fourier 

feature mapping and transductive multi-task feature selection, to jointly predict MGMT and 

IDH1 statuses. Fig. 2 illustrates our MNMC model. As shown in Fig. 2, we first conduct 

nonlinear feature transformation, i.e., random Fourier feature mapping, for all subjects X, 

and get the mapped nonlinear feature matrix:

Φ(X) = Φ x1 , ⋯, Φ xm . (9)

Then the corresponding MTMC model in the transformed nonlinear feature space can be 

formulated as:

min
z

μ Z
*

+ 1
2 ZX − Φ(X)

F

2
+ γℒ ZY, Y

s.t. Zlast = 1,

(10)

where Z = ZY; ZX; Zlast  denotes the objective matrix to be optimized in the mapped 

nonlinear feature space, ZY denotes the soft label submatrix, and ZX denotes the feature 

submatrix.

As previously stated, by mapping the original features to a relatively higher-dimensional 

nonlinear feature space, the subjects may be linearly separated with higher probability. 

However, this advantage comes at the expense of exacerbating the overfitting issue. To 

address this issue, we further employ the transductive multi-task feature selection technique 

to refine the imputed soft labels ZY by introducing a following regularization term into the 

Eq. (10):

min
Z, W

λ W
2, 1

+ β
2 ZY − WT ZX; 1

F
2 , (11)

where W ∈ ℝ(h + 1) × t denotes the explicit predictor matrix (with each column of W
corresponding to a predictor for each task), and the ℓ2,1-norm imposes the row sparsity on W
to learn the shared representations across all related tasks by selecting the common 
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discriminative features. In addition, please note that, in the second term of Eq. (11), we use 

all subjects, including the training and testing samples, to simultaneously conduct feature 

selection. In other words, we leverage the testing subjects as an effective supplement to the 

limited training subjects to alleviate the over-fitting issue caused by limited training data. 

Finally, by combining Eq. (10) and Eq. (11), our proposed MNMC model is formulated as:

min
Z, W

μ Z
*

+ 1
2 ZX − Φ(X)

F
2 + γℒ ZY, Y + λ W

2, 1

+ β
2 ZY − WT ZX; 1

F
2 s.t. Zlast = 1 .

(12)

Obviously, from Eq. (12), we can see that the conventional MTMC model is the special case 

of our proposed MNMC model if set Φ(X) to the identity function and set the parameters λ 
and β to zeroes.

C. Optimizing MNMC via Block Prox-Linear Method

The optimization of the MNMC model is not trivial, as it contains the two coupled variables 

ZX and W  and one all1-row constraint Zlast = 1 , along with the fact that the ℓ2,1-norm and 

nuclear norm are non-smooth penalties. Here, we employ BPL method [28] to design an 

algorithm for solving the optimization problem in the MNMC model. The BPL method is a 

recently proposed Block Coordinate Descent method, which can efficiently solve the 

following standard unconstrained optimization problems in the form of [28]:

min
X1, ⋯, Xs

F X1, ⋯, Xs + ∑i = 1
s Ri Xi , (13)

where X1, · · ·, Xs ∈ ℝm×n, F (X1, · · ·, Xs) is continuously differentiable nonconvex 

function, and Ri (Xi), i = 1, · · ·, s, are proximable non-smooth functions (‘proximable’ 

means that it is easy to obtain the minimizer of 1
2τ Xi − A

F
2  for any A ∈ ℝm×n and τ > 0). 

The BPL method cyclically updates each block of variables in Gauss-Seidel style by 

minimizing a prox-linear surrogate function. Specifically, at each iteration k, Xi, i = 1, · · ·, s, 

are updated as follows:

Xi
k = argmin

xi
Ri Xi + 1

2τXi
k Xi − Xi

k − 1

−τXi
k ∇Xi

F X < i
k , Xi

k − 1, X > i
k − 1

F

2 ,

(14)

Chen et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where X < i
k , Xi

k − 1, X > i
k − 1  denotes the point X1

k, ⋯, Xi − 1
k , Xi

k − 1, Xi + 1
k − 1, ⋯, Xs

k − 1 , 

∇Xi
F X < i

k , Xi
k − 1, X > i

k − 1  denotes the gradient of F (X1, · · ·, Xs) with respect to Xi at the 

point X < i
k , Xi

k − 1, X > i
k − 1 , and τXi

k  is a step size which can be determined by the line search 

according to the Armijo-Goldstein rule.

For our proposed MNMC model, if let G(Z) be an indicator function defined as:

G(Z) =
0, Zlast = 1
∞, otherwise,

(15)

and let:

R1(Z) = μ Z * + G(Z), (16)

R2(W) = λ W 2, 1, (17)

F(Z, W) = β
2 ZY − WT ZX; 1

F
2 + γℒ ZY, Y

+ 1
2 ZX − Φ(X)

F
2 ,

(18)

the proposed MNMC model can be reformulated as the following unconstrained form:

min
Z, W

F(Z, W) + R1(Z) + R2(W) . (19)

Therefore, according to the BPL method, the variables Z and W can be iteratively updated as 

follows:
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Zk = argmin
Z

R1(Z) + 1
2τZ

k

Z − (Zk − 1 − τZ
k ∇ZF(Zk − 1, Wk − 1))

F

2

Wk = argarg min
W

R2(W) + 1
2τW

k

W − (Wk − 1 − τW
k ∇WF(Zk, Wk − 1))

F

2 . (20b)

(20a)

Specifically, the variables Zk in Eq. (20a) can be analytically solved by the following steps:

Zk = 𝒟
μτZ

k Zk − 1 − τZ
k ∇ZF Zk − 1, Wk − 1

Zk
last = 1,

(21)

where 𝒟
μτZ

k( ⋅ ) denotes the proximal operator of the nuclear norm (with the details provided 

in the online Supplementary Materials) [55], and ∇ZF( ⋅ , ⋅ ) can be calculated as:

∇ZF Z, Wk − 1

=

ZX − Φ(X)

+βWk − 1 Wk − 1 T ZX; 1 − ZY , (i, j) ∈ ΔX

−γYi j/ exp Zi j ⋅ Yi j + 1

+β Zi j − Wk − 1 T ZX; 1
i j

, (i, j) ∈ ΩY

β Zi j − Wk − 1 T ZX; 1
i j

, (i, j) ∈ ΩY
C

0, otherwise

(22)
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where ΔX denotes the index set of elements in ZX, Wk − 1 denotes the first h rows of Wk − 1, 

and ΩY
C denotes the index set of unknown labels in Y. Also, the variables Wk in Eq. (20b) 

can be analytically solved by:

Wk = 𝒥
λτW

k Wk − 1 − τW
k ∇WF Zk, Wk − 1 (23)

Algorithm 1

Proposed MNMC Algorithm

Input: Matrices X, Y, and parameters h, δ, λ,μ, γ, β.

Output: Wopt
, Zopt

1 Compute Φ(X) according to Eq. (9);

2 Initialize W0
 as the zeroes matrix, and Z0

 as the rank 1 approximation of [Y;Φ(X);1] with the unobserved entries 
set to 0;

3 While not converged do

4  Update Zk
 according to Eq. (21);

5   Update Wk
 according to Eq. (23);

6 End while;

7 Return Wopt Wk
, Zopt Zk

.

where 𝒥
λτW

k ( ⋅ )
 denotes the proximal operator of l2,1-norm (with the details provided in the 

online Supplementary Materials) [56], and ∇WF( ⋅ , ⋅ ) can be calculated as:

∇WF Zk, W = β ZX
k ; 1 ZX

k ; 1 TW − ZY
k T

(24)

Based on the aforementioned analysis, the proposed algorithm can be summarized as in 

Algorithm 1.

Theoretically, for nonconvex non-smooth problems with the separable non-smooth terms, 

Xu and Yin [28] have demonstrated that the BPL method is guaranteed to converge to a 

critical point, as long as ∇Xi
F X < i

k , Xi, X > i
k − 1 , i = 1, · · ·, s, has Lipschitz continuity constant 

LXi
k  with respect to variable Xi, i.e.,
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∇Xi
F X < i

k , U, X > i
k − 1 − ∇Xi

F X < i
k , V, X > i

k − 1
F

≤ LXi
k U − V

F
, ∀U, V ∈ Rm × n .

(25)

For our MNMC model, we can easily see that the objective function in Eq. (19) has the two 

separable non-smooth terms, i.e., R1(Z)1 and R2(W), and it is easy to verify that 

∇ZF Z, Wk − 1  and ∇WF Z, W  are Lipschitz continuous with constants LZ
k  and LW

k  (with the 

details provided in the online Supplementary Materials):

LZ
k = max 4σ1

2 βWk − 1 + 4β2 + γ2/8,

2 + 4σ1
2 βWk − 1 Wk − 1 T

+ 4σ1
2 β Wk − 1 T

(26)

LW
k = σ1 β ZX

k ; 1 ZX
k ; 1 T . (27)

Based on this fact, our proposed optimization algorithm also has the provable convergence, 

and the concrete convergence analysis is the same as in [28].

IV. Results

A. Experimental Setting

Due to the limited number of samples, we use 10-fold cross validation to evaluate the 

performance of MGMT and IDH1 status prediction. Specifically, we randomly partition the 

whole dataset into 10 roughly equivalent subsets, and then successively select each subset as 

the testing data and assemble the remaining subsets as the training data. This process is 

independently repeated for 20 times, and the average accuracy (ACC), average sensitivity 

(SEN), average specificity (SPE) and the average area under receiver operating characteristic 

curve (AUC) are reported as the final performance measures. Specifically, the average ACC, 

SEN, and SPE are obtained by averaging all the 20 ACC, SEN, and SPE scores across the 20 

trials, respectively, while the average AUC is obtained by computing AUC once based on all 

prediction scores of 20 trials. To this end, we label the subjects with MGMT-m and IDH1-m 

statuses as “positive” samples (favorable prognosis), and those with MGMT-u and IDH1-w 

as “negative” samples (unfavorable prognosis).

In our experiments, the proposed MNMC method involves 6 parameters (i.e., h, δ, μ, γ, λ 
and β) that need to be determined. To this end, we use a two-stage grid searching strategy to 

determine the optimal values of these parameters. Specifically, we start with conducting the 

first-stage hierarchical optimization-based coarse-grained grid searches on the training data 
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with wide ranges (h ∈ {1000, 2000, 3000, 4000, 5000}, δ, μ, γ, λ, β ∈ {0.0001, 0.001, 0.01, 

0.1, 1, 10, 20, 30, 50, 100}) to explore the bounds of the search spaces. For each parameter, 

we use 10-fold cross-validation with 20 repetitions to evaluate the average prediction 

performance (i.e., accuracy, ACC) by varying its value while fixing the other five parameters 

(i.e., h is fixed as 3000, and δ, μ, γ, λ, β are fixed as 1, respectively), so that we can select a 

narrowed parameter range with a relatively better ACC as the new search bounds in the 

second-stage fine-grained optimizations. Based on this principle, we can determine the 

search bounds of 5 parameters as follows: δ ∈ [0.01, 10], μ ∈ [0.001, 0.1], γ ∈ [0.1, 20], λ ∈ 
[0, 20] and β ∈ [1,30]. Exceptionally, for parameter h, we observed that, with its increase 

from 3000 to 5000, the ACC increased slightly; however, the computation cost increased 

significantly. Therefore, in order to balance the performance and computation complexity, 

we select its search bounds as [1000, 3000]. After that, to further determine the optimal 

parameter values, we conduct the second-stage global optimization-based fine-grained grid 

searches with the following ranges: h ∈ {1000, 1500, 2000, 2500, 3000}, δ ∈ {0.01, 0.05, 

0.1, 0.5, 1, 10}, μ ∈ {0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1}, γ ∈ {0.1, 0.5, 1, 5, 10, 15, 

20}, λ ∈ {0, 2, 4, 6, 8, 10, 20}, and β ∈ {1, 5, 10, 15, 20, 25, 30}. Specifically, we conduct 

another 10-fold cross validation with 20 repetitions on the training data to evaluate the 

average ACC with each combination of the above parameter values; those leading to the best 

ACC are used to construct the optimal MNMC model. Finally, the constructed optimal 

model is applied to the testing data.

B. Competing Methods

To validate the effectiveness of our proposed method, we have performed extensive 

experiments by also comparing with five different competing methods, including two 

widely-used classic methods (RF [57] and kernel Transductive SVM (TSVM) [58]) and 

three state-of-the-art matrix completion methods (MTMC [23], MIMC [27], and NTMC 

[32]). Table II summarizes the five competing methods and our proposed MNMC method 

with the characteristics of linear/nonlinear classification setting, inductive/transductive 

learning scheme, single-label/multi-label classification mode, and adaptive feature selection 

strategy. All the involved parameters in these competing methods are optimized by using the 

same nested 10-fold cross-validation procedure as in our MNMC model. Specially, for RF 

method, we conduct grid search for the number of decision trees from the range {10, 20, 50, 

100, 200, 300, 400, 500}, the number of predictors from the range {2, 5, 10, 20, 50, 100, 

150, 200}, and the minimum number of observations per tree leaf from the range {1, 2, 3}; 

For TSVM method, we conduct grid search for the regularization parameter from the range 

{0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}, and the RBF kernel (variance) parameter from the 

range {0.01, 0.05, 0.1, 0.5, 1, 5}; For MTMC and MIMC methods, we conduct grid search 

for those counterpart parameters with the same ranges as our MNMC method. For NTMC 

model, we conduct a grid search for the regularization parameter and the RBF kernel 

(variance) parameter with the same range as TSVM, and the decomposition size with the 

range {2, 3, 4, 5}. In addition, since our proposed MNMC, MIMC and RF have the inline 

adaptive feature selection function, to make a fair comparison, for those methods without 

feature selection, we adopt the popular feature selection methods to help them remove 

irrelevant or redundant features. Specifically, the LASSO (Least Absolute Shrinkage and 

Selection Operator) [59] is employed to facilitate the single-task TSVM method. Also, the 
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semi-supervised multi-task feature selection method proposed by Li et al. [33] is employed 

to facilitate multi-task MTMC and NTMC methods.

C. Prediction Results

First, we evaluate MGMT/IDH1 status prediction performance using features from single 

modality, i.e., based on CL, SC, and FC features, separately. Table III reports the 

experimental results of the five competing methods and our proposed method, where the best 

results are highlighted. From Table III, we can see that, except that the TSVM achieves 

higher SEN than our proposed MNMC method (i.e., 72.3% vs. 70.8%) in IDH1 status 

prediction using SC features, the MNMC consistently outperforms all other competing 

methods (i.e., RF, TSVM, MTMC, NTMC and MIMC) in almost all performance metrics. 

The results indicate that our proposed nonlinear feature transformation and transductive 

multi-task feature selection strategies can improve the performance of MGMT and IDH1 

status prediction.

Second, considering that different modalities could provide complementary information and 

thus may enhance the prediction performance, we also perform experiments based on 

multiple modality fusion. We construct a new feature matrix with concatenated CL, FC and 

SC features at each column. Table IV summarizes the prediction results of the five 

competing methods and our proposed MNMC method. As expected, the modality fusion can 

help improve the prediction performance. Our proposed method not only achieves the 

highest ACC for MGMT (74.6%) and IDH1 (87.0%) prediction, but also consistently 

outperforms the single-task RF/TSVM and the multi-task MTMC/NTMC/MIMC in terms of 

SEN and AUC.

Third, we also investigate the prediction performance when applying the proposed MNMC 

method to the only 45 subjects with both known MGMT and IDH1 statuses (indicated by 

‘MNMC(45)’), and applying it to the two binary classification tasks separately (indicated by 

‘MNMC(S)’). Table V reports the experimental results of the MNMC method with the three 

different experimental settings, i.e., MNMC, MNMC(45), and MNMC(S). From Table V, we 

can observe (1) the MNMC(45) method consistently outperforms the classic methods (RF 

and TSVM) in all performance metrics, and it also obtains a comparable prediction 

performance with the MNMC method applied to all 47 subjects, and (2) the MNMC(S) 

method obtains a lower prediction performance than the MNMC method applied to the two 

binary classification tasks simultaneously, but outperforms the classic methods applied to 

the two binary classification tasks separately. The results further validated that our proposed 

MNMC model can effectively exploit the potential relationship between the two molecular 

indicators (i.e., MGMT and IDH1) to improve the overall prediction performance.

In addition, to check the statistical significance of our results, we further conduct Delong’s 

test [60] at 95% confidence level between AUC values of our proposed method and the 

competing methods, with the corresponding p-values shown in Table III, Table IV, and Table 

V. DeLong’s test is a widely-used nonparametric statistical approach to the analysis of areas 

under correlated ROC curves, which can be employed to assess statistical significance by 

using the theory on generalized U-statistics to generate an estimated covariance matrix [61]–

[63]. The results indicate that, except that our method is marginally significantly better than 
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MIMC (with p-value = 0.079) in IDH1 status prediction using multiple modalities, our 

method is statistically superior to all other competing methods in terms of AUC.

D. Effects of the Proposed Strategies

The main argument in our work is that the nonlinear feature transformation and the 

transductive multi-task feature selection strategies can advance the linear separability of the 

data and adaptively select a small set of crucial features across the related tasks, respectively, 

and thus reduce the prediction errors of MGMT/IDH1 statuses. To validate the effects of 

these two strategies, we further carry out some experiments to compare our proposed 

MNMC method that considers only one of the two strategies. Specifically, we use the 

“MTMC-S” to indicate the counterpart with only the transductive multi-task feature 

selection strategy, i.e., the MNMC model with Φ(·) being the identity function. On the other 

hand, we use “MTMCN” to indicate the counterpart with only the nonlinear feature 

transformation, i.e., the MNMC method with parameters λ = 0 and β = 0.

We present experimental results of the counterpart methods and our proposed method in Fig. 

3. For better understanding, we also present the performance of MTMC as baseline method 

that does not consider any of the two strategies. From the two graphs in Fig. 3, we can 

observe (1) a method that utilizes any of the two strategies is still better than the MTMC 

baseline method, and (2) the inclusion of both strategies into the objective function is better 

than the inclusion of just one strategy.

E. Sensitivity Analysis of Parameters

Next, we investigate the sensitivity of the proposed MNMC method to the parameter setting. 

There are six different parameters (i.e., h, δ, μ, γ, λ, β) that need to be determined in our 

method. Considering that parameters h and δ, which determine the nonlinear feature 

mapping in Eq. (7), are relatively independent to other four parameters, we design a set of 

experiments to investigate how these two parameters jointly affect the prediction 

performance of MNMC. Fig. 4 reports the average ACC of both the MGMT and IDH1 status 

predictions, with varying h and δ by fixing the other four parameters, i.e., μ = 0.04, γ = 10, 

λ = 8, β = 10. As shown in Fig. 4, the optimal working point of our proposed method is at h 
= 2500 and δ = 0.1. We also notice that the working point is on a relatively flat part of the 

performance surface, implying that our proposed method is not very sensitive to the 

variations of the parameters h and δ around the optimal working point.

On the other hand, we also carry out four sets of experiments to explore the sensitivity of 

parameters μ, γ, λ and β, respectively. Fig. 5 reports the average ACC of both the MGMT 

and IDH1 status predictions, with varying μ, γ, λ and β, respectively, when fixing the other 

parameters. First, we can observe that the performance is relatively stable if the parameters 

μ, γ and β respectively falls in a certain range (i.e., μ ∈ [0.04, 0.08], γ ∈ [5, 15], β ∈ [10, 

25]), and the performance deteriorates when they fall outside of the range. Second, we 

observe that the performance is largely affected by the value of λ, suggesting the importance 

of selecting the optimal λ value for MGMT and IDH1 status predictions. This is reasonable 

since the parameter λ controls the sparsity of the weight matrix and hence determines the 

scale of the optimal feature subset. Finally, Fig. 5(c) shows that the prediction accuracy with 
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feature selection (i.e., λ > 0) is better than the counterpart without feature selection (i.e., λ = 

0), demonstrating again the importance of feature selection.

V. Conclusion

In this paper, we aim to predict MGMT and IDH1 statuses for HGG patients. Considering 

that the available imaging data are constrained in size and have a complex feature-to-label 

relationship, we propose a novel multi-label nonlinear classification model within a 

transductive learning framework, i.e., Multi-label Nonlinear Matrix Completion (MNMC) 

model, to address this task. Compared with the conventional MTMC model, the proposed 

MNMC not only addresses the limitation of linear classification setting by lifting the 

original features to a more possible linearly separable nonlinear feature space, but also 
conducts a transductive multi-task feature selection to refine the predictions of MGMT and 

IDH1 statuses for the testing subjects. Finally, in order to validate our proposed method, we 

conduct extensive experiments using 47 subjects with both the DTI and RS-fMRI imaging 

data and the incomplete MGMT/IDH1 statuses. The promising results verify the advantages 

of our proposed MNMC method over the widely-used single-task or multi-task classifiers. 

Also, for the first time, we show the feasibility of MGMT and IDH1 status prediction based 

on the preoperative multi-modality neuroimaging and connectomics analysis.

However, this study still has some limitations. First, larger patient populations with more 

heterogeneous data origins are needed to investigate the generalizability and robustness of 

our proposed method. Second, our proposed MNMC model is able to deal with the missing 

values in the label matrix, but cannot handle the missing values in the feature matrix. Future 

work will focus on extending our proposed MNMC model to handle the missing features, 

and integrate other useful sources of information for improving the prediction performance 

of MGMT and IDH1 statuses. Finally, based on RS-fMRI, other FC metrics such as partial 

correlation-based FC can be extracted as additional features. Note that partial correlation is 

also widely used in functional network construction and has been suggested to measure 

mainly the direct and effective connectivities [64], [65]. It could supplement the Pearson’s 

correlation-based FC to achieve better prediction, which will be our future work.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The pipeline of data (i.e., RS-fMRI and DTI data) preprocessing, brain network 

construction, and connectomics feature extraction. (D: degree; P: shortest path length; C: 

clustering coefficient; B: betweenness centrality; G: global efficiency; L: local efficiency; 

FC: functional connectivity; SC: structural connectivity).
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Fig. 2. 
The illustration of Multi-label Nonlinear Matrix Completion (MNMC) model.
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Fig. 3. 
Comparison of prediction performance (%) of the MNMC and its counterparts without 

nonlinear feature transformation (MTMC-S), multi-task feature selection (MTMC-N), and 

both (MTMC). (a) IDH1-m vs. IDH1-w (b) MGMT-m vs.MGMT-u.
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Fig. 4. 
Sensitivity analysis of parameters h and δ in our proposed MNMC method.
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Fig. 5. 
Sensitivity analysis of the parameters μ, γ, λ and β in our proposed MNMC method. (a) 

ACC performance w.r.t.μ. (b) ACC performance w.r.t. γ. (c) ACC performance w.r.t. λ. (d) 

ACC performance w.r.t. β.
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