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Abstract

Metopic craniosynostosis is a condition caused by the premature fusion of the metopic cranial 

suture. If untreated, it can result into brain growth restriction, increased intracranial pressure, 

visual impairment, and cognitive delay. Frontoorbital advancement is the widely accepted surgical 

approach to correct cranial shape abnormalities in patients with metopic craniosynostosis, but the 

outcome of the surgery remains very dependent on the expertise of the surgeon because of the lack 

of objective and personalized cranial shape metrics to target during the intervention. We propose in 

this paper a locally affine diffeomorphic surface registration framework to create an optimal 

interventional plan personalized to each patient. Our method calculates the optimal surgical plan 

by minimizing cranial shape abnormalities, which are quantified using objective metrics based on 

a normative model of cranial shapes built from 198 healthy cases. It is guided by clinical 

osteotomy templates for fronto-orbital advancement, and it automatically calculates how much and 

in which direction each bone piece needs to be translated, rotated and/or bent. Our locally affine 

framework models separately the transformation of each bone piece while ensuring the 

consistency of the global transformation. We used our method to calculate the optimal surgical 
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plan for 23 patients, obtaining a significant reduction of malformations (p < 0.001) between 

40.38% and 50.85% in the simulated outcome of the surgery using different osteotomy templates. 

In addition, malformation values were within healthy ranges (p > 0.01).

Index Terms

Craniosynostosis; locally affine; surgical plan; osteotomy; registration

I. Introduction

A. Craniosynostosis

Non-syndromic craniosynostosis is a condition affecting 1 in 2100–2500 live births [1] in 

which one or more cranial sutures fuse early, producing head malformations because of the 

compensatory brain growth along the direction parallel to the fused suture. If untreated, 

craniosynostosis can cause brain growth restriction, increased intra-cranial pressure, visual 

impairment and cognitive delay. Treating craniosynostosis often requires surgery to 

reconstruct the cranial vault and allow the brain to develop normally.

In this work, we focus on the early fusion of the metopic suture, which is the suture that 

separates the two frontal bones, as shown in Figure 1. Patients with metopic craniosynostosis 

typically develop a triangular shape of the head due to the constrained growth of the frontal 

cranial bones, which is called trigonocephaly. Although the clinical diagnosis of 

craniosynostosis is usually done by visually inspecting the head shape and the fused sutures 

in Computed Tomography (CT) images of the head [2], the specific diagnosis of metopic 

craniosynostosis is more challenging. The reason is that the metopic suture fuses early in 

healthy subjects too, so diagnosis of metopic craniosynostosis is mostly based on the 

subjective assessment of the cranial shape of the patient.

An automatic and quantitative framework for an objective assessment of craniosynostosis 

was proposed in [3], where a multi-atlas of healthy cranial shapes was used to quantify 

cranial shape abnormalities using two different descriptors: (1) the malformations, which are 

the local Euclidean distances between the surface representation of the patient’s cranial 

shape and its closest normal shape in the multi-atlas space, and (2) the curvature 

discrepancies, defined as their local curvature differences. These descriptors, together with 

the suture fusion information obtained from the patient’s CT image, were shown to provide 

an accurate automatic diagnosis of craniosynostosis [4]–[6].

After diagnosis of metopic craniosynostosis, fronto-orbital advancement is the most widely 

accepted surgical approach to create a normal cranial shape. During the intervention, the 

supra-orbital bar and the frontal bones are separated from the rest of the cranium and 

reshaped to correct the trigonocephaly and allow for a normal brain development [7]. 

Depending on the degree of malformations, it may be necessary to divide the frontal bones 

and/or the supra-orbital bar in smaller bone pieces to create a normal shape. Although the 

work presented in [3] proposed a solution for an objective diagnosis of metopic 

craniosynostosis, it did not address the problem of how to create a normal shape during 
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surgical treatment. Currently, there are no reproducible and objective methods to create the 

optimal cranial shape during the intervention, and the outcome of the intervention is very 

dependent on the expertise of the surgeons.

Computer aided planning software [8] has improved significantly cranio-maxillofacial 

interventions. Several groups have explored the use of these systems to plan craniosynostosis 

surgical treatment [9] and, as shown in [10], they generally provide a better and faster 

cranial vault reconstruction. However, these tools need substantial manual interaction to 

create a plan for surgery and the results are very dependent on the expertise of the 

specialists. In addition, the reference models used for visual guidance were either population 

averages or age-matched templates [11], which do not adapt to the specific cranial shape of 

the patient.

In the current work, we focus on the surgical treatment for the reconstruction of the cranial 

shape of patients with metopic craniosynostosis. We aim at defining a patient-specific, 

automatic, and reproducible method to plan fronto-orbital advancement based on 

quantitative and objective metrics. We model the solution as a locally affine diffeomorphic 

surface registration problem in which the goal is to deform the patient’s cranial shape (i.e. 

reposition and reshape cranial bone pieces) to create a cranial shape as close as possible to 

its closest shape from a normative statistical shape multi-atlas. Our automatic framework is 

designed around the clinical osteotomy templates for fronto-orbital advancement.

B. Surface-Based Registration

Methods for surface registration in medical imaging have been proposed to quantify surface 

dissimilarities and/or to model surface matching transformations [12], [13]. Surface 

registration is often addressed as a problem of finding point correspondences, which 

presents two main problems. First, no structural information is considered by only using 

point coordinates, so this approach can result into surfaces with similar point distribution but 

different geometry. Second, these methods assume that there is a one-to-one point 

correspondence but, in most cases, it is necessary to register surfaces with different point 

distributions. A surface matching method where surfaces were represented as currents was 

presented in [14]. Using this kind of representation, it is possible to compare two surfaces 

with different number of points. Moreover, surface comparison in the space of currents is 

sensitive both to point location and surface geometry.

To solve the problem of creating a normal cranial shape during surgery that we address in 

this paper, the surgeon repositions and remodels a set of bone pieces to create a global 

cranial shape that is as close as possible to a healthy shape. Therefore, our solution needs to 

account both for the individual transformation of each bone piece and for their interactions. 

The concept of a global deformable transformation model that incorporates different regions 

with specific properties was introduced in [15] for image registration. In that work, a set of 

local rigid transformations was estimated, one for each rigid object present in the images. 

These local transformations were combined with a global deformable transformation based 

on radial basis functions using a weighting scheme. Although, that framework ensured 

rigidity at specific regions of the image, invertibility of the transformation was not 
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guaranteed and the accuracy of the results was constrained by the resolution of the grid of 

control points and the properties of the radial functions.

An image registration method to combine different rigid/affine transformations was 

proposed in [16], using Gaussian weighting functions centered at predefined anchor points 

to obtain a diffeomorphic deformable transformation. An improved mathematical framework 

for poly-affine registration was also presented in [17]. Those frameworks enabled non-rigid 

registration of medical images using a small number of parameters in comparison to other 

state-of-the-art non-rigid registration methods. However, although different local rigid/affine 

transformations were combined, rigidity/affinity was not ensured at any specific region of 

the image.

In our previous work [18], we proposed a method to incorporate rigid regions in an image-

based registration framework based on the transformation model proposed in [16], by 

incorporating a new weighting scheme controlling the contribution of each local rigid 

transformation at each region of the image. We then created a preliminary surface-based 

registration framework in [19] where local regions (i.e. bone pieces) were modeled using 

affine transformations instead of only rigid. In the current paper, we present our new surface 

registration framework that allows not only for bone repositioning, but also bone bending. 

We calculate the dissimilarity between the source and target surfaces in the space of currents 

and we improve the weighting scheme to adjust dynamically to the changes introduced by 

the transformation at each discretization point during the temporal integration of the velocity 

field estimated. Compared to [17], our transformation model is region-wise affine and unlike 

in [19], we model the transformation of each bone piece with reference to its center of mass, 

which facilitates implementing the transformation of each bone piece to the operating room. 

We also extend our framework to evaluate different osteotomy plans for the same patient, 

and we compare the surgical outcome simulated using each osteotomy plan in terms of three 

different metrics: reduction of malformations, reduction of curvature discrepancies, and 

minimum bone stress to implement the optimal plan. We estimated the optimal surgical plan 

for 8 more patients with respect to our preliminary work presented in [19], evaluating a total 

of 23 patients with metopic craniosynostosis. Finally, we built a new normative statistical 

shape multi-atlas with 198 healthy subjects used as a reference to quantify cranial shape 

abnormalities, thus incorporating 98 healthy cases with respect our previous work [19].

II. Methods

In this section, we first summarize our methods to obtain the surface representing the 

patient’s cranial shape, segment the cranial bones, and quantify cranial shape abnormalities. 

Then, we describe in detail the components of the proposed surface-based registration 

framework (dissimilarity measure and transformation model) to calculate the optimal 

transformation of the patient’s cranium that creates a cranial shape as close as possible to its 

closest normal shape from a normative multi-atlas. In addition, we present the approach that 

we followed to design different clinical osteotomy templates for the surgical intervention. A 

summary of the framework proposed is presented in Figure 2.
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A. Cranial Shape Extraction, Bone Segmentation and Quantification of Malformations

Given the CT image of a patient’s head, we obtain the mesh representing its cranial surface 

as presented in [3]. First, we extract the bones from the CT image using thresholding based 

on the Hounsfield units of bone tissue, thus creating a binary image of the bones. Then, we 

obtain the surface representing the patient’s cranial shape from the binary image by the 

constrained relaxation of an embedding sphere, as presented in [20]. The result is a single-

layered continuous mesh.

From the binary image created previously, we segment the different cranial bones using a 

method based on graph-cuts [21]. First, we label manually the cranial bones on the binary 

image of a healthy subject used as reference. Then, given the binary image of a new patient’s 

cranium, we register it to the reference template as explained in [3]. This registration 

estimates the pose and scale to align the patient’s cranial shape to the reference subject only 

considering the base of the cranium, thus minimizing the impact of the malformation in the 

cranial vault area caused by craniosynostosis. Then, we minimize the following cost 

function to label the cranial bones:

E (l) = α∑
∀x

dlx
dlx

+ (dl ∣ l ≠ lx) + ∑
(x, y)εK

V x, y(lx, ly), (1)

where α is a weighting parameter, l is a labeling scheme assigning label lx to voxel at 

coordinates x, and dl is the distance to the cranial bone with label l in the reference template. 

K is the set of all pairs of neighboring voxels in the image, and Vx, y(lx, ly) is a term that 

penalizes if neighboring voxels have different labels assigned, with value 1 if lx ≠ ly, and 0 

otherwise. Note that the first term in the equation guides the segmentation based on the 

reference template, while the second penalizes for neighboring voxels having different 

labels.

Quantification of cranial shape abnormalities is done by comparing the patient’s cranial 

shape with its closest normal shape from a normative multi-atlas, as explained in [3]. Once 

the closest normal shape to the patient’s cranial shape is identified, two different descriptors 

are used to quantify cranial shape abnormalities: (1) the malformations, which are the local 

Euclidean distances between the mesh representation of the patient’s cranial shape and its 

closest normal shape in the multi-atlas space, and (2) the curvature discrepancies, which are 

their local curvature differences.

B. Surface Dissimilarity

The goal of our registration framework is to repair the patient’s cranial shape (source mesh) 

by deforming it to best fit its closest normal shape (target mesh) from the normative 

statistical shape multi-atlas. To compare these two surfaces, we propose to use a global 

dissimilarity measure based on a representation of the surfaces in the space of currents [14]. 

We chose this kind of representation because it allows us to quantify shape differences by 

taking into account both point distances and geometric structure (curvature), which are the 
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two descriptors of cranial shape abnormalities presented in [3]. The transformed source 

mesh and the target mesh can then be compared using the following dissimilarity measure:

ε = ∣ ϕ#S − U ∣
W∗
2 , (2)

where S is the discrete current associated to the source triangulated mesh, U is the discrete 

current associated to the target mesh, ϕ# is the push-forward of the transformation ϕ in the 

current S, and W* is the dual space associated to a reproducible kernel Hilbert Space [14].

A Dirac current δc
n applied to a given vector field in a reproducible kernel Hilbert space W 

can be seen as the realization of that vector field with respect to the oriented segment n at 

point c. Thus, the discrete current associated to the surface S can be written as 

C (S) = ∑ f δc f

n f , where each f is a triangle of the surface S, nf represents the normal vector to 

the triangle, and cf represents the coordinates at the triangle center [14]. Then, the 

dissimilarity between two triangulated surfaces S and U can be expressed as:

M (S, U) = ‖C (S) − C(U)‖2, (3)

which translates to:

M (S, U) = ∑
f , g ∈ S

n f
TkW c f , cg ng + ∑

q, r ∈ U
nq

TkW cq, cr nr − 2 ∑
f ∈ S, q ∈ U

n f
TkW cq, c f nq,

(4)

where f and g represent triangles of S, q and r represent triangles of U, and kW is the kernel 

associated to W. In our implementation, we used an isotropic Gaussian kernel. Since our 

goal is to compare the patient’s cranial shape transformed during surgery and its closest 

normal shape from a normative multi-atlas, their dissimilarity based on Equation (4) is

M (S, U; φ) = ∑
f , g ∈ S

φ n f
TkW φ c f , φ cg φ ng + ∑

q, r ∈ U
nq

TkW cq, cr nr

− 2 ∑
f ∈ S, q ∈ U

φ n f
T kW cq, φ c f nq,

(5)

where S is the patient’s cranial surface, U is its closest normal surface, φ represents the 

transformation applied to S during surgery, φ(cf ) is the transformed coordinates of the center 

cf of triangle f, and φ(nf ) is the transformed normal vector of triangle f.
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C. Locally Affine Transformation Model

Having established a metric to compare the source and target surfaces globally, here we 

define a way to transform the source mesh to best fit the target mesh. As discussed in the 

Introduction section, our transformation model must preserve specific properties (i.e. affine) 

in local regions of the mesh (i.e. bone pieces).

Let T = (R, t) be an affine transformation with linear part R (including rotation and scaling) 

and translation t in homogeneous coordinates, in which the first 3×3 components are 

represented by R, the last column by t, and the bottom-right element is 1. The affine 

transformation of a point at coordinates x expressed in homogeneous coordinates is 

calculated as φ(x) = Tx. In [17], image registration was modeled as a temporal process 

transforming point coordinates from time s = 0 to time s = 1, and the matrix logarithm of T 
was proposed to define a family of velocity vector fields associated to T. Hence, the 

logarithm of T is defined as:

log (T) =
LR Lt

0 0
, (6)

where LR is the principal logarithm of R, but Lt is not necessarily equal to t [17]. As shown 

in [17], if the eigenvalues of T are not negative, which is subject to only allowing rotations 

lower than 180 degrees, there is only one solution to Equation (6) called principal logarithm. 

This is not a problem in the current application because during the surgical approach of 

fronto-orbital advancement the cranial bone pieces are mostly advanced and bent and, 

therefore, we do not expect large rotations. Using this notation, the family of velocity vector 

fields associated to the transformation T is

v (x, s) = v (x) = log (T) x, (7)

where s ∈ [0, 1] represents the time. It is important to remark that in this scheme, the 

velocity of a point at coordinates x is constant in time. The transformed coordinates of a 

point at coordinates x and time s can then be calculated as:

φ (x, s) = exp (slog (T)) x . (8)

In the poly-rigid/affine framework described in [16], the authors showed that, given N rigid/

affine transformations, they can be composed in an invertible way by combining the velocity 

associated to them using the following equation:

v (x) =
∑i = 0

N − 1wi (x) vi(x)
∑i = 0

N − 1wi (x)
, (9)
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where wi (x) is the weight of the transformation associated with region i at coordinates x, 

and υi (x) is the velocity of the local transformation with index i.

As it was shown in [17], based on the Scaling and Squaring method [22], the transformation 

φ x, 1
2M  of a point at coordinates x from time s = 0 to time s = 1

2M  with velocity defined as 

in Equation (9) can be approximated as

φ x, 1
2M = ∑

i = 0

N − 1
wi (x) Ti

1
2M

x, (10)

where Ti is the affine transformation with index i, Ti

1
2M

 is the 2M root of Ti, and the weights 

wi (x) are normalized. Among the available solutions to estimate the squared root of a 

matrix, we followed the iterative approximation presented in [23]. Then, the final point 

coordinates at time s = 1 is obtained by composing 2M times that transformation:

φ (x, 1) = φ . , 1
2M ∘ … ∘ φ x, 1

2M

2M

. (11)

where the input to the transformation represented as. indicates that it comes from the output 

of the previously composed function. Equation (11) can also be expressed recursively as:

φm (x) = ∑
i = 0

N − 1
wi (φm − 1 (x)) Ti

1
2M φm − 1(x) (12)

where 2M is the number of discretization subintervals used to approximate the 

transformation when integrating temporally the velocity field, and φm (x) is the 

transformation at inter-mediate subinterval m = 0..2M. Note that Equations (11) and (12) 

show that the transformation of a point can be calculated as the composition of smaller 

transformation.

In the original work on poly-affine transformations [16], all local transformations were 

defined as centered on the origin of coordinates, which worked well because the objective 

was not to preserve local properties at specific regions. In our work, we associate each local 

transformation to one region in the source surface defined by a cranial bone piece. To 

facilitate implementing the transformation of each bone piece in the operating room, we 

model the transformation of each bone piece i with reference to its center of mass. 

Therefore, we re-write Equation (12) as
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φm (x) = ∑i = 0
N − 1wi φm − 1 (x) Ti

1
2M

(φm − 1 (x) − ai) + ai , (13)

where ai is the center of mass of the bone piece with index i.

D. Locally Affine Regions

In the poly-rigid and poly-affine transformation frameworks on image registration [16], [17], 

the authors proposed a global transformation model calculated by combining different rigid/

affine transformations using Gaussian functions centered at predefined anchor points. With 

such approach, no single region of the image was constrained to present a specific rigid/

affine behavior. On the contrary, every region presented a weighted combination of rigid/

affine transformations with the weights defined by the initial coordinates of the point 

transformed.

In [18], we introduced a mathematical image registration framework to constrain specific 

image regions to be purely rigid. To achieve that, we proposed to calculate Signed Distance 

Functions (SDF) [24] for each region (i.e. bone piece) on the source image. These SDFs 

provide the distance of each point in the Euclidean space to the boundary of each region 

(bone piece), with a positive sign if the point is outside the region, and a negative sign 

otherwise. Then, we calculated the weights wi associated to each local transformation i using 

a logistic function as a smooth and differentiable approximation to a Heaviside step 

function, thus preserving smoothness and invertibility of the global transformation:

wi (x) = 1
1 + exp (cSDFi (x)) , (14)

where c is a positive constant controlling the slope of the weight function at the transition 

point (i.e., region boundaries), and SDFi (x) is the SDF of region (bone piece) with index i 
calculated at coordinates x. Note that wi approximates to 1 inside the region associated to 

the local transformation i, while it approximates to 0 as the distance from that region 

increases. The result of using this weighting scheme was a global transformation that at each 

region was defined by the local transformation associated to it. Note that, although the 

weights of the transformations associated to other regions are not exactly zero with this 

scheme, their value is very close to zero and the contribution of their local transformation is 

negligible.

However, by using previous approach, the weights were estimated statically based on the 

source image, and they were not updated as the rigid regions were modified at each temporal 

integration step in Equation (12). This means that the area where an object (bone piece) with 

specific properties (e.g. rigid or affine) could be transformed without modifying those 

properties were predefined and did not change during optimization (see Figure 3(a)). To 
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overcome this problem, we propose to define a weighting scheme that dynamically adapts to 

changes at each temporal integration step. Hence, we define the weight function as

wi
m (x) = 1

1 + exp cSDFi
m(x)

, (15)

and we rewrite the transformation from Equation (13) as

φm (x) = ∑
i = 0

N − 1
wi

m − 1 φm − 1 (x) Ti

1
2M

φm − 1 (x) − ai + ai , (16)

where SDFi
m (x) is the signed distance between the point at coordinates x and the region 

(bone piece) associated with transformation i at the temporal integration step m, and wi
m (x)

is the weight of transformation i at the temporal integration step m. Importantly, this 

equation is only valid under the assumption that the velocity field associated to each local 

transformation is constant. The improved optimization scheme proposed is illustrated in 

Figure 3(b) and compared to previous scheme represented in Figure 3(a).

E. Osteotomy Plan for Metopic Craniosynostosis Treatment

Surgery for the treatment of metopic craniosynostosis consists in advancing and reshaping 

the frontal cranial bones of the patient to create a normal cranial shape, which is known as 

fronto-orbital advancement surgery [7]. In practice, the supra-orbital bar and the frontal 

bones (show in Figure 1) are separated from the rest of the cranium and advanced and/or 

reshaped. This allows creating a healthy cranial shape that allows for a normal brain 

development. However, depending on the degree of cranial shape abnormalities, it is 

necessary to divide the frontal bones and/or the supra-orbital bar in smaller pieces to 

increase the flexibility of reshaping the bones to obtain a normal shape. We propose to create 

different digital osteotomy templates defined by surgical practice, including subdivisions of 

the frontal bones and supra-orbital bar, and to use them to evaluate different osteotomy plans 

for each patient. These osteotomy templates define how many subdivisions of each frontal 

bone will be considered in the calculation of the optimal plan and, therefore, how many local 

affine transformations Ti need to be combined using Equation (16). Then, given the 

simulated outcome from each surgical plan, we can automatically choose the optimal 

template based on objective criteria (e.g. malformations, bone stress…), or other criteria 

considered by the surgeon.

To create each digital osteotomy template, we follow a similar approach to the one we used 

to segment the cranial bones. First, the subdivisions of each bone piece were manually 

delineated in a reference image template from a healthy control, as shown in Figure 4(a). 

Then, we used Eq. (1) to label these subdivisions on the patient’s cranium, but setting the 
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second term to zero. The effect of this is that the subdivision of each cranial bone is solely 

guided by the template, since there are no anatomical references in the images to use for 

guidance. In the templates shown in Figure 4, frontal bones are considered together, 

separated into left and right bones, or by subdivision of each frontal bone into two vertical 

sections. Similarly, the supra-orbital bar is considered as a unique piece or by subdivision 

into left and right sections. These templates are defined by common clinical practice to 

perform fronto-orbital advancement [7], [25]. Next, to estimate the optimal surgical plan 

using one osteotomy template, we define one local affine transformation for each bone piece 

in the osteotomy template, and we combine them using Eq. (16).

F. Bone Surface Preservation and Optimization

In the proposed framework, bone bending is modeled using affine transformations. However, 

affine transformations may also scale the bone surface, which is undesired in the current 

application. To constrain bone surface change, we include the following surface preservation 

term in our metric:

A (S; φ) = ∑
l = 0

N − 1
∑
f εSL

φ(n f ) 2

∑
f εSl

n f 2
− 1

2

, (17)

where l are the labels of each cranial bone piece in the patient’s cranial surface S, Sl are the 

triangles of the bone piece with label l in S, nf is the normal vector to triangle f εSl, and 

φ(nf ) represents its transformation. Finally, a global smoothing regularization term was 

included:

D (S; φ) = ∑
p ∈ P

∑
qεQp

1 −
φ np

Tφ nq

φ np 2 φ nq 2

2

, (18)

where pεP represents all the triangles at the cranial sutures in S (areas between bones, see 

Figure 1), and qεQp represents the neighboring triangles of p. If M (S,U, φ) is the surface 

dissimilarity term defined in Equation (5) between the patient’s cranial surface after 

applying transformation φ and its closest normal cranial shape U, the final cost function to 

calculate the optimal surgical plan is then:

F(S, U; φ) = M (S, U; φ) + β A (S; φ) + γ D (S; φ), (19)

where β and γ are positive weighting constants balancing the contribution of the surface 

preservation and smoothing terms to the cost function. To minimize the cost function, we 

used a regular gradient descent optimizer, which updated iteratively the value of all the 

transformation parameters together using the gradient of the cost function with respect to 

them. The parameters of transformation φ are the elements of all the local affine 
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transformations Ti : 9 parameters of its linear part R, and 3 of is translation t. Therefore, the 

total number of parameters is 12 times the number of local affine transformations. The 

derivation details are provided in the supplementary material, section B.

III. Experiments and Results

A. Data Description

We constructed a normative statistical shape multi-atlas as proposed in [3]. We collected 

head CT images (average in plane resolution of 0.36±0.05 mm, and average slice separation 

of 1.49±1.26 mm) from 198 control subjects (99 females, 99 males, age 5.28±3.65 months), 

who were selected from the subjects reported to the emergency room for trauma at 

Children’s National Health System. The control cases were manually screened to exclude 

any pathology that may affect the cranial shape: hydrocephalus, intra-cranial tumor, intra-

cranial hemorrhage, hardware (e.g. shunts), and prior craniofacial surgery. We evaluated the 

optimal surgical planning framework proposed on a total of 23 patients with metopic 

craniosynostosis (7 females, 16 males, age 3.52±4.48 months). The in-plane resolution of 

the patients’ CT images was 0.40±0.04 mm, with a slice separation of 2.35±1.75 mm.

B. Experiments

Table 1 shows the malformations and curvature discrepancies calculated in the frontal bones 

both for the healthy controls in the normative statistical shape multi-atlas and for the patients 

with metopic craniosynostosis.

For each patient, we calculated the optimal surgical plan using the different osteotomy 

templates represented in Figure 4, creating plans involving 2, 3, 4, 5 and 6 bone pieces. 

Thus, using each osteotomy template, we estimated one global transformation, which 

includes a local affine matrix for each bone piece delineated in the patient’s cranial shape 

following that osteotomy template. The average time of computation to calculate each 

interventional plan was 4.0 ± 2.4 hours in an Intel i7 Core desktop computer with 32GB of 

memory. Note that this is offline computational time that does not require human 

supervision. The value for the weighting term γ in Eq. (19) was set empirically to 10 times 

the initial value of M (S,U). The weighting term β was estimated based on the cranial shape 

abnormalities differences between the healthy controls and the patients with metopic 

craniosynostosis presented in Table 1. Targeting an approximate reduction of cranial shape 

abnormalities of 50%, we estimated β using the following formula:

β = 0.5 × M(S, U) × frontal bones surface
total cranial surface × 1

δ , (20)

where δ is the maximum allowed surface change in the frontal bones. Based on the 

agreement of our expert surgeons, we set this change to 0.5%, thus allowing very small 

surface changes as a consequence of bone cutting and bending.

We applied the different transformations calculated with different osteotomy templates to the 

patient’s cranial shape to obtain the simulated outcome of the surgical plan (post-operative). 
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Then, we quantified the cranial shape abnormalities in the frontal bones of the post-operative 

shape of each patient, and we compared them with the pre-operative values. In addition, we 

calculated the von Mises stress in the bones to show the feasibility of implementing the 

surgical plan. Table 2 shows the average results obtained from the optimal plan calculated 

for each osteotomy template. The mean malformation reductions ranged between 40.38% 

and 50.85%, while the average reduction on curvature discrepancies ranged between 19.77% 

and 26.73%. We used a Wilcoxon rank sum test to compare the pre-operative and post-

operative cranial shape abnormalities using the different osteotomy plans and we obtained p-

values lower than 0.01 both for the malformations and for the curvature discrepancies for all 

osteotomy templates. On the other hand, we estimated the average von Mises stress in the 

bones, which ranged between 33.21 MPa and 43.47 MPa for the different osteotomy 

templates. The maximum allowable stress in the cranial bones is 87MPa [26].

We also checked if the malformations in the post-operative cranial shapes were on healthy 

ranges by comparing them with the healthy controls, obtaining p-values for the distance 

malformations of 0.01, 0.35, 0.40, 0.76 and 0.84 for the osteotomy plans involving 2, 3, 4, 5 

and 6 pieces, respectively. As expected, using a more flexible osteotomy template with more 

bone pieces resulted in better shape correction in average. However, malformations were 

correctly reduced within the healthy ranges using templates with 3 or more bone pieces. On 

the other hand, the p-values obtained for the curvature discrepancies were lower than 0.01 

for all osteotomy plans considered. A discussion of these results is provided later in the 

manuscript. As a visual example, Figure 5 shows the pre-operative and simulated outcome 

of the surgical plan using different osteotomy templates for one patient with metopic 

craniosynostosis. Note that cranial shape abnormalities are often also present in other cranial 

bones in patients with metopic craniosynostosis due to compensatory cranial growth, but 

they are not targeted in a typical surgical procedure of fronto-orbital advancement.

Since the interventional plan calculated for one patient may not obtain the minimum of both 

malformations, curvature discrepancies and stress using the same osteotomy template (same 

number of bone subdivisions), we evaluated which osteotomy template achieved the optimal 

interventional plan for each patient according to three criteria: (1) minimization of 

malformations, (2) minimization of curvature discrepancies, and (3) minimization of bone 

stress. The mean malformation values, curvature discrepancies and stress estimated on the 

outcome of the optimal interventional plan chosen according to each of those criteria are 

shown in Table 3. The p-values obtained when comparing the post-operative malformations 

with the healthy controls were 0.74, 0.53, and 0.34 for the three criteria, respectively. The p-

value obtained for the curvature discrepancies when using the minimization of curvature 

discrepancies as a criterion was 0.002. The p-values were lower than 0.001 for the other 2 

criteria. The average stress had its maximum of 54.97±26.00 MPa when the minimum 

malformations were used as a criterion, and its minimum of 31.54±7.98 MPa when the 

minimum stress was used. Finally, we show in Figure 6 on how many patients we should use 

each osteotomy template to obtain the optimal surgical plan according to the three criteria 

considered.
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IV. Discussion

We presented a new surface registration framework that allowed estimating a global 

transformation that preserved local properties (i.e. affine properties) on different regions. 

Our framework integrated the concepts of local rigid regions introduced in [15], and the 

poly-rigid/affine transformations presented in [27] for image registration, in a single 

mathematical framework using a dynamic local weighting scheme. In addition, we adapted 

the new framework to surface registration, using a dissimilarity measure based on currents 

that takes into account both the point distribution and the geometry of the surfaces. The 

registration framework presented in this paper is dependent on the invertibility of the local 

transformations Ti and the existence of its logarithm. This is guaranteed if all the 

eigenvalues of Ti are positive. This was discussed in [17], where the authors showed that this 

does not present a problem as long as the rotation angles of the affine transformations are 

lower than 180 degrees. We do not expect large rotations for the clinical application 

presented in this paper, since fronto-orbital advancement surgery consists in advancing and 

bending the frontal cranial bones.

We used our surface registration framework to estimate and simulate the optimal post-

surgical cranial shape to target during fronto-orbital advancement surgery for the correction 

of metopic craniosynostosis. We evaluated different numbers of cranial bone subdivisions 

using different osteotomy templates. Our automatic framework achieved simulated post-

operative cranial shapes with significant reductions of malformations and curvature 

discrepancies (p<0.01). In addition, the average stress calculated with all osteotomy 

templates considered were under the maximum allowable stress in the cranial bones of 

87MPa [26], showing their feasibility. Importantly, the malformations in the cranial frontal 

bones were corrected to match normative healthy standards. Moreover, our expert surgeons, 

who have guided the development of the technology, agree on the potential of the results 

obtained with the proposed framework and the significance of these results.

Although all the osteotomy templates evaluated achieved a significant reduction of 

malformations and curvature discrepancies, the same template did not necessarily obtain the 

minimum of malformations, curvature discrepancies, and stress. The results in Table 3 and 

Figure 6 show that the number of bone subdivisions needed to obtain the optimal plan for 

each patient depends on its specific cranial shape and the severity of its cranial shape 

abnormalities. Since both cranial bone segmentation and the subsequent bone subdivision 

into smaller pieces are guided by reference templates, the quality of the reference images has 

a direct impact on the accuracy of delineating each bone piece and, therefore, on the results 

of the optimal plan calculated with them. In this work, we chose the reference template as a 

healthy subject for which all the cranial bones and sutures were clearly visible from the CT 

image.

A noted potential shortcoming of our approach is that the simulated post-surgical curvature 

discrepancies were different than the normative values from control cases (p<0.01). This 

may be due to the inclusion in the dataset of 3 patients with severe metopic craniosynostosis 

for which the osteotomy templates considered in this paper did not achieve curvature 

discrepancies within health ranges (their optimal post-operative curvature discrepancies 
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were 1.01, 1.03, and 1.06 mm−1, respectively). The solution for these specific cases could be 

the evaluation of other osteotomy templates that included more complex bone subdivisions 

to achieve a higher reduction of curvature discrepancies. On the other hand, helmet therapy 

may be an option to consider in severe cases to keep guiding cranial shape correction after 

the surgery [28].

As it may be expected intuitively, Figure 6 shows that the osteotomy template including the 

highest number of bone pieces was more likely to be optimal for the three criteria 

considered. Although more and smaller bone pieces would most likely achieve a better 

cranial shape reconstruction, the optimal approach depends on the cranial shape of the 

patient, which indicates the need of a personalized approach as the one we present in this 

work. Given the personalized simulated outcome of the surgery calculated for each 

osteotomy plan, the surgeon can choose the optimal solution based on different criteria: 

reduction of malformations, reduction of curvature discrepancies, and minimum stress. In 

addition, if several osteotomy templates achieve similar outcomes, the surgeon can choose 

the one requiring the least number of bone cuts, thus minimizing the time of surgery and 

potential risk and morbidity for the patient.

Comparing this framework with our preliminary work presented in [18], we achieved an 

optimal reduction of malformations of 53.15% in average, compared to the 49% reported in 

[18]. In addition, the current approach operates in the surface domain, as compared to 

previous approach [18] on image registration. This allows accounting for both global and 

local structural information of the cranial shapes, which we achieved using a surface-based 

dissimilarity metric based on currents [14]. In addition, the current approach models the 

transformation of each cranial bone piece using affine transformations, allowing for bone 

bending and increasing the degrees of freedom to calculate the optimal surgical plan. By 

modeling bone bending, we have achieved an optimal reduction of curvature discrepancies 

of 32.45%, which could not be achieved with the rigid framework proposed in [18]. 

Importantly, operating in the surface domain also facilitates promoting smooth post-surgical 

cranial shapes and controlling bone piece surface preservation, which would be very 

complex and inefficient in the image domain.

Our surface registration approach builds on the poly-affine transformation model presented 

in [17] and the surface matching method presented in [14]. Compared to the former, we 

adapted its transformation model to constrain each bone piece to have one translation, 

rotation and bending, which is essential for the clinical translation of this framework to the 

operating room. In addition, we adapted it to the surface domain to compare the cranial 

geometry of the patient with its closest normal shape, which allows us to control bone 

surface and transitions between bone pieces. While the method presented in [17] and the one 

presented in this paper have the same number of degrees of freedom, the method in [17] 

provides an elastic behavior for each cranial bone through a combination of multiple affine 

transformations. Although that elastic behavior would likely allow obtaining simulated post-

surgical cranial shapes more similar to the closest normal shape, we chose a unique affine 

transformation for each bone piece, which is clinically intuitive and can be translated to 

clinical practice. Similarly, the large deformation framework used combined in [14] with 

their novel surface matching method would also provide precise results, but it would not 
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constrain bone pieces to present a specific translation, rotation, and bending, and it would 

also model each bone piece as an elastic object, which is not clinically feasible.

The framework presented in this paper constitutes the first fully automatic, quantitative, and 

objective framework for the surgical planning of fronto-orbital advancement. This automatic 

and objective approach is essential for the standardization and reproducibility of cranial 

vault reconstruction surgery, and has the potential to enhance the implementation of surgical 

techniques in centers with low patient volume where specialized clinical expertise is not 

available. Our framework, together with our previous works on quantification of cranial 

shape abnormalities, and automatic and quantitative diagnosis of craniosynostosis [3], [5], 

[6], constitutes the first quantitative framework for the pre-to-intra-operative management of 

metopic craniosynostosis.

Future work includes the creation of more complex osteotomy templates to evaluate more 

surgical approaches, and their extension to plan the surgery for the correction of other types 

of craniosynostosis. Although current intracranial volume increase is implicitly guided by 

the closest normal shape from a normative statistical atlas of cranial shapes, this framework 

could be extended to include an explicit normative brain growth volume model, as the one 

presented in [29]. Novel technological developments during the last few years (e.g. 3D 

printing, virtual/augmented reality…) have provided different options to translate this 

technology to the operating room. Among the different options available, printing in 3D the 

personalized optimal solution calculated for each patient would provide an intuitive and 

simple way to show the surgeon how to reposition optimally each bone piece. Finally, a 

prospective clinical validation will be necessary to translate this framework to clinical 

practice, in which we propose the acquisition of radiation-free 3D photography [30] to 

compare the surgical outcome of the proposed optimal plan and current subjective 

approaches. This prospective work will include the comparison of other parameters such as 

time of surgery, bleeding, duration of hospitalization, and complication rate.

V. Conclusions

We presented a diffeomorphic surface registration method that allows for the preservation of 

local affine properties in different surface regions by introducing a dynamic weighting 

scheme. Our framework calculates surface dissimilarities in the space of currents, which is 

sensitive to both the spatial location and the geometry of the surfaces. We applied our 

registration method to the development of the first automatic, quantitative, and objective 

framework to design the optimal interventional plan for the surgical treatment of metopic 

craniosynostosis. Our framework estimates the bone piece repositioning and bending 

necessary to achieve the optimal post-surgical cranial shapes, obtaining a significant 

reduction of malformations to healthy ranges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cranial bones: (a) frontal, (b) lateral and (c) posterior views of the cranium of a healthy 

control subject (age 1 month). The main cranial bones are labeled in black as F (frontal), P 

(parietal), T (temporal), and O (occipital) and are separated by open sutures. The main 

sutures are labeled in blue as MS (metopic), CS (coronal), SqS (squamous), SS (sagittal), 

and LS (lambdoid).
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Fig. 2. 
Pipeline of the proposed framework. We segment the cranial bones from the CT image of a 

patient, and we evaluate different subdivisions of the cranial bones following a set of 

predefined osteotomy templates. For each osteotomy template evaluated, we calculate the 

optimal surgical plan using the registration framework proposed, which minimizes the 

difference between the patient’s cranial shape and its closest normal from a normative 

statistical shape multi-atlas. Finally, we evaluate the surgical outcome from the optimal plan 

calculated with each osteotomy template based on different criteria: minimization of 

malformations, minimization of curvature discrepancies, or minimum bone stress.
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Fig. 3. 
Dynamic weighting scheme proposed. (a) illustrates the problem of the weighting scheme 

proposed in [18] with an example of which the source surface includes two affine areas 

(labeled as 1 and 2). The affine regions were predefined before registration so, if a part of the 

surface was transformed to another region during registration, it would lose its affine 

properties (as represented with stripes); (b) shows how the proposed scheme updates the 

regions at each temporal integration step, thus preserving the local properties in the source 

mesh (e.g. affine). Note how the moving surface becomes more similar to the target surface 

during registration in terms of distance and curvature.
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Fig. 4. 
Frontal view of the digital osteotomy templates used to calculate the optimal surgical plan, 

together with the cranium of the reference control case used for segmentation. Each 

osteotomy template considered the subdivision of the frontal bones and supra-orbital bar in 

(a) 6, (b) 5, (c) 4, (d) 3, and (e) 2 bone pieces. Each color represents a bone piece remodeled 

and repositioned during surgery using a local affine transformation.
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Fig. 5. 
Simulated correction of cranial shape abnormalities using our automatic osteotomy plan for 

a patient with metopic craniosynostosis. Superior (first row) and frontal (second row) views 

of the malformations and curvature discrepancies on the cranial shape on (b) the pre-

operative mesh, and the simulated outcome of the surgical planning calculated for osteotomy 

plans with (c) 2, (d) 3, (e) 4, (f) 5, and (g) 6 bone pieces. For an improved visualization, 

Figures (c)–(g) only show the malformations and curvature discrepancies in the transformed 

bone pieces. As it can be observed, Figures (c)–(g) are more similar to (a) than (b).
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Fig. 6. 
Bar diagram showing on how many patients we should use each osteotomy template to 

obtain the optimal surgical plan according to the three criteria considered: (1) minimization 

of malformations, (2) minimization of curvature discrepancies, and (3) minimization of bone 

stress.
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TABLE I

Comparison of malformations and curvature discrepancies between healthy controls and patients with metopic 

craniosynostosis. Differences indicate the reduction of malformations and curvature discrepancies in the 

controls compared to the patients. The p-values are estimated using a Wilcoxon rank sum test between patients 

and controls.

Patients Controls Difference p-value

Mean malformations (mm) 2.90±1.34 1.32±0.58 −54.63% <0.001

Maximum malformations (mm) 5.32±0.43 2.63±1.06 −50.61% <0.001

Mean curvature discrepancies (mm−1) 1.10±0.22 0.60±0.17 −45.76% <0.001

Maximum curvature discrepancies (mm−1) 2.68±0.12 1.57±0.52 −41.40% <0.001
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