
Dictionary-Free MRI PERK: Parameter Estimation via Regression 
with Kernels

Gopal Nataraj* [Student Member, IEEE],
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI, 48109, USA.

Jon-Fredrik Nielsen,
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Clayton Scott [Member, IEEE],
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI, USA.

Jeffrey A. Fessler [Fellow, IEEE]
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI, USA.

Abstract

This paper introduces a fast, general method for dictionary-free parameter estimation in 

quantitative magnetic resonance imaging (QMRI) via regression with kernels (PERK). PERK first 

uses prior distributions and the nonlinear MR signal model to simulate many parameter-

measurement pairs. Inspired by machine learning, PERK then takes these parameter-measurement 

pairs as labeled training points and learns from them a nonlinear regression function using kernel 

functions and convex optimization. PERK admits a simple implementation as per-voxel nonlinear 

lifting of MRI measurements followed by linear minimum mean-squared error regression. We 

demonstrate PERK for T1, T2 estimation, a well-studied application where it is simple to compare 

PERK estimates against dictionary-based grid search estimates and iterative optimization 

estimates. Numerical simulations as well as single-slice phantom and in vivo experiments 

demonstrate that PERK and other tested methods produce comparable T1, T2 estimates in white 

and gray matter, but PERK is consistently at least 140× faster. This acceleration factor may 

increase by several orders of magnitude for full-volume QMRI estimation problems involving 

more latent parameters per voxel.
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I. Introduction

In quantitative magnetic resonance imaging (QMRI), one seeks to estimate latent parameter 

images from suitably informative data. Since MR acquisitions are tunably sensitive to many 

physical processes (e.g., relaxation [1], diffusion [2], and chemical exchange [3]), MRI 

parameter estimation is important for many QMRI applications (e.g., relaxometry [4], 

diffusion tensor imaging [5], and multi-compartmental imaging [6]). Motivated by 

widespread applications, this manuscript introduces a general method for fast MRI 

parameter estimation.

A common MRI parameter estimation strategy involves minimizing a cost function related 

to a statistical likelihood function. Because MR signal models are typically nonlinear 

functions of the underlying latent parameters, such likelihood-based estimation usually 

requires non-convex optimization. To seek good solutions, many works (e.g., [7]–[21]) 

approach estimation with algorithms that employ exhaustive grid search, which requires 

either storing or computing on-the-fly a “dictionary” of signal vectors. These works estimate 

a small number (2–3) of nonlinear latent parameters, so grid search is practical. However, for 

moderate or large sized problems, the required number of dictionary elements renders grid 

search undesirable or even intractable, unless one imposes artificially restrictive latent 

parameter constraints. Though several recent works [13], [17], [20], [21] focus on reducing 

dictionary storage requirements, all of these methods ultimately rely on some form of 

dictionary-based grid search.

There are numerous QMRI applications that could benefit from an alternative parameter 

estimation method that scales well with the number of latent parameters. For example, 

vector (e.g., flow [22]) and tensor (e.g., diffusivity [5] or conductivity [23]) field mapping 

techniques require estimation of at minimum 4 and 7 latent parameters per voxel, 

respectively. Phase-based longitudinal [24] or transverse [25], [26] field mapping could 

avoid noise-amplifying algebraic manipulations on reconstructed image data that are 

conventionally used to reduce signal dependencies on nuisance latent parameters. 

Compartmental fraction mapping [6], [27] from steady-state pulse sequences requires 

estimation of at least 7 [28] and as many as 10 [29] latent parameters per voxel. In these and 

other applications, greater estimation accuracy requires more complete signal models that 

involve more latent parameters, increasing the need for scalable estimation methods.

The fundamental challenge of scalable MRI parameter estimation stems from MR signal 

model nonlinearity: standard linear estimators would be scalable but inaccurate. One natural 

solution strategy involves nonlinearly preprocessing reconstructed images such that the 

transformed images are at least approximately linear in the latent parameters. As an 

example, for simple T2 estimation from measurements at multiple echo times, one could 

apply linear regression to the logarithm of the measurements (§S.I1 builds further intuition 

using this simple application). However, such simple transformations are generally not 

evident for more complicated signal models. Without such problem-specific insight, 

sufficiently rich nonlinear transformations could dramatically increase problem 

1Supplementary material is available in the/media tab on IEEEXplore.
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dimensionality, hindering scalability. Fortunately, a celebrated result in approximation 

theory [30] showed that simple transformations involving reproducing kernel functions [31] 

can represent nonlinear estimators whose evaluation need not directly scale in computation 

with the (possibly very high) dimension of the associated transformed data. These kernel 

methods later found popularity in machine learning (initially for classification [32] and 

quickly thereafter for other applications, e.g., regression [33]) because they provided simple, 

scalable nonlinear extensions to fast linear algorithms.

The general idea of using linearization to simplify a nonlinear estimation problem has been 

used before in QMRI. For example, orthogonal transforms have been used to linearly 

represent exponential [34] and extended phase graph [35] models for T2 estimation. An 

unscented Kalman filter has been used to linearly represent nonlinear models for general 

multiple-parameter estimation up to third-order accuracy [36]. Whereas these prior works 

largely focus on parameter estimation accuracy gains in under-sampled acquisitions, this 

paper focuses on acceleration for general per-voxel MRI parameter estimation from 

reconstructed images.

This paper introduces2 a fast, dictionary-free method for MRI parameter estimation via 

regression with kernels (PERK). PERK first simulates many instances of latent parameter 

inputs and measurement outputs using prior distributions and a general nonlinear MR signal 

model. PERK takes such input-output pairs as simulated training points and then learns 
(using an appropriate nonlinear kernel function) a nonlinear regression function from the 

training points. PERK may scale considerably better with the number of latent parameters 

than likelihood-based estimation via grid search.

The remainder of this manuscript is organized as follows. §II reviews pertinent background 

information about kernels. §III formulates a function optimization problem for MRI 

parameter estimation and efficiently solves this problem using kernels. §IV studies bias and 

covariance of the resulting PERK estimator. §V addresses practical implementation issues 

such as computational complexity and model selection. §VI demonstrates PERK in 

numerical simulations as well as phantom and in vivo experiments. §VII discusses 

advantages, challenges, and extensions. §VIII summarizes key contributions.

II. Preliminaries

This brief section reviews relevant definitions and facts about kernels. A (real-valued) kernel 

k : ℙ2 ℝ is a function that describes a measure of similarity between two pattern vectors p, 

p′ ∈ ℙ. The matrix K ∈ ℝN × N associated with kernel k and N ∈ ℕ patterns p1, …, pN ∈ ℙ

consists of entries k(pn, pn′) for n, n′ ∈ {1, …, N}. A positive definite kernel is a kernel for 

which K is positive semidefinite (PSD) for any finite set of pattern vectors, in which case K 
is a Gram matrix. A symmetric kernel satisfies k(p, p′) = k(p′, p) ∀p, p′ ∈ ℙ. We hereafter 

restrict attention to symmetric, positive definite (SPD) kernels.

2This manuscript substantially extends [37], our conference paper that recently introduced kernel-based MRI parameter estimation. 
Though kernels have been used in MRI reconstruction (e.g., [38], [39]) and MRI analysis (e.g., [40], [41]), kernels had not to our 
knowledge been used prior to [37] for MRI parameter estimation
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An SPD kernel k:ℙ2 ℝ defines an inner product in a particular Hilbert function space ℍ
that we briefly describe here because it characterizes the class of candidate regression 

functions over which PERK operates. To envision ℍ, first define a kernel’s associated 

(canonical) feature map z:ℙ ℝℙ that assigns each p ∈ ℙ to a (canonical) feature 

k( ⋅ , p) ∈ ℝℙ. Then ℍ is a completion of the space ℍ: = ∑n = 1
N ank ⋅ , pn  spanned by point 

evaluations of the feature map, where N ∈ ℕ, a1, …, aN ∈ ℝ and p1, …, pN ∈ ℙ are arbitrary. 

Let ⋅ , ⋅ :ℍ2 ℝ denote the inner product on ℍ. Then for any h, h′ ∈ ℍ that have finite-

dimensional canonical representations h: = ∑n = 1
N ank ⋅ , pn  and h′: = ∑n′ = 1

N bn′k ⋅ , pn′ , 

the assignment

h, h′ ℍ = ∑
n = 1

N
∑

n′ = 1

N
anbn′k pn′, pn (1)

is consistent with the inner product on ℍ. This inner product exhibits ∀h ∈ ℍ, p ∈ ℙ an 

interesting reproducing property

h, k( ⋅ , p) ℍ = h(p) (2)

that can be seen to directly follow from (1) for h ∈ ℍ.

A reproducing kernel (RK) is a kernel that satisfies (2) for some real-valued Hilbert space ℍ. 

A kernel is reproducing if and only if it is SPD. There is a bijection between RK k and ℍ, 

and so ℍ is often called the reproducing kernel Hilbert space (RKHS) uniquely associated 

with RK k. This bijection is critical to practical function optimization over an RKHS in that 

it translates inner products in a (usually high-dimensional) RKHS ℍ into equivalent kernel 

operations in the (lower-dimensional) pattern vector space ℙ. The following sections exploit 

the bijection between an RKHS and its associated RK.

III. A Function Optimization Problem and Kernel Solution for MRI 

Parameter Estimation

After image reconstruction, many QMRI acquisitions produce at each voxel position a 

sequence of noisy measurements y ∈ ℂD, modeled as

y = s(x, ν) + ϵ, (3)

where x ∈ ℝL denotes L latent parameters; ν ∈ ℝK denotes K known parameters; 

s:ℝL × ℝK ℂD models D noiseless continuous signal functions; and ϵ ℂ𝒩 0D, Σ  is 

complex Gaussian noise with zero mean 0D ∈ ℝD and known covariance Σ ∈ ℝD × D. (As a 

concrete example, for T2 estimation from single spin echo measurements, x could collect 

spin density and T2; v could collect known longitudinal and transverse field 

inhomogeneities; and y could collect measurements at D echo times.) We seek to estimate 

Nataraj et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on a per-voxel basis each latent parameter x from corresponding measurement y and known 

parameter v.

To develop an estimator x, we simulate many instances of forward model (3) and use kernels 

to estimate a nonlinear inverse function. We sample part of ℝL × ℝK × ℂD and evaluate (3) N 

times to produce sets of parameter and noise realizations {(x1, v1, ϵ1), …, (xN, vN, ϵN)} and 

corresponding measurements {y1, …, yN}. We seek a function h:ℝP ℝL and an offset 

b ∈ ℝL that together map each pure-real3 regressor pn: = yn
⊤, νn

⊤ ⊤
 to an estimate 

x pn : = h pn + b that is “close” to corresponding regressand xn, where P := D + K, n ∈ {1, 

…, N}, and (·)T denotes vector transpose. For any finite N, there are infinitely many 

candidate estimators that are consistent with training points in this manner. We use function 

regularization to choose one estimator that smoothly interpolates between training points:

(h, b) ∈ arg  min
h ∈ ℍL

b ∈ ℝL

Ψ h, b; xn, pn 1
N ,  where

(4)

Ψ (…) = ∑
l = 1

L
Ψ l hl, bl; xl, n, pn 1

N ; (5)

Ψ l(…) = ρl‖hl‖ℍ
2 + 1

N ∑
n = 1

N
hl pn + bl − xl, n

2 . (6)

Here, each hl:ℝP ℝ is a scalar function that maps to the lth component of the output of h; 

each bl, xl, n ∈ ℝ are scalar components of b, xn; ℍ is an RKHS whose norm ‖ ⋅ ‖ℍ is induced 

by inner product ⋅ , ⋅ ℍ:ℍ2 ℝ; and each ρl controls for regularity in hl.

Since (5) is separable in the components of h and b, it suffices to consider optimizing each 

(hl, bl) by separately minimizing (6) for each l ∈ {1, …, L}. Remarkably, a generalization of 

the Representer Theorem [42], restated as is relevant here for completeness, reduces 

minimizing (6) to a finite-dimensional optimization problem.

Theorem 1 (Generalized Representer, [42]). Define k:ℝQ × ℝQ ℝ to be the SPD kernel 
associated with RKHS ℍ, such that reproducing property hl(p) = hl, k( ⋅ , p) ℍ holds for all 

hl ∈ ℍ and p ∈ ℝQ. Then any minimizer (h l, b l) of (6) over ℍ × ℝ admits a representation for 

h l of the form

3We present our methodology assuming pure-real patterns p and estimators x for simplicity and to maintain consistency with 
experiments, in which we choose to use magnitude images for unrelated reasons (see §VI.A for details). It is straightforward to 
generalize Theorem 1 for complex-valued kernels and thereby address the cases of complex patterns and/or estimators.
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h l( ⋅ ) ≡ ∑
n = 1

N
al, nk ⋅ , pn , (7)

where each al, n ∈ ℝ for n ∈ {1,…,N}.

Theorem 1 ensures that any solution to the component-wise (N + 1)-dimensional problem

al, b l ∈ arg  min
al ∈ ℝN

bl ∈ ℝ

ρl ∑
n′ = 1

N
al, n′k ⋅ , pn′

ℍ

2

+ 1
N ∑

n = 1

N
∑

n′ = 1

N
al, n′k pn, pn′ + bl − xl, n

2 (8)

corresponds via (7) to a minimizer of (6) over ℍ × ℝ, where al := [al,1, …, al,N]T. 

Fortunately, a solution of (8) exists uniquely for ρl > 0 and can be expressed as

al = MKM + NρlIN
−1Mxl; (9)

b l = 1
N 1N

⊤ xl − Kal , (10)

where K ∈ ℝN × N is the Gram matrix consisting of entries k(pn, pn′) for n, n′ ∈ {1, …, N}; 

M: = IN − 1
N 1N1N

⊤ ∈ ℝN × N is a de-meaning operator; xl := [xl,1, …, xl,N]T; IN ∈ ℝN × N is 

the identity matrix; and 1N ∈ ℝN is a vector of ones. Substituting (9) into (7) yields an 

expression for the lth entry xl of MRI parameter estimator x:

xl( ⋅ ) xl
⊤ 1

N 1N + M MKM + NρlIN
−1k( ⋅ ) , (11)

where k( ⋅ ): = k ⋅ , p1 , …, k ⋅ , pN
⊤ − 1

N K1N :ℝQ ℝN is a kernel embedding operator.

When ρl > 0 ∀l ∈ {1, …, L}, estimator x( ⋅ ) with entries (11) minimizes (5) over ℍL × ℝL. 

However, the utility of x( ⋅ ) depends on the choice of kernel k, which induces a choice on the 

RKHS ℍ and thus the function space ℍL × ℝL over which (4) optimizes. For example, if k 

was selected as the canonical dot product k p, p′ p, p′
ℝQ: = p⊤p′ (for which RKHS 

ℍ ℝQ), then (11) would reduce to affine ridge regression [43] which is optimal over 

ℝQ × ℝ but is unlikely to be useful when signal model s is nonlinear in x. Since we expect a 

useful estimate x(p) to depend nonlinearly (but smoothly) on p in general, we instead use an 
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SPD kernel k that is likewise nonlinear in its arguments and thus corresponds to an RKHS 

much richer than ℝQ. Specifically, we use a Gaussian kernel

k p, p′ exp − 1
2 p − p′

Λ−2
2

, (12)

where positive definite matrix bandwidth Λ ∈ ℝQ × Q controls the length scales in p over 

which the estimator x smooths and ‖·‖ ≡ ‖Γ1/2(·)‖2 is a weighted ℓ2-norm with PSD matrix 

weights Γ. We use a Gaussian kernel over other candidates because it is a universal kernel, 

meaning weighted sums of the form ∑n = 1
N ank ⋅ , pn  can approximate ℒ2 functions to 

arbitrary accuracy for N sufficiently large [44].

Interestingly, the RKHS associated with Gaussian kernel (12) is infinite-dimensional. Thus, 

Gaussian kernel regression can be interpreted as first “lifting” via a nonlinear feature map 

z:ℝQ ℍ each p into an infinite-dimensional feature z(p) = k( ⋅ , p) ∈ ℍ, and then performing 

regularized affine regression on the features via dot products of the form 

k( ⋅ , p), k ⋅ , p′ ℍ = k p′, p . From this perspective, the challenges of nonlinear estimation via 

likelihood models are avoided because we select (through the choice of kernel) 

characteristics of the nonlinear dependence that we wish to model and need only estimate 
via (8) the linear dependence of each entry in x on the corresponding features.

IV. Bias and Covariance Analysis

This section presents expressions for the bias and covariance of Gaussian PERK estimator 

x( ⋅ ), conditioned on object parameters x, v. We focus on these conditional statistics to en-

able study of estimator performance as x, v are varied. Though not mentioned explicitly 

hereafter, both expressions treat the training sample {(x1, p1), …, (xN, pN)} and 

regularization parameters ρ1, …, ρL as fixed.

A. Conditional Bias

The conditional bias of x ≡ x(α, ν) is written as

bias(x x, ν): = Eα x, ν(x(α, ν)) − x
= REα x, ν(k(α, ν)) + mx − x , (13)

where Eα|x,v(·) denotes expectation with respect to α := |y| and conditioned on x, v. Here, the 

lth row of R ∈ ℝL × N and lth entry of regressand sample mean mx ∈ ℝL respectively are 

xl
⊤M MKM + NρlIN

−1 and 1
N xl

⊤1N for l ∈ {1, …, L}. To proceed analytically, we make two 

mild assumptions. First, we assume that y ℂ𝒩 0D, Σ  has sufficiently high signal-to-noise 

ratio (SNR) such that its complex modulus α is approximately Gaussian-distributed. We 

specifically consider the typical case where covariance matrix Σ is diagonal with diagonal 

entries σ1
2, …, σD

2 , in which case measurement amplitude conditional distribution pα|x,v is 
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simply approximated as pα | x, ν 𝒩(μ, Σ), where μ ∈ ℝD has dth coordinate sd(x, ν) 2 + σd
2

for d ∈ {1, …, D} [45]. Second, we assume that the Gaussian kernel bandwidth matrix Λ 
has the block diagonal structure

Λ
Λα 0D × K

0K × D Λν . (14)

where Λα ∈ ℝD × D and Λν ∈ ℝK × K are positive definite. With these simplifying 

assumptions, the nth entry of the expectation in (13) is well approximated as Eα|x,v(k(α, 

v))]n

= ∫
ℝDe

− 1
2 p − pn Λ

2 − 2
pα x, ν(α |x, ν)d α

≈ e
− 1

2 ν − νn Λν
−2

2

(2π)Ddet(Σ) ∫
ℝDe

− 1
2 α − αn Λα

−2
2 + α − μ

Σ − 1

2

d α

= e

− 1
2 ν − νn Λν

−2
2 + μ − αn Λα

−2Σ + ID
−1Λα

−2
2

det Λα
−2Σ + ID

,

(15)

where det(·) denotes determinant and the Gaussian integral follows after completing the 

square of the integrand’s exponent. It is clear from (15) that as Σ → 0D×D for fixed Λα, 

Eα|x,v(k(α, v)) → k(μ, v) and therefore

Eα x, ν(x(α, ν)) x Eα x, ν(α), ν ≡ x(μ, ν) (16)

which perhaps surprisingly means that the conditional bias asymptotically approaches the 

noiseless conditional estimation error x(μ, ν) − x despite x being nonlinear in α.

B. Conditional Covariance

The conditional covariance of x ≡ x(α, ν) is written as

cov(x x, ν): = Eα x, ν x − Eα x, ν(x) x − Eα x, ν(x) ⊤

= REα x, ν k(α, ν) k(α, ν)⊤ R⊤,
(17)

where k(α, ν): = k(α, ν) − Eα |x, ν(k(α, ν)). To proceed analytically, we take the same high-SNR 

and block-diagonal bandwidth assumptions as in §IV.A. Then after straightforward 

manipulations similar to those yielding (15), the (n, n′)th entry of the expectation in (17) is 

well approximated as

Nataraj et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eα x, ν K(α, ν)k(α, ν)⊤
n, n′

= e
− 1

2 ν − νn Λν
−2

2 + ν − νn′ Λν
−2

2

× e
− 1

2 αn − αn′ Δ(0)
2 + αn + αn′ Δ(2)

2

det 2Λα
−2Σ + ID

− e
− 1

2 αn − αn′ Δ(1)
2 + αn + αn′ Δ(1)

2

det Λα
−2Σ + ID

,

(18)

where αn: = μ − αn and Δ(t): = 1
2 tΛα

−2Σ + ID
−1Λα

−2 for t ∈ ℕ. The emergence of αn ±  αn′

terms in (18) show that the conditional covariance (unlike the conditional bias) is directly 

influenced not only by the individual expected test point distances to each of the training 

points α1, …, αN but also by the local training point sampling density.

V. Implementation Considerations

This section focuses on important practical implementation issues. §V.A discusses a 

conceptually intuitive approximation of PERK estimator (11) that in many problems can 

significantly improve computational performance. §V.B describes strategies for data-driven 

model selection.

A. A Kernel Approximation

In practical problems with even moderately large ambient dimension P, the necessarily large 

number of training samples N complicates storage of (dense) N × N Gram matrix K. Using a 

kernel approximation can mitigate storage and processing issues. Here we employ random 
Fourier features [46], a recent method for approximating translation-invariant kernels having 

form k(p, p′) ≡ k(p − p′). This subsection reviews the main result of [46] for the purpose of 

constructing an intuitive and computationally efficient approximation of (11).

The strategy of [46] is to construct independent probability distributions pv and p𝒮

associated with random v ∈ ℝP and random s ∈ ℝ as well as a function (that is parameterized 

by p) z( ⋅ , ⋅ ; p):ℝP × ℝ × ℝP ℝ, such that

Ev, s z(v, s; p)z v, s; p′ = k p − p′ , (19)
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where Ev, s(·) denotes expectation with respect to pvps. When such a construction exists, one 

can build approximate feature maps z by concatenating and normalizing evaluations of z on 

Z samples {(v1, s1),…,(vZ, sZ} of (v, s) (drawn jointly albeit independently), to produce 

approximate features

z(p): = 2
Z z v1, s1; p , …, z vZ, sZ; p ⊤ (20)

for any p. Then by the strong law of large numbers,

lim
Z ∞

Z(p), z p′
ℝZ

a . s . k p, p′    ∀p, p′ (21)

which, in conjunction with strong performance guarantees for finite Z [46], [47], justifies 

interpreting z as an approximate (and now finite-dimensional) feature map.

We use the Fourier construction of [46] that assigns z(v, s; p) cos 2π v⊤p + s . If also ps ← 

unif(0, 1), then Ev, s z(v, s; p)z v, s; p′  simplifies to

∫
ℝPcos 2πv⊤ p − p′ pv(v)dv . (22)

For symmetric pv, (22) exists [48] and is a Fourier transform. Thus choosing 

pv 𝒩 0P, (2πΛ)−2  satisfies (19) for Gaussian kernel (12), where 0P ∈ ℝP is a vector of 

zeros.

Sampling pv, ps Z times and subsequently constructing Z: = z p1 , …, z pN ∈ ℝZ × N via 

repeated evaluations of (20) gives for Z ≪ N a low-rank approximation Z⊤Z of Gram matrix 

K. Substituting this approximation into (11) and applying the matrix inversion lemma [49] 

yields

xl( ⋅ ) mxl
+ czxl

⊤ Czz + ρlIZ
−1 z( ⋅ ) − mz , (23)

where mxl
: = 1

N xl
⊤1N and mz: = 1

N Z1N are sample means; and czxl
: = 1

N ZMxl and 

Czz: = 1
N ZMZ⊤ are sample co-variances. Estimator (23) is an affine minimum mean-squared 

error estimator on the approximate features, and illustrates that Gaussian PERK via 

estimator (11) is asymptotically (in Z) equivalent to regularized affine regression after 

nonlinear, high-dimensional feature mapping.

B. Tuning Parameter Selection

This subsection proposes guidelines for data-driven selection of user-selectable parameters. 

Our goal here is to use problem intuition to automatically choose as many tuning parameters 

as possible, thereby leaving as few parameters as possible to manual selection. In this spirit, 

we focus on “online” model selection, where one chooses tuning parameters for training the 
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estimator x( ⋅ ) after acquiring (unlabeled) real test data. This online approach can be 

considered a form of transductive learning [50, Ch. 8] since we train our estimator with 

knowledge of unlabeled test data in addition to labeled training data. Observe that since 

many voxel-wise separable MRI parameter estimation problems are comparatively low-

dimensional, PERK estimators can often be quickly trained using only a moderate number 

of simulated training examples; in fact, training can in some problems take comparable or 

even less time than evaluating the PERK estimator on full-volume high-resolution 

measurement images. For these reasons, online PERK model selection is often practical.

1) Choosing Sampling Distribution: For reasonable PERK performance, it is 

important to choose the joint distribution of latent and known parameters px,v such that latent 

parameters can be estimated precisely over the joint distribution’s support supp(px,v). For 

continuously differentiable magnitude signal model μ, we quantify precision at a single 

point (x, v) using the Fisher information matrix

F(x, ν): = Eα x, ν ∇xlog pα x, ν
⊤∇x log pα x, ν

≈ ∇x μ(x, ν) ⊤Σ−1∇x μ(x, ν)
(24)

where ∇x(·) denotes row gradient with respect to x and the approximation holds well for 

moderately high-SNR measurements [45]. When it exists, the inverse of F(x, v) provides a 

lower-bound on the conditional covariance of any unbiased estimator of x [51]. For good 

performance, it is thus reasonable to ensure F(x, v) is well-conditioned over supp(px,v).

There are many strategies one could employ to control the condition number of F(x, v) over 

supp(px,v). In our experiments, we used data [19] from acquisitions designed to minimize a 

cost function related to the maximum of F−1(x, v) over bounded latent and known parameter 

ranges of interest (§VI.A provides application-specific details). We then assigned supp(px,v) 

to coincide with the support of these acquisition design parameter ranges of interest. 

Assessing worst-case imprecision via the conservative minimax criterion is appropriate here 

because point-wise poor conditioning at any (x, v) ∈ supp(px,v) can induce PERK estimation 

error over larger subsets of supp(px,v).

If many separate prior parameter estimates are available, one can estimate the particular 

shape of px,v empirically and then clip and renormalize px,v so as to assign nonzero 

probability only within an appropriate support. When prior estimates are unavailable, it may 

in certain problems be reasonable to instead assume a separable distributional structure px,v 

≡ pxpv in which case one can still estimate pv empirically but must set px manually based on 

typical ranges of latent parameters.

2) Choosing Regularization Parameters: As presented, PERK estimator (11) and its 

approximation (23) leave freedom to select different regularization parameters ρ1, …, ρL for 

estimating each of the L latent parameters. However, the respective unitless matrices MKM 
and Czz whose condition numbers are influenced by ρ1, …, ρL do not vary with l. Thus it is 

reasonable to assign each ρl ← ρ ∀l ∈ {1, …, L} some fixed ρ > 0. This simplification 

Nataraj et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly reduces training computation to just one rather than L large matrix inversions. 

We select the scalar regularization parameter ρ using the holdout process described in §S.II.

3) Choosing Kernel Bandwidth: It is desirable to choose the Gaussian kernel’s 

bandwidth matrix Λ such that PERK estimates are invariant to the overall scale of test data. 

We use (after observing test data, and for both training and testing)

Λ λ diag mα
⊤, mν

⊤ ⊤ , (25)

where mα ∈ ℝD and mν ∈ ℝK are sample means across voxels of magnitude test image data 

and known parameters, respectively; and diag(·) assigns its argument to the diagonal entries 

of an otherwise zero matrix. We select the only scalar bandwidth parameter λ > 0 using 

holdout as well.

VI. Experimentation

This section demonstrates PERK for quantifying MR relaxation parameters T1 and T2, a 

well-studied application. We studied this relatively simple problem instead of the more 

complicated problems that motivated our method because we had access to reference T1, T2 

phantom NMR measurements [52] for external validation and because it is easier to validate 

PERK estimates against gold-standard grid search estimates in problems involving few 

unknowns. §VI.A describes implementation details that were fixed in all simulations and 

experiments. §VI.B studies estimator statistics in numerical simulations. §VI.C and §VI.D 

respectively compare PERK performance in phantom and in vivo experiments.

A. Methods

In all simulations and experiments, we used data arising from a fast acquisition [19] 

consisting of two spoiled gradient-recalled echo (SPGR) [53] and one dual-echo steady-state 

(DESS) [54] scans. Since each SPGR (DESS) scan generates one (two) signal(s) per 

excitation, this acquisition yielded D ← 4 datasets. We fixed scan parameters to be identical 

to those in [19], wherein repetition times and flip angles were optimized for precise T1 and 

T2 estimation in cerebral tissue at 3T field strength [19] and echo times were fixed across 

scans. We used standard magnitude4 SPGR and DESS signal models expressed as a function 

of four free parameters per voxel: flip angle spatial variation (due to transmit field 

inhomogeneity) κ; longitudinal and transverse relaxation time constants T1 and T2; and a 

pure-real proportionality constant M0. We assumed prior knowledge of K ← 1 known 

parameter v ← κ (in experiments, through separate acquisition and estimation of flip angle 

scaling maps) and collected the remaining L ← 3 latent parameters as x ← [M0, T1, T2]T.

4Standard complex DESS signal models depend on a fifth free parameter associated with phase accrual due to off-resonance effects. 
Because the first and second DESS signals depend differently on off-resonance phase accrual [19], off-resonance related phase (unlike 
signal loss) cannot be collected into the (now complex) proportionality constant. To avoid (separate or joint) estimation of an off-
resonance field map, we followed [19] and used magnitude SPGR and DESS signal models. We accounted for consequently Rician-
distributed noise in magnitude image data during training.
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We used the same PERK training and testing process across all simulations and experiments. 

We assumed a separable prior distribution px, ν pM0, T1, T2, κ ≡ pM0
pT1

pT2
pκ and estimated 

flip angle scaling marginal distribution pκ from known κ map voxels via kernel density 

estimation (implemented using the built-in MATLAB® function fitdist with default options). 

To match the scaling of training and test data, we set M0 marginal distribution 

pM0
 unif 2.2 × 10−16,  u , with u set as 6.67× the maximum value of magnitude test data. 

We chose the supports of T1, T2 marginal distributions pT1
logunif(400, 2000)ms, 

pT2
logunif(40, 200)ms and clipped the support of pκ to assign nonzero probability only 

within [0.5,2] such that these supports coincided with the supports over which [19] 

optimized the acquisition. We assumed noise covariance Σ of form σ2I4 (as in [19]) and 

estimated the (spatially invariant) noise variance σ2 from Rayleigh-distributed regions of 

magnitude test data, using estimators described in [55]. We sampled N ← 105 latent and 

known parameter realizations from these distributions and evaluated SPGR and DESS signal 

models to generate corresponding noiseless measurements. After adding complex Gaussian 

noise realizations, we concatenated the (Rician) magnitude of these noisy measurements 

with known parameter realizations to construct pure-real regressors. We separately selected 

and then held fixed free parameters λ ← 20.6 and ρ ← 2−41 via a simple holdout process in 

simulation, described in §S.II. We set Gaussian kernel bandwidth matrix Λ from test data via 

(25). We sampled v, s Z ← 103 times to construct approximate feature map z. For each 

latent parameter l ← {1, …, L}, we applied z to training data; computed sample means mxl
, 

mz and sample covariances czxl
, Czz; and evaluated (23) on test image data and the known 

flip angle scaling map on a per-voxel basis.

We evaluated PERK latent parameter estimates against maximum-likelihood (ML) estimates 

computed via two well-suited algorithms that we describe here in turn. We first implemented 

a grid search estimator accelerated by the variable projection method (VPM) [56], a popular 

technique that has been used in many QMRI algorithms and applications (see e.g. [7]–[9], 

[11]–[13], [16], [18], [19], [57], [58]). Following [19], we clustered flip angle scaling map 

voxels into 20 clusters via k-means++ [59] and used each of the 20 cluster means along with 

500 T1 and T2 values logarithmically spaced between (101.5, 103.5) and (100.5, 103) to 

compute 20 dictionaries, each consisting of 250,000 signal vectors (fewer clusters 

introduced noticeable errors in experiments). Iterating over clusters, we generated each 

cluster’s dictionary and applied VPM and grid search over magnitude image data voxels 

assigned to that cluster.

We also compared PERK to iterative ML optimization via a preconditioned variant of the 

classical gradient projection method (PGPM) [60]. We designed the preconditioner as the 

inverse of a positive definite diagonal majorizer of the negative log-likelihood cost 

function’s Hessian matrix, updated for the first five iterations and fixed thereafter. We 

employed a diagonal preconditioner to retain the linear convergence rate guarantees of GPM 

[61] yet accelerate practical performance. We initialized PGPM via conventional method-of-

moments estimators of M0, T1 from 2 SPGR scans [62] and T2 from 1 DESS scan [54] (the 

Nataraj et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method-of-moments T2 estimator is strongly biased). We used the MATLAB® Symbolic 

Toolbox to generate cumbersome but analytical expressions for the gradient and Hessian of 

the magnitude SPGR and DESS signal models. At each PGPM iteration, we used these 

expressions to compute a preconditioned descent direction, update the iterate, and project 

each voxel’s T1 and T2 iterate to lie within [100, 3000]ms and [10, 700]ms, respectively. We 

continued iterations until the convergence criterion

Ω−1 X(i) − X(i − 1)
F < 10−7 Ω−1 X(i − 1)

F (26)

was satisfied, where X collects latent parameter voxels in its columns, (·)(i) denotes the ith 

iterate, Ω := diag med(X(0))) is a fixed latent parameter weighting matrix, and med(·) takes 

the median across the columns of its argument.

To ensure monotone local convergence in cost, we implemented PGPM to include a simple 

step-halving line search at each iteration. In early experiments however, we observed even in 

simulation and even with preconditioning that attempting to update all voxels 

simultaneously using a single line search resulted in large errors due to excessive step-

halving and subsequent early termination of iterations. To circumvent separate line searches 

for every voxel, we first clustered latent parameter initializations and flip angle scaling map 

voxels into 50 clusters and then ran PGPM separately on each cluster (fewer clusters 

reintroduced early stopping).

We performed all simulations and experiments running MATLAB® R2013a on a 3.5GHz 

desktop computer equipped with 32GB RAM. Because our experiments use a single slice of 

image data, we report PERK training and testing times separately and note that only the 

latter time would scale linearly with the number of voxels (the former would scale negligibly 

due only to online model selection). In the interest of reproducible research, code and data 

will be freely available at https://gitlab.eecs.umich.edu/fessler/qmri.

B. Numerical Simulations

We assigned typical T1, T2 values in white matter (WM) and grey matter (GM) at 3T [64] to 

the discrete anatomy of the 81st slice of the BrainWeb digital phantom [65] to produce 

ground truth M0, T1, T2 maps. We simulated 217 × 181 noiseless single-coil SPGR and 

DESS image data, modeling (and then assuming as known) 20% flip angle spatial variation 

κ. We corrupted noiseless datasets with additive complex Gaussian noise to yield noisy 

complex datasets with SNR ranging from 94–154 in WM and 82–154 in GM, where SNR is 

defined

SNR(y, ϵ): = y 2/ ϵ 2 (27)

for image data voxels y and noise voxels ϵ corresponding to a region of interest (ROI) within 

a single SPGR/DESS dataset. We estimated M0, T1, T2 from noisy magnitude images and 

known κ maps using VPM, PGPM, and PERK. VPM took 791s; PGPM took 1821s; and 

PERK training and testing respectively took 3.6s and 1.5s.
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Table I compares sample statistics of VPM, PGPM, and PERK T1, T2 estimates, computed 

over 7810 WM-like and 9162 GM-like voxels (§S.IV presents corresponding images and M0 

sample statistics). Overall, all three methods achieve excellent performance. PERK estimates 

are slightly more precise but slightly less accurate than gold-standard VPM estimates. 

Results suggest that at least in WM- and GM-like voxels, PGPM is capable of descending 

the ML cost towards a desirable solution; in fact, PGPM achieves slightly better precision 

than either VPM or PERK. All three methods exhibit comparable root mean squared errors 

(RMSEs).

C. Phantom Experiments

Phantom experiments used datasets from fast coronal scans of a High Precision Devices® 

MR system phantom T2 array acquired on a 3T GE Discovery™ scanner with an 8-channel 

receive head array. This acquisition consisted of: two SPGR scans with 5, 15° flip angles and 

12.2, 12.2ms repetition times; one DESS scan with 30° flip angle and 17.5ms repetition 

time; and two Bloch-Siegert (BS) scans [26] (for separate flip angle scaling κ estimation). 

Nominal flip angles were achieved by scaling a 2cm slab-selective Shinnar-Le Roux RF 

excitation [66] of duration 1.28ms and time-bandwidth product 4. All scans collected fully-

sampled 3D Cartesian data using 4.67ms echo times with a 256 × 256 × 8 matrix over a 24 × 

24 × 4cm3 field of view. Scan time totaled 3m17s. The scan room temperature was recorded 

as 293K once at the beginning of the exam. Further acquisition details are reported in [19].

For each SPGR, DESS, and BS dataset, we reconstructed raw coil images via 3D Fourier 

transform and subsequently processed only one image slice centered within the excitation 

slab. We combined SPGR and DESS coil images using a natural extension of [67] to the 

case of multiple datasets. We similarly (but separately) combined BS coil images and 

estimated κ maps by normalizing and calibrating regularized transmit field estimates [68] 

from complex coil-combined BS images. We estimated M0, T1, T2 from magnitude SPGR/

DESS images and κ maps using VPM, PGPM, and PERK. VPM took 928s; PGPM took 

1257s; and PERK training and testing respectively took 4.2s and 1.9s.

Fig. 1 compares sample means and sample standard deviations computed within ROIs of 

VPM, PGPM, and PERK T1, T2 estimates against nuclear magnetic resonance (NMR) 

reference measurements reported at 293.00K from the National Institute for Standards of 

Technology (NIST) [52]. Yellow box boundaries indicate projections of the PERK sampling 

distribution’s support supp(px,v). ROI labels correspond with vial markers depicted in 

images presented in §S.V.A. Within supp(px,v), corresponding tables demonstrate that VPM, 

PGPM, and PERK estimates agree excellently with each other and reasonably with NMR 

measurements. We do not expect good PERK performance outside supp(px,v) and indeed 

observe poor ability to extrapolate. As discussed in §V.B.1 and demonstrated in §S.V.B, 

expanding supp(px,v) well beyond the acquisition design parameter range of interest can 

substantially reduce PERK performance for typical T1, T2 WM and GM values.

D. In vivo Experiments

In vivo experiments used datasets from axial scans of a healthy volunteer acquired with a 

32-channel Nova Medical® receive head array. To address bulk motion between scans, we 
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rigidly registered coil-combined images to a reference before parameter estimation. All other 

data acquisition, image reconstruction, and parameter estimation details are the same as in 

phantom experiments (acquisition and reconstruction details are reported in [19]). VPM took 

838s; PGPM took 2178s; and PERK training and testing respectively took 4.2s and 1.6s.

Fig. 2 compares VPM, PGPM, and PERK M0, T1, T2 estimates. The PERK M0 estimate 

appears smoothed (although no spatial regularization was used) but is otherwise very similar 

to the VPM and PGPM M0 estimates. Narrow display ranges emphasize that VPM, PGPM, 

and PERK T1, T2 estimates discern cortical WM/GM boundaries similarly, though PERK T1 

estimates are noticeably highest in some WM regions. VPM, PGPM, and PERK T2 

estimates are nearly indistinguishable in lateral regions but disagree somewhat in medial 

regions close to cerebrospinal fluid (CSF). We neither expect nor observe reasonable PERK 

performance in voxels containing CSF.

Table II summarizes sample statistics of VPM, PGPM, and PERK T1, T2 estimates, 

computed over four separate WM ROIs containing 96, 69, 224, and 148 voxels and one 

pooled cortical anterior GM ROI containing 156 voxels. Overall, VPM, PGPM, and PERK 

T1, T2 estimates are comparable. T1 estimates in GM and T2 estimates in WM/GM do not 

differ significantly. PERK T1 estimates are significantly higher than VPM and PGPM T1 

estimates in one WM ROI; however, all T1 estimates are well within the range of typical 

literature measurements at 3T (see e.g. [64], [69]).

VII. Discussion

The single-slice experiments show that PERK can achieve similar WM/GM T1, T2 

estimation performance as dictionary-based grid search via VPM or iterative optimization 

via PGPM, but in more than 2 orders of magnitude less time. This acceleration factor will 

grow to at least 3 orders of magnitude for T1, T2 estimation over a typical full imaging 

volume (because PERK training time scales negligibly with the number of voxels) and may 

grow even higher for full-volume parameter estimation in problems involving more 

unknowns per voxel (see [37] for a demonstration in simulation). Even with recent low-rank 

dictionary approximations [13], [17], [20], [21] dictionary-based methods are unlikely to 

achieve the large-scale speed of PERK.

PERK also handles known parameters v more naturally than does dictionary-based grid 

search. Grid search necessitates pre-clustering v voxel values and generating one dictionary 

per cluster; however, it is in general unclear a priori how many clusters are needed to 

balance accuracy and computation. In contrast, PERK simply considers the coordinates of 

each v sample as additional regressor dimensions. As the Gaussian PERK estimator is 

continuous in v (and α), Gaussian PERK does not suffer from either cluster (or grid) 

quantization bias.

Interestingly, PERK storage requirements grow more directly with regressor dimension P 
than with regressand dimension L. Using formulas for rank-one covariance matrix updates, 

constructing x( ⋅ ) element-wise via L evaluations of (23) can be implemented to use O(Z2) 

memory units when ρl ← ρ ∀l ∈ {1, …, L} (as recommended in §V.B.2). Direct application 
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of [47, Proposition 4] to the case of Gaussian kernel (12) reveals that Z should be scaled 

subquadratically but superlinearly with P to conservatively maintain a given threshold of 

maximal kernel approximation error. Thus, PERK memory requirements need grow no faster 

than O(P4) to maintain a given level of kernel approximation error.

The O(P4) PERK memory requirement ensures improvement over large-scale grid search in 

modestly overdetermined estimation problems, i.e. when P ≈ L. In applications where the 

number of measurements far exceeds L (e.g., MR fingerprinting [11]), PERK may still 

provide performance gains if images are projected [13] or directly reconstructed [20] into a 

low-dimensional measurement subspace prior to per-voxel processing. Using this idea, we 

recently applied PERK to MR fingerprinting in [70].

Phantom experiments most clearly demonstrate that while PERK T1, T2 estimates are 

accurate within a properly selected training range, PERK may extrapolate poorly outside the 

sampling distribution’s support (an improperly selected support can significantly degrade 

performance; see §S.V.B for a demonstration). If more graceful degradation is desired, it 

may be helpful to additionally fit coefficients of a low-order polynomial and thereby form 

estimates of form, e.g., xl(p): = h l(p) + b l + cl
⊤p. However, greater model complexity may 

require more training samples to prevent overfitting.

In vivo experiments demonstrated that VPM, PGPM, and PERK T1, T2 estimates are overall 

comparable in WM and GM regions of interest. Nevertheless, small but consistently 

unidirectional discrepancies persist between the ML and PERK T1 estimates in WM, one of 

which is statistically significant. These subtle discrepancies may indicate that ML and PERK 

estimators behave differently in regions with increased model mismatch. One possible 

source of in vivo model mismatch could be diffusive signal loss, to which DESS is 

especially sensitive [71], [72]. In particular, unaccounted diffusive signal loss could reduce 

the DESS second echo’s already low SNR in WM to a point where non-Gaussian noise 

statistics become important to consider. Whereas PERK was trained with simulated data 

corrupted by Rician-distributed noise, the ML estimators used in this work take a (standard) 

Gaussian noise assumption and may thus be more prone than PERK to noise-related bias at 

low SNR. Taking these statements together, unaccounted diffusive effects might bias 

Gaussian ML estimators more than a properly trained PERK estimator and might explain 

minor discrepancies between ML and PERK T1 estimates in WM.

The present formulation constructs separate scalar estimators for each coordinate of x. A 

natural extension might instead seek to construct vector estimators that consist of linear 

combinations of vector features that reside in an RKHS of vector-valued functions (see [73] 

for a review). Here, the associated reproducing kernel would now be matrix-valued and 

might encode expected dependencies among the outputs of x. With enough training points, 

the resulting vector estimator could achieve improved estimator performance in terms of 

accuracy and precision, at the expense of tuning more model parameters and increased 

computational burde.

In this work, we trained PERK using simulated training data corrupted by noise realizations 

drawn from a single noise distribution, whose statistics were estimated once from 
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background regions of unlabeled test image data. This training strategy produced reasonable 

results perhaps in part because our experiments used fully-sampled Cartesian data, for which 

coil-combined images exhibit little spatial variation in the noise distribution due to receive 

coil sensitivity spatial variation [74]. To apply PERK in applications where input 

measurement images exhibit large spatial variation in the noise variance (e.g., multiple-coil 

acquisitions with parallel imaging acceleration), it may be advantageous to train PERK 

using simulated training data corrupted by noise realizations drawn from an appropriate 

distribution over noise distributions. If noise variance maps are available, one could 

alternately train several PERK estimators with training datasets corrupted by different 

amounts of noise and apply each estimator to correspondingly noisy measurement image 

voxels.

Because there is ambiguity in MR data scale due to receive gains and other amplitude 

scaling factors, it is desirable to construct an estimator that is unaffected by changes in 

measurement scale between training and testing. In experiments, we address scaling 

ambiguity by setting the marginal M0 sampling distribution pM0
 based on test 

measurements, thereby matching simulated training measurement scale to test measurement 

scale. This strategy would require retraining between acquisitions that are different in scale 

but are otherwise identical, which may be undesirable in practice. As an alternative, one 

could preprocess each noisy training regressor and each noisy test measurement by rescaling 

each such that (without loss of generality) its first entry is unity, is subsequently 

uninformative, and can thus be safely pruned to reduce problem dimensionality. Training 

and testing estimators (for latent parameters other than M0) using these preprocessed 

regressors and test points is then largely invariant to the support of pM0
 [70]. One drawback 

to this approach is that normalization by noisy training regressors and test measurements 

could increase estimation variance.

As explained further in §V.B, we chose to train PERK after observation of unlabeled test 

data, a strategy that permits automatic selection of some tuning parameters but requires 

training at test time. Other applications may require many more training points than was 

required in our experiments for reasonable PERK performance, in which case such online 

training might be less practical. Using our PERK implementation, offline training would 

require additional selection of test measurement scale, known object parameter distribution 

pv, and noise variance σ2. Test measurement scale selection could be avoided using the 

scale-invariant training strategy discussed in the previous paragraph. As emphasized in 

§V.B.1 and demonstrated in §S.V.B, PERK performance is quite sensitive to the object 

parameter distribution’s support, and so at least the support of pv would need to be carefully 

selected based on separate prior parameter estimates or problem-specific intuition. As 

demonstrated in §S.III, PERK performs best when training and testing data noise statistics 

coincide but degrades gracefully with mild levels of mismatch, so σ2 could be selected based 

on separate SNR approximations.

As an alternative to PERK, researchers have recently proposed MRI parameter estimation 

via deep neural network learning [75], [76]. Deep learning requires enormous numbers of 

training points to train many model parameters without overfitting, and its limited theoretical 
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basis renders its practical use largely an art. Here, we have introduced and investigated 

PERK with an emphasis on its simplicity and its relatively intuitive model selection (see 

§V.B); a thorough comparison with deep learning is a possible topic for future work.

VIII. Conclusion

This paper has introduced PERK, a fast and general method for dictionary-free MRI 

parameter estimation. PERK first uses prior parameter/noise distributions and a general 

nonlinear MR signal model to simulate many parameter-measurement training points and 

then constructs a nonlinear regression function from these training points using linear 

combinations of nonlinear kernels. We have demonstrated PERK for T1, T2 estimation from 

optimized SPGR/DESS acquisitions [19], a simple application where it is straightforward to 

validate PERK estimates against gold-standard VPM estimates, iterative PGPM estimates, 

and NIST reference measurements. Numerical simulations showed that PERK achieves T1, 

T2 RMSE comparable to VPM and PGPM in WM- and GM-like voxels. Phantom 

experiments showed that within a properly chosen sampling distribution support, VPM, 

PGPM, and PERK estimates agree excellently with each other and reasonably with NIST 

NMR measurements. In vivo experiments showed that VPM, PGPM, and PERK produce 

comparable T1 estimates and nearly indistinguishable T2 estimates in WM and GM ROIs. 

PERK used identical model selection parameters across all simulations and experiments and 

consistently provided at least a 140× acceleration over VPM and PGPM. This acceleration 

factor may increase by several orders of magnitude for estimation problems involving more 

latent parameters per voxel [27], [37].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Phantom sample statistics of VPM, PGPM, and PERK T1, T2 estimates and NIST NMR 

reference measurements [52]. Plot markers and error bars indicate sample means and sample 

standard deviations computed over ROIs within the 14 vials labeled and color-coded in Fig. 

S.7. Yellow box boundaries indicate projections of the PERK sampling distribution’s 

support supp(px,v). Missing markers lie outside axis limits. Corresponding tables replicate 

sample means ± sample standard deviations for vials within supp(px,v). Each value is 

rounded off to the highest place value of its (unreported) standard error, computed via 

formulas in [63]. ‘V#’ indicates vial numbers. All values are reported in milliseconds. 

Within supp(px,v), VPM, PGPM, and PERK estimates agree excellently with each other and 

reasonably with NMR measurements.
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Fig. 2: 
VPM, PGPM and PERK estimates of M0, T1, T2 in the brain of a healthy volunteer. Separate 

WM ROIs are distinguished by anterior/posterior (A/P) and right/left (R/L) directions. Four 

small anterior cortical GM polygons are pooled into a single GM ROI. Images are cropped 

in post-processing for display.
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TABLE II:

In vivo sample means ± sample standard deviations of VPM, PGPM, and PERK T1,T2 estimates, computed 

over color-coded ROIs indicated in Fig. 2. Each value is rounded off to the highest place value of its 

(unreported) standard error, computed via formulas in [63]. All values are in milliseconds.

ROI VPM PGPM PERK

T1

AR WM 778 ± 28 779 ± 27 832 ±31

AL WM 731 ±37 713 ± 33 725 ± 41

PR WM 805 ± 52 796 ± 51 831 ± 51

PL WM 789 ± 40 788 ± 38 815 ± 42

A GM 1120 ± 180 1120 ± 180 1150 ± 170.

T2

AR WM 40.0 ± 1.29 40.0 ± 1.27 41.18 ±0.94

AL WM 39.7 ± 1.7 39.7 ± 1.7 41.3 ± 1.02

PR WM 43.0 ±2.7 43.0 ± 2.7 43.7 ± 2.6

PL WM 43.0 ± 1.8 43.0 ± 1.8 43.5 ± 1.36

A GM 53.5 ± 11.8 53.4 ± 11.7 53.3 ± 11.6
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