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Abstract

A number of image-processing problems can be formulated as optimization problems. The 

objective function typically contains several terms specifically designed for different purposes. 

Parameters in front of these terms are used to control the relative importance among them. It is of 

critical importance to adjust these parameters, as quality of the solution depends on their values. 

Tuning parameters is a relatively straightforward task for a human, as one can intuitively 

determine the direction of parameter adjustment based on the solution quality. Yet manual 

parameter tuning is not only tedious in many cases, but becomes impractical when a number of 

parameters exist in a problem. Aiming at solving this problem, this paper proposes an approach 

that employs deep reinforcement learning to train a system that can automatically adjust 

parameters in a human-like manner. We demonstrate our idea in an example problem of 

optimization-based iterative CT reconstruction with a pixel-wise total-variation regularization 

term. We set up a Parameter-Tuning Policy Network (PTPN), which maps a CT image patch to an 

output that specifies the direction and amplitude by which the parameter at the patch center is 

adjusted. We train the PTPN via an end-to-end reinforcement learning procedure. We demonstrate 

that under the guidance of the trained PTPN, reconstructed CT images attain quality similar or 

better than those reconstructed with manually tuned parameters.

Index Terms

Image reconstruction - iterative methods; Machine learning; Inverse methods; x-ray imaging and 
computed tomography

I. Introduction

A number of medical image-processing problems can be formulated as solving optimization 

problems. In such problems, the objective function typically contain several terms carefully 

designed for different purposes. A set of parameters are used to control the relative weights 

of these terms in order to achieve a satisfactory solution quality. Take a typical problem of 

iterative Computed Tomography (CT) reconstruction as an example, it can be formulated as
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f ∗ = arg min
f

1
2 P f − g 2 + λR[ f ], (1)

where f∗ is the image to be reconstructed by solving the optimization problem, P stands for 

the x-ray projection operator, and g the measured projection data. The first data-fidelity term 

ensures agreement between f∗ and the measurement g. R[f] stands for a regularization term 

specifically designed to enforce quality of the solution image from a certain aspect, e.g. 

piece-wise smoothness. λ is the parameter that is used to control the trade-off between this 

regularization term and the data-fidelity term. Over the years, a number of regularization 

terms have been developed to successfully restore a high-quality solution f∗ using 

undersampled or noisy measurement g. Examples include, but are not limited to, total 

variation (TV) [1]–[3], tight frame (TF) [4], [5], and nonlocal means (NLM) [6]–[8].

Despite the success, parameter tuning in these optimization-based image processing 

problems is inevitable. Manual adjustment of the parameters for the best image quality is not 

uncommon in literature [2], [3], [5], [7], [8]. Yet this is a tedious approach, as one has to 

carefully navigate through the parameter space to find the optimal value. The required 

efforts and human time impede real applications of those novel image-processing methods. 

Moreover, manual parameter tuning becomes increasingly challenging in those problems 

with multiple regularization terms. An extreme example is the CT reconstruction problem 

but with pixel-wise weighting parameters [9], [10]. Clearly, the substantial amount of 

parameters makes manual parameter tuning infeasible. Therefore, it is highly desirable to 

develop a method for automatic parameter adjustment. Over the years, this problem has 

attracted a lot of research interests. For instance, generalized cross validation and L-curve 

methods have been used to choose the regularization parameters [11]–[13]. It has been 

proposed to develop a method to assess image quality, which can then be used as guidance 

for parameter adjustment [14], [15]. In certain contexts, such as the CT reconstruction 

problem, it may be possible to estimate the level of data contamination based on physics or 

mathematical principles. This can provide valuable information to set the parameter values 

[16]. In the context of prior-image based image reconstruction, a novel method to estimate 

the optimal parameter value has also been proposed [17]. Despite these efforts, a practical 

solution that is applicable to general problems still does not exist, calling for further 

investigations.

Although it is quite difficult for a computer to automate the parameter-tuning process, this 

task seems to be less of a problem for humans. One typically has a strong intuition about 

which direction the parameter should be adjusted based on the observed image quality. 

Again, let us take the iterative CT reconstruction problem in Eq. (1) as an example. By 

looking at the solution image, one knows that the regularization strength needs to be 

increased, if the solution appears to be noisy, or be reduced otherwise. Based on this fact, it 

is of interest and importance to model this remarkable intuition and capability in an 

intelligence system, which can then be used to solve the parameter-tuning problem from a 

new angle.
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Recently, the tremendous success in deep-learning regime shines a light in this direction. In 

the past few years, deep learning has clearly demonstrated its power in numerous medical 

image processing problems [18]–[24]. More importantly, it was found that human-level 

intelligence can be spontaneously generated via deep-learning schemes, which enables a 

system to perform a certain task in a human-like fashion, or even better than humans. In a 

pioneering study, an artificial intelligence system was developed to realize human-level 

control of Atari computer games [25], [26]. Employing a deep Q-network approach, the 

system was trained through the framework of deep reinforcement learning to learn how to 

interact with the environment, i.e. play an Atari game. The results were remarkable: the 

trained system was able to achieve a level comparable to that of professional human players 

in a set of 49 Atari games.

Motivated by this fact, we propose in this paper to develop an intelligent system to 

accomplish the parameter-tuning task in optimization-based image-processing problems. We 

take a CT reconstruction problem as an example to demonstrate our idea. Specifically, we 

will develop a Parameter-Tuning Policy Network, which can intellectually determine the 

direction and magnitude of parameter adjustment by observing an input image patch. The 

rest of this paper is organized as follows. Sec. II will introduce the problem of TV-based CT 

reconstruction with pixel-wise regularization. We will also describe the PTPN structure and 

how to train it to develop the skill of parameter tuning. Sec. III will present our validation 

studies and results. Finally, we will make some discussions in Sec. IV and conclude the 

study in Sec. V.

II. Methods

A. CT reconstruction framework

In this paper, we consider the following iterative CT reconstruction problem:

f ∗ = arg min
f

1
2 P f − g 2 + λ ⋅ ∇ f . (2)

This approach falls into the regime of TV-based regularization [1], which penalizes the L1 

norm of the image gradient to ensure image smoothness while preserving edges. In the 

second term of the objective function, we consider a general case that extends λ into a 

vector. Each entry of λ controls the regularization strength at an image pixel. The 

substantially large amount of parameters in this example problem compared to a typical 

single-parameter TV model highlights the need for an automatic parameter-tuning system.

There are a number of novel numerical algorithms to solve this optimization problem for 
fixed parameters λ [27]–[29]. In this study, we use the alternating direction method of 

multipliers (ADMM) [29]. It introduces an auxiliary variable d to replace ∇f in the original 

problem and adds a constraint d = ∇f to guarantee the equivalence between the constrained 

problem and the original problem. Such a constraint is then integrated with the objective 

function by considering the augmented Lagrangian:
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ℒ( f , d, Γ) = 1
2 P f − g 2 + λ ⋅ d + β

2 ∇ f − d 2

+ Γ, ∇ f − d ,
(3)

where β is a parameter of the algorithm. Γ denotes the Lagrangian multiplier which is used 

to guarantee the convergence of the algorithm. The original optimization problem is solved 

by alternatively tackling this augmented Lagrangian function with respect different 

variables. Major steps of the ADMM algorithm are outlined in Fig. 1. Due to the large scale 

of the reconstruction problem, the matrix inverse operation in Line 2 is achieved using the 

conjugate gradient algorithm [30].

B. Parameter-tuning methodology

Let x denote the pixel position of the reconstructed image. If a human were asked to adjust 

parameter λ(x) in a trial-and-error fashion, he would repeatedly observe the reconstructed 

image quality under λ(x) and then decide how to change the parameters based on human 

intuition. This process would continue, until a satisfactory image is obtained. In this study, 

we propose to develop a parameter-tuning system to replace the human in this process.

Denote the parameter-tuning iteration step with k. At each step, the system observes the 

reconstructed image fk generated by the image reconstruction system using the ADMM 

algorithm. Note that fk is the solution at the convergence of the ADMM algorithm, rather 

than the intermediate image during the ADMM iteration. For each position x, the image 

patch centering at this pixel, denoted as Sfk (x) is fed to the parameter-tuning system. The 

system then outputs the direction and magnitude by which the parameter λk(x) is adjusted. 

Here, we explicitly associate λ(x) with the index k, as it will vary from step to step. Such a 

process continues, until a stopping criteria is met.

We would like to achieve automatic parameter-tuning capability via the Q-learning approach 

[31]. Specifically, Q-learning considers the optimal action-value function defined as

Q∗(s, a) = max
π

[rk + γrk + 1 + γ2rk + 2 + ⋯ sk = s, ak = a, π], (4)

where s is the observed system state, i.e. an image patch Sfk (x) in this study. a is the action 

taken, namely the way of adjusting parameter λk(x). We consider five possible actions: 

keeping the parameter λk(x) unchanged, increasing or decreasing it by 10%, and increasing 

or decreasing it by 50%. We arbitrarily choose the values of 50% or 10% as possible 

amounts of changes, as we expect these values will not critically affect the capability of 

parameter tuning of our system. rk is the reward at step k based on a predefined reward 

function. In the specific problem here, the reward function is chosen to quantify the quality 

change of the reconstructed image after taking the action a. Specifically, improved image 

quality is assigned a positive reward, and otherwise a negative reward. γ ≤ 1 is a discount 

factor, and π stands for the parameter-tuning policy to be determined: taking an action a 
after observing a state s. Here, we consider a greedy policy that always selects the action 
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maximizing the Q∗ value under the input s, i.e. a = arg maxa′ Q∗(s, a′). To determine this 

policy, it is necessary to establish the optimal action-value function Q∗(s, a).

The explicit form of the action-value function is generally unknown. In this study, we 

parametrize this function using a convolutional neural network (CNN) Q(s, a; W), where W 
denotes the set of network parameters. This network is referred to as Parameter-Tuning 

Policy Network (PTPN) from hereon. The structure of the network is depicted in Fig. 2. The 

input of this network is a state s, namely an image patch. There are five output nodes 

corresponding to the five actions considered. The output value of PTPN at a node 

corresponding to an action a is the function value Q(s, a; W). Through a reinforcement 

learning process described in the next section, parameter set W of the optimal action-value 

function Q∗(s, a; W) will be determined. After that, we can use this established function for 

parameter tuning. As such, since the policy is to select the action maximizing the Q∗ 

function value, we use PTPN to calculate output values for the input s = Sfk (x) and adjust 

λk(x) by taking the action corresponding to the output node with the highest value.

C. PTPN training via deep reinforcement learning

1) General deep reinforcement learning idea—One particular property of the Q∗(s, 

a) function is the Bellman equation [32]:

Q∗(s, a) = r + γ max
a′

Q∗(s′, a′), (5)

where r is the reward achieved by the optimal action a based on the current state s. s′ is the 

state that follows s after taking the action a. When the function Q∗(s, a) is parameterized by 

a CNN, Q(s, a) ≈ Q(s, a; W), we can determine W by minimizing a loss function L(W) = [r 
+ γ maxa′ Q(s′, a′; W) − Q(s, a; W)]2, which essentially penalizes the deviation from the 

Bellman equation.

Following the standard approach of reinforcement learning [25], [26], we introduce another 

variable W′ and define a target term y = r + γ maxa′ Q(s′, a′; W′). For a fixed W′, we 

consider the loss function

L(W) = [y − Q(s, a; W)]2 . (6)

Note that the s′ inside the target term is related to s by the action a. We perform learning in 

a sequence of stages. In each stage, the parameter W′ is kept unchanged, whereas the 

parameter W is updated towards minimizing the loss function. At the end of each stage, W′ 
is updated to the optimized parameter W. It is expected that at the end of the multi-stage 

learning process, W′ and W in Eq. (6) should converge.

Within a stage, since W′ is kept unchanged, the gradient of the loss function with respect to 

W is simply
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∂L
∂W = − [r + γmax

a′
Q(s′, a′; W′) − Q(s, a; W)]∂Q(s, a; W)

∂W . (7)

The last term ∂Q(s, a; W)/∂W can be computed via the standard back-propagation approach 

in a typical network training process. As in many other studies, we use stochastic gradient 

descent approach that computes the gradient. We then update the network parameter W 
using a subset of training data randomly selected from the full training data set. Specifically, 

W is updated as W l + 1 = W l − σ ∂L
∂W , where σ is the learning rate and l is the index of 

iteration.

2) Training PTPN—We train the PTPN following the general idea outlined in the previous 

section. As such, we repeatedly perform image reconstruction using the ADMM algorithm 

in Fig. 1. At the step k, the solution image fk is observed. For each pixel x we use an ε-

greedy algorithm to select an action to adjust the parameter value λ(x). Specifically, with 

pre-defined probability of ε, we randomly select an action ak(x) among all the possible 

choices with equal chances. Otherwise, the action corresponding to the highest network 

output value is chosen, i.e. ak(x) = arg maxa Q(s = Sfk (x), a; W). Note that ak is position-

dependent, as each pixel has its own way to adjust its parameter λk(x) based on the image 

patch Sfk (x). With the selected action, we update the parameter λk(x) accordingly. After the 

parameters of all the pixels are updated, we perform image reconstruction one more time 

with fk as the initial guess, yielding an updated solution image fk+1.

At this point, we randomly sample a number of Nsamp patches from the image to generate 

training data. For each selected patch at location x, we gather the information of the solution 

image patches Sfk (x), Sfk+1 (x), the reward rk(x), as well as the action ak(x). The reward 

function at this patch is defined as

rk(x) =
S

f ∗(x)

S
f k + 1(x) − S

f ∗(x)
−

S
f ∗(x)

S
f k(x) − S

f ∗(x)
, (8)

where f∗ is the ground truth image, which is known during the training process. |.| stands for 

the standard L2 norm of a vector. We define this reward function to encourage image patch 

updates that are moving towards the ground truth image patch. The inverse function is 

utilized to amplify the change between fk and fk+1: as the parameter is tuned through a 

sequence of steps, an additional step typically improves the image quality only slightly, and 

hence reduces the distance to the ground truth by a small amount.

The collected information at different locations forms a set of data {Sfk (x), rk(x), ak(x), Sfk

+1 (x)}. The data set is then put into a pool of training data set. Finally, to train PTPN, a 

subset of the training data randomly selected from the pool are used to update parameter W 
by minimizing the loss function in Eq. (6) with the gradient computed using Eq. (7). This 

Shen et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strategy is known as experience replay in the deep-Q learning regime, which is designed to 

overcome the problem that the training data generated in a sequential steps of actions are 

highly correlated [25], [26]. This process continues for a preset number of steps Nrecon. 

Within this process, we update W′ to W every Nupdate steps.

The training process described above is executed in multiple epochs. Each epoch contains 

the same training process but with different CT images. The overall algorithm structure is 

summarized in Fig. 3.

D. Implementation details

We implement this algorithm using Python with Tensor-Flow. The computational platform is 

a desktop workstation with an Intel Xeon 3.5 GHz CPU processor, 8 GB memory and an 

Nvidia Quadro M4000 GPU card.

For the CT reconstruction part, we consider a fan-beam projection geometry with 180 

projections equally spaced over a 2π angular range. The image has a resolution of 128 × 128 

pixels. A relatively low resolution is used in this study due to computational efficiency 

concerns. The x-ray detector is of a line shape with 384 elements covering a 40 cm range. 

The source-to-isocenter distance is 100 cm and the isocenter-to-detector distance is 50 cm. 

The projection matrix P is computed using the standard Siddon’s algorithm [33]. We select 

six slices of CT images at different anatomical sites including brain, lung, and abdomen 

from different patients as training images and another six slices of CT images as testing 

samples, see Fig. 4. Note that although only six CT slices are used, the actual number of 

training pairs is substantially larger in the deep-reinforcement learning scheme, as indicated 

in Table I. Projection data is simply calculated as g = P f∗+n, where f∗ is the ground truth 

image and n is a Gaussian noise signal with zero mean and variance determined by P f∗ as in 

a previous study [34]. The averaged relative noise level is 3%. Values of relevant parameters 

used in training are summarized in Table I.

III. Validation studies and results

A. Training process and trained PTPN

During the training process, we monitor the quality of the trained PTPN, as shown in Fig. 5. 

Both the average output of the PTPN and the reward follow an increasing trend, albeit with 

some oscillations. This indicates that the PTPN is adjusted gradually in this reinforcement 

learning process towards predicting actions with high reward values. We remark here that 

the overall training time is around 20 hours under the current setup.

B. Parameter tuning in CT reconstruction

1) CT reconstruction under PTPN guidance—With the PTPN trained, we use it to 

guide parameter tuning in a CT reconstruction problem. As such, we select a ground truth 

CT image f∗ and generate the projection data with noise added. We first set the parameter 

arbitrarily to λ0(x) = 0.005, a constant value that is likely not optimal. After that, we apply 

PTPN to guide parameter tuning as outlined in the beginning of Sec.II.B. The tuning process 
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stops, when the relative difference between CT images in two successive reconstructed 

images is less than 1%.

To observe this process in detail, we select a test case that is not used in training. Fig. 6(a)-

(c) present reconstructed CT images at steps k = 1, 4, 7. It is clear that the image quality is 

improved with the parameter tuned. Quantitatively, we compute the relative error e = |f − f∗|/|

f∗| at different steps and plot it in Fig. 6(d). A monotonic decay trend is observed, indicating 

the effectiveness of parameter tuning. Note that a single reconstruction process in the current 

setup takes around 7 seconds. In the proposed scheme, we have restricted the number of 

parameter-tuning steps to be no larger than 20. Therefore, the maximum computational time 

for a complete parameter tuning and reconstruction process is approximately 140 seconds. In 

practice, the running time should always be shorter, since the reconstructed image from one 

step is utilized as the initial guess of the next step, which promises a fast convergence. In all 

the testing cases, we observed that the parameter-tuning processes often stop after 7-12 steps 

with less than 60 seconds of overall running time.

2) Reconstruction results—Fig. 7 is a case that is used in training, whereas Fig. 8 is the 

same case shown in Fig. 6, which is not included in training. Since we arbitrarily set initial 

values of λ(x), which is too small in these two cases, the resulting images contain a lot of 

noise (Fig. 7(b) and 8(b)). After the parameter λ(x) is tuned by PTPN, the image quality in 

both cases is substantially improved (Fig. 7(c) and 8(c)).

We compare the results with those under manually tuned parameters. Since it is impractical 

for one to adjust the parameter for each individual pixel, we consider a special context that 

the parameter is a constant throughout the image and we manually adjust this parameter 

value for the best image quality. The appropriate parameter values are λ(x) = 0.05 for Fig. 7 

and λ(x) = 0.12 for Fig. 8. Fig. 7(d) and 8(d) depict images reconstructed under these 

parameters in the two cases, respectively. It is found that the images still contain a certain 

amount of noise and the quality is inferior to those reconstructed with parameters tuned by 

PTPN.

As for the parameter maps tuned by the PTPN shown in Fig. 7(e) and 8(e), it is observed that 

PTPN deliberately reduces parameter values around image edges. This is understandable. 

Reducing parameters at those pixels decreases the strengths of regularization in those areas, 

which is beneficial in terms of preserving image edges.

Interestingly, for the simple problem in Eq. (2), it is possible to derive the optimal parameter 

map λ∗(x). As such, let us take the gradient of the objective function and set it to zero at 

f = f ∗:PT(P f − g) − λ∇ ⋅ ∇ f
∇ f f = f ∗ = 0. This implies that the optimal parameter map is

λ∗(x) = PT(P f ∗ − g)

∇ ⋅ ∇ f ∗

∇ f ∗

. (9)
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The numerator in this expression is more or less an image of noise that is obtained by back-

projecting the residual error in the projection domain to the image domain. Here, we neglect 

the image structure of the noise and plot the image 1/ ∇ ⋅ ∇ f ∗

∇ f ∗  in Fig. 7(f) and 8(f) for the 

two cases, respectively. The images shows that λ∗(x) is small along the image edges. 

Comparing subfigures (e) and (f) in Fig. 7 and Fig. 8, the similarity between corresponding 

pair of images implies that PTPN can intelligently adjust λ(x) towards the optimal 

parameter maps. Note that this intelligence is purely developed by the PTPN itself through 

the reinforcement learning process. Except for providing rewards for an action, we do not 

explicitly give any information regarding how to tune the parameters.

Quantitatively, we evaluate the image quality using relative error e and Peak Signal-to-Noise 

Ratio (PSNR). Table II summarizes the results in the six training and the six testing cases. In 

each case, we present the metrics for the images under a manually tuned parameter, under an 

arbitrarily set initial parameters, and under parameters tuned by PTPN. For all the training 

cases, the images under PTPN-tuned parameters achieve the smallest errors and the highest 

PSNRs, indicating effectiveness of PTPN. Among the six testing cases, the PTPN-tuned 

parameters yield the smallest errors and the highest PSNRs in five cases (#1-4, 6). For the 

case #5, the difference between the manually tuned and the PTPN-tuned results is small.

3) Application to other cases—PTPN determines the way of parameter tuning based on 

observed image patch. It is expected that the trained PTPN is also applicable to image 

reconstruction problems under settings that are different from those in training. To 

demonstrate this fact, we also apply PTPN to CT reconstruction in cases with different 

number of projections, noise levels, projection geometry, as well as a real phantom case. Fig. 

9(a) and (b) use the same CT image as in Fig. 8 but with 2% and 5% noise in the projection 

data, different from the noise level of 3% in training. Fig. 9(c) is the case with only 90 

projections. In Fig. 9(d) we change the isocenter-to-detector distance to 25 cm. In all the 

cases, PTPN is able to adjust parameters to yield images with satisfactory quality. The 

resulting parameter maps in Fig. 9(e)-(h) are all similar to the ground truth shown in Fig. 

8(f).

In Fig. 10, we report the result generated by applying the trained PTPN to a real phantom 

case. A Catphan 504 phantom is scanned on a Cone beam CT of a Varian TrueBeam medical 

linear accelerator (Varian Medical System. Palo Alto, CA) using 100 kVp and 0.4 mAs. The 

x-ray is collimated to a 2 cm thick fan beam to reduce scatter. Only the central CT slice is 

reconstructed. It can be observed that PTPN leads to better image quality than results using 

the initial parameter and the manually tuned parameter.

IV. Discussions

Relation to other works

The power of deep learning in medical image processing has been clearly demonstrated in a 

spectrum of problems. Among these studies, most used supervised learning to determine 

parameters inside a network in order to establish a map between input and output images. In 
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[22], [23], a network was set up to map a noise-contaminated CT image acquired at a low-

dose level to the clean image. In [19], deep residual learning was employed to map a CT 

image with streak artifacts caused by undersampling to the artifact image, which was further 

subtracted from the original image to eliminate the artifact. In a study [35] that viewed the 

iterative image reconstruction process as a data flow in a network under the ADMM 

algorithm, the supervised learning process enabled discovery of the algorithm parameters, 

such as image filters and threshold values. Comparing to these novel works, our study is 

different in two-fold. First, the purpose of using deep learning is different. Instead of trying 

to predict the underlying true solution or image artifacts, the purpose of setting up a PTPN is 

to predict a dynamic policy applicable to the image reconstruction problem in Eq. (2). Under 

the guidance of this policy, the output image of the reconstruction algorithm is directed 

towards a satisfactory quality. Second, the method to train our network is also different from 

the supervised training in previous works. Instead of using labeled training pairs in a 

supervised training fashion, we employed the reinforcement learning strategy. This strategy 

let the algorithm make its own decisions and obtain rewards based on the image and the 

selected action. Through the training process, the PTPN spontaneously discovered the 

appropriate strategy for an input system state. This was the process in which intelligence 

was generated.

The CT reconstruction problem with pixel-wise regularization has been investigated in 

previous studies [9], [10]. It was proposed to perform a sequence of reconstructions with 

parameters adjusted based on the reconstructed images. The motivation was to detect image 

edges and to tune down the regularization strengths for the purpose of edge preservation. As 

opposed to designing an explicit rule of parameter tuning, this study discovered the rule via 

the reinforcement learning process. It is interesting to observe that intelligence can be 

correctly generated, which coincides with previous human knowledge.

Necessity of deep reinforcement learning

What is ultimately learned by PTPN is evaluation of the image quality and the link to 

parameter tuning. With this in mind, one may argue that the complex reinforcement learning 

technique is probably unnecessary, as one can simply perform supervised learning by using 

a sizable data set containing paired data of image patches and corresponding ways of 

parameter tuning. We agree with this statement to a certain extent, but still think our study is 

meaningful. For this CT reconstruction problem, it is straightforward to generate labeled 

training pairs (image patch and direction of parameter tuning) to allow supervised training. 

Yet if we would like to label an image patch with not only the direction of parameter tuning, 

i.e. increase or decrease, but also with the amount of parameter change, i.e. 50% or 20% as 

in our example, it becomes quite difficult to generate training data. Hence, the advantage of 

reinforcement learning is to automatically learn a more comprehensive policy. Beyond the 

problem of CT reconstruction, it may not be easy to generate labeled training pairs in many 

optimization-based inverse problems. However, since very often one has a good sense of 

judging the output results, it is still relatively easy to quantify the result quality change via a 

reward function. This allows the use of reinforcement learning to establish the policy in 

those problems for which labeled training pairs are hard to get.
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Relevance to other problems

This study uses an optimization-based iterative CT reconstruction problem as an example to 

show that it is possible to achieve intelligent parameter tuning via a deep learning 

framework. With the rapid growth of deep learning techniques in CT reconstruction area, the 

impact of this study may diminish. However, we think studying the general task of 

parameter tuning is still of significance and deep learning opens a new window to tackle this 

problem. First, parameter tuning is not a problem unique to the CT reconstruction regime, 

but generally exists in many areas. Even beyond the scope of image processing, many other 

decision making problems in medicine can be solved via an optimization approach, for 

which parameter tuning is an indispensable task. One notable example is treatment planning 

in cancer radiation therapy [36]. Even with a modern treatment planning system to solve the 

underlying optimization problem, a hospital still needs to hire a number of dosimetrists to 

manually tune the parameters in order to generate plans meeting clinician’s requirements. 

This fact clearly highlights the need for and potential benefits of an intelligent parameter-

tuning system. Second, even for the deep learning technique itself, the training stage has a 

number of parameters to be tuned by the researchers to achieve the best performance. These 

parameters include, but are not limited to, learning rate, number of epochs, size and number 

of filters, etc. It would be an interesting and important step to develop a parameter-tuning 

system to handle the adjustment of these parameters. Meanwhile, we have to admit that 

solving the parameter-tuning problem in the area beyond the simple example of CT 

reconstruction is apparently much more challenging. We hope our study can shed some light 

in this direction and trigger deeper investigations in future.

Limitations and future directions

This study has the following limitations. First, due to the limitation on computational power, 

we only considered images with a relatively low resolution in a small number of cases. It is 

our plan to extend the studies to high-resolution images that are of more clinical relevance. 

We will also use more cases for training and testing to yield a more robust PTPN. The 

second limitation of this study is that PTPN has to wait for the ADMM iterative process to 

finish, before it can adjust parameters. Although the image quality resulting from this this 

approach is acceptable, waiting for the ADMM iteration to finish reduces the overall 

workflow efficiency. This can be potentially improved by using another reconstruction 

algorithm with a higher convergence rate. Another possible way of acceleration is to predict 

the converged CT image at an early stage of the ADMM iteration, for instance using a deep 

learning approach [24]. Third, PTPN lays a general framework on the development of a 

strategy to improve image quality. The current setup in Eq. (2) limits the possible choices of 

parameter change to five options. However, in general, it is possible to include options that 

more directly affect the images, such as actions to reduce noise and artifacts, etc. It is noted 

that deep-learning has achieved tremendously in each of these CT image enhancement 

approaches [19]–[21]. Using them under the guidance of a policy network is expected to 

yield a comprehensive image reconstruction system that can automatically handle various of 

data contaminations. Last, but no the least, in several studies the optimal parameter values 

for the reconstruction problem are indeed known based on physics models [16] or 

mathematical analysis [17]. It will be an interesting future study to extend the proposed 

method to these contexts and compare the PTPN-tuned parameters with the theoretically 
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predicted optimal values. This will offer the opportunity to assess the proposed method in an 

objective manner.

V. Conclusion

In this paper, we presented a novel method for automatic parameter tuning in an 

optimization problem, which is a typical task in a number of image-processing, or non-

image-processing problems. The significance of this study is underscored by the fact that the 

solution quality is critically determined by the parameter values, and yet there is no 

satisfactory way of automatically adjusting parameters. We proposed to solve this problem 

by constructing a policy network, which can be trained to guide parameter tuning. We 

demonstrated our idea in an example problem of optimization-based iterative CT 

reconstruction with a pixel-wise TV regularization term. We configured a PTPN to map a 

CT image patch to the direction and magnitude of tuning the parameter at the patch center. 

PTPN was trained via an end-to-end reinforcement learning procedure. A series tests 

demonstrated that the trained PTPN is able to intelligently determine the way of parameter 

adjustment. Under the guidance of PTPN, the reconstructed CT images achieved image 

quality similar or better than that under manually tuned parameters.
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Fig. 1. 
ADMM algorithm used to solve the problem in Eq. 2.
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Fig. 2. 
Network structure of PTPN. The input is a patch cropped out of the solution image fk. The 

five outputs are directions and magnitudes of changing the parameter at the patch center 

pixel. Number of units and data sizes at each layer are specified at the top. Connection 

between subsequent layers are also presented.
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Fig. 3. 
Overall algorithm used to train the PTPN.
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Fig. 4. 
Training (top) and testing images (buttom) used in this study.
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Fig. 5. 
Average output of PTPN (a) and reward (b) in each training epoch.
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Fig. 6. 
(a)-(c) Reconstructed images at step 1, 4, and 7. CT images are displayed in the window 

[−100, 300] HU. (d) Error e(%) as a function of parameter-tuning step.
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Fig. 7. 
(a) Ground truth CT image of a case that is used in training PTPN. (b) Image reconstructed 

with an arbitrarily selected parameter λ(x) = 0.005. (c) Image reconstructed after the 

parameter is tuned by PTPN. (d) Image reconstructed with manually tuned λ(x) = 0.05. CT 

images are displayed in the window [−100, 300] HU. (e) Tuned parameter map λ(x) 

displayed in log10 scale. (f) Optimal parameter map λ∗(x).
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Fig. 8. 
(a) Ground truth CT image of a case that is not used in training PTPN. (b) Image 

reconstructed with an arbitrarily selected parameter λ(x) = 0.005. (c) Image reconstructed 

after the parameter is tuned by PTPN. (d) Image reconstructed with manually tuned λ(x) = 

0.12. CT images are displayed in a window [−100, 300] HU. (e) Tuned parameter map λ(x) 

displayed in log10 scale. (f) Optimal parameter map λ∗(x).
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Fig. 9. 
(a)-(b) The results under tuned parameter for a case with 2% and 5% noise in the projection 

data. (c) The result with 90 projections. (d) The result with isocenter-to-detector distance 

changed to 25 cm. CT images are displayed in the window [−100, 300] HU. Figures in the 

right column are tuned parameter maps displayed in log10 scale for corresponding figures in 

the left column.
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Fig. 10. 
Image reconstructed with an arbitrarily selected parameter λ(x) = 0.005. (b) Image 

reconstructed by manually tuned to λ(x) = 0.15. (c) Image reconstructed after the parameter 

is tuned by PTPN. CT images are displayed in the windows [−200, 500] HU. (d) Tuned 

parameter map λ(x) displayed in log10.
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TABLE I

Relevant parameters used, when training the PTPN.

Parameter Value Comments

δ 3 × 10−3 Stopping criteria in ADMM

γ 0.99 Discount rate

ε 0.99 ∼ 0.1 Parameter of ε-greedy approach

Nepoch 100 Number of epochs

Nsamp 3200 Number of sampled patches to add to training data pool

Nrecon 20 Number of times to perform ADMM reconstruction per epoch

σ 0.001 Learning rate when updating W

Ntrain 128 Number of data for training each time

Nupdate 300 Number of steps to update W′ = W
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