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Deep Convolutional Framelet Denosing for
Low-Dose CT via Wavelet Residual Network
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Abstract—Model based iterative reconstruction (MBIR) algo-
rithms for low-dose X-ray CT are computationally expensive. To
address this problem, we recently proposed a deep convolutional
neural network (CNN) for low-dose X-ray CT and won the
second place in 2016 AAPM Low-Dose CT Grand Challenge.
However, some of the texture were not fully recovered. To
address this problem, here we propose a novel framelet-based
denoising algorithm using wavelet residual network which syn-
ergistically combines the expressive power of deep learning and
the performance guarantee from the framelet-based denoising
algorithms. The new algorithms were inspired by the recent
interpretation of the deep convolutional neural network (CNN) as
a cascaded convolution framelet signal representation. Extensive
experimental results confirm that the proposed networks have
significantly improved performance and preserves the detail
texture of the original images.

Index Terms—Deep learning, low-dose CT, framelet denoising,
convolutional neural network (CNN), convolution framelets

I. INTRODUCTION

X -RAY computed tomography (CT) is one of the most
valuable imaging techniques in clinics. It is used in

various ways, including whole-body diagnostic CT, C-arm CT
for interventional imaging, dental CT, etc. However, X-ray CT
causes potential cancer risks due to radiation exposure. To
ensure patient safety, X-ray dose reduction techniques have
been extensively studied, and the reduction in the number of
X-ray photons using tube current modulation is considered one
of the solutions. A drawback of this approach is, however,
the low signal-to-noise ratio (SNR) of projections, which
induces noise in the reconstructed image. Various model based
iterative reconstruction (MBIR) methods [1], [2], [3] have been
investigated to obtain a clear reconstructed image. However,
these approaches are usually computationally expensive due to
the iterative applications of forward and backward projections.

Recently, deep learning approaches have been actively
explored for various computer vision applications through
the use of extensive data and powerful graphical processing
units (GPUs). Deep networks have achieved great successes
in computer vision applications such as classification [4],
denoising [5], [6], [7], segmentation [8], and super-resolution
[9], etc.
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In MR image reconstruction, Wang et al [10] was the first
to apply deep learning to compressed sensing MRI (CS-MRI).
Deep network architecture using unfolded iterative compressed
sensing (CS) algorithm was also proposed [11], [12]. In CT
restoration problems, our group introduced the deep learning
approach for low-dose X-ray CT [13], whose performance
has been rigorously confirmed by winning the second place
award in 2016 AAPM Low-Dose CT Grand Challenge. Since
then, several pioneering deep learning approaches for low-dose
CT have been proposed by many researchers [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23]. Some algorithms uses
generative adversarial network (GAN) loss [21], [22]. Recent
proposal is to incorporate deep neural network within iterative
steps [16], [24]. However, existing algorithms consider a deep
network as a black-box, so it is difficult to understand the role
of deep networks within iterative steps.

Therefore, one of the main contributions of this paper is
to show that a feed-forward deep learning-based denoising
is indeed the first iteration of a special instance of frame-
based denoising algorithm using deep convolutional framelets
[25]. Frame-based denoising approaches using wavelet frames
have been an extensive research topics in applied mathematics
community due to its proven convergence [26], [27]. On the
other hand, the theory of deep convolutional framelet [25] was
recently proposed to explain the mathematical origin of deep
neural network as a multi-layer realization of the convolution
framelets [28]. Accordingly, the main goal of this paper is to
synergistically combine the expressive power of deep neural
network and the performance guarantee from the framelet-
based denoising algorithms. In particular, we show that the
performance of the deep learning-based denoising algorithm
can be improved with iterative steps similar to the classical
framelet-based denoising approaches [29], [30]. Furthermore,
we can provide the theoretical guarantee of the algorithm to
converge.

Compared to the recent proposals of learning-based opti-
mization approaches [16], [24], one of the important advan-
tages of our work is that our deep network is no more a
black box but can be optimized for specific restoration tasks
by choosing optimal framelet representation. Thus, we can
employ an improved wavelet residual network (WavResNet)
structure [31] in our deep convolutional framelet denoising
thanks to its effectiveness in recovering the directional com-
ponents. We confirm our theoretical reasoning using extensive
numerical experiments.

ar
X

iv
:1

70
7.

09
93

8v
3 

 [
st

at
.M

L
] 

 2
8 

M
ar

 2
01

8



2

II. THEORY

For simplicity, we derive our theory for 1-D signals, but the
extension to 2-D image is straightforward.

A. Frame-based Denoising

Consider an analysis operator W given by W> =[
w1 · · · wm

]
, where the superscript > denotes the Hermi-

tian transpose and {wk}mk=1 is a family of function in a Hilbert
space H . Then, {wk}mk=1 is called a frame if it satisfies the
following inequality [32]:

α‖f‖2 ≤ ‖Wf‖2 ≤ β‖f‖2, ∀f ∈ H, (1)

where α, β > 0 are called the frame bounds. Then the recovery
of the original signal can be done from the frame coefficient
c = Wf using the dual frame W̃ satisfying the frame
condition: W̃>W = I, since f = W̃>c = W̃>Wf = f.
This condition is often called the perfect reconstruction (PR)
condition. We often call W̃> as the synthesis operator. The
frame is said to be tight, if α = β in (1). This is equivalent
to W̃ =W or W>W = I .

Suppose that noisy measurement g ∈ Rn is given by

g = f∗ + e

where f∗ ∈ Rn is a unknown ground-truth image and e ∈
Rn denotes the noise. Then, the classical tight frame-based
denosing approaches [26], [27] solve the following alternating
minimization problem:

min
f,α

µ

2
‖g − f‖2 +

1− µ
2

{
‖Wf − α‖2 + λ‖α‖1

}
(2)

where λ, µ > 0 denote the regularization parameters. The
corresponding proximal update equation is then given by [26],
[27]:

fn+1 = µg + (1− µ)W>Tλ (Wfn) , (3)

where Tλ(·) denotes the soft-thresholding operator with the
threshold value of λ, and fn refers to the n-th update. Thus, the
frame-based denoising algorithm in (3) is designed to remove
insignificant parts of frame coefficients through shrinkage
operation, by assuming that most of the meaningful signal
has large frame coefficients and noises are distributed across
all frame coefficients.

One of the most important advantages of this framelet-based
denoising is its proven convergence [26], [27]. Our goal is thus
to exploit the proven convergence of these approaches for our
CNN based low-dose CT denoising. Toward this goal, in the
next section we show that CNN is closely related to the frame
bases.

B. Deep Convolutional Framelets

Here, the theory of the deep convolutional framelet [25]
is briefly reviewed to make this work self-contained. To
avoid special treatment of boundary condition, our theory
is mainly derived using circular convolution. Specifically,
let f = [f [1], · · · , f [n]]T ∈ Rn be an input signal and
ψ = [ψ[d], · · · , ψ[1]]T ∈ Rd denotes filter represented as the

flipped version of vector ψ. Then, the convolution operation in
CNN can be represented using Hankel matrix operation [25].
Specifically, a single-input single-output (SISO) convolution
with the filter ψ is given by a matrix vector multiplication:

y = f ~ ψ = Hd(f)ψ , (4)

where Hd(f) is a wrap-around Hankel matrix

Hd(f) =


f [1] f [2] · · · f [d]
f [2] f [3] · · · f [d+ 1]

...
...

. . .
...

f [n] f [1] · · · f [d− 1]

 .

Similarly, multi-input multi-output (MIMO) convolution with
the matrix input F := [f1 · · · fp] and the multi-channel filter
matrix Ψ

Ψ :=


ψ

1

1 · · · ψ
1

q
...

. . .
...

ψ
p

1 · · · ψ
p

q

 ∈ Rdp×q (5)

can be represented as

Y = F ~ Ψ = Hd|p (F ) Ψ (6)

where Hd|p (F ) is an extended Hankel matrix by stacking p
Hankel matrices side by side:

Hd|p (F ) :=
[
Hd(f1) Hd(f2) · · · Hd(fp)

]
(7)

In (5), ψ
j

i ∈ Rd, i = 1, · · · , q; j = 1, · · · , p refer to the j-
th input channel filters to generate the i-th output channel.
Note that the convolutional representation using an extended
Hankel matrix in (6) is equivalent to the multi-channel filtering
operations commonly used in CNN [25].

Let Φ = [φ1, · · · , φn] and Φ̃ = [φ̃1, · · · , φ̃n] ∈ Rn×n (resp.
Ψ = [ψ1, · · · , ψq] and Ψ̃ = [ψ̃1, · · · , ψ̃q] ∈ Rd×q) are frames
and its duals satisfying the frame condition:

Φ̃Φ> = In×n , ΨΨ̃> = Id×d. (8)

Accordingly, we can obtain the following matrix identity:

Hd(f) = Φ̃Φ>Hd(f)ΨΨ̃> = Φ̃CΨ̃> (9)

where C := Φ>Hd(f)Ψ denotes the framelet coefficient. This
results in the following encoder-decoder layer structure [25]:

f =
(

Φ̃C
)
~ ν(Ψ̃), (10)

C := Φ>
(
f ~ Ψ

)
(11)

where Ψ is from (5) by setting q = 1, and

ν(Ψ̃) :=
1

d

ψ̃1

...
ψ̃r

 . (12)

Similarly, for a given matrix input Z ∈ Rn×p, we can also
derive the paired encoder-decoder structure [25]:

C = Φ>
(
Z ~ Ψ

)
(13)

Z = (ΦC) ~ ν(Ψ̃) (14)
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where the encoder filter is given by (5) and the decoder filters
is defined by

ν(Ψ̃) :=
1

d

ψ̃
1
1 · · · ψ̃p1
...

. . .
...

ψ̃1
q · · · ψ̃pq

 ∈ Rdq×p (15)

such that they satisfy the frame condition

ΨΨ̃> = Idp×dp . (16)

The simple convolutional framelet expansion using (11), (10),
(13) and (14) is so powerful that the deep CNN architecture
emerges from them. Specifically, by inserting the pair (13)
and (14) between the pair (11) and (10), we can derive a deep
network structure. For more detail, see [25].

C. Deep Convolutional Framelet Denoising

Now, note that the computation of our deep convolutional
framelet coefficients can be represented by analysis operator:

Wf := C = Φ>(f ~ Ψ)

whereas the synthesis operator is given by the decoder part of
convolution:

W̃>C := (ΦC) ~ ν(Ψ̃).

If the frame conditions (8) or (16) are met at each layer, we can
therefore use the classical update algorithm in (3) for denosing.
Then, what is the shrinkage operator that corresponds to Tλ(·)
in (3)? One of the unique aspects of deep convolutional
framelets is that by changing the number of filter channels, we
can achieve the shrinkage behaviour [25]. More specifically,
low-rank shrinkage behaviour emerges when the number of
output filter channels are not sufficient. Therefore, the explicit
application of the shrinkage operator is no more necessary.

To understand this claim, consider the following regression
problem under low-rank Hankel structured matrix constraint:

min
f∈Rn

‖f∗ − f‖2

subject to RANKHd(f) ≤ r < d. (17)

where f∗ ∈ Rn denotes the ground-truth signal, r is the upper
bound of the rank, and Hd(f) ∈ Rn×d. The low-rank Hankel
structured matrix constraint in (17) is known for its excellent
performance in image denoising [33], artifact removal [34] and
deconvolution [35].

A classical approach to address (17) is using the explicit
singular value shrinkage operation to impose the low-rankness
[36], [37]. However, using deep convolutional framelets, we do
not need such explicit shrinkage operation. More specifically,
let V ∈ Rd×r denote the basis for R

(
(Hd(f))>

)
where R(·)

denote the range space. Then, there always exist two matrices
pairs Φ, Φ̃ ∈ Rn×n and Ψ, Ψ̃ ∈ Rd×r satisfying the conditions

Φ̃Φ> = In×n, ΨΨ̃> = PR(V ) (18)

where R(V ) denote the range space of V and PR(V ) represents
a projection onto R(V ). Note that the bases matrix Ψ̃ ∈ Rd×r
in (18) does not satisfy the frame condition (8) due to the
insufficient number channels, i.e. r < d. However, we still

have the following matrix equality that is essential for deep
convolutional framelet expansion [25]:

Hd(f) = Φ̃Φ>Hd(f)ΨΨ̃>.

Accordingly, we can define a space Hr by collecting signals
that can be decomposed to the single layer deep convolutional
framelet expansion:

Hr =
{
f ∈ Rn | f =

(
Φ̃C
)
~ ν(Ψ̃), C = Φ>

(
f ~ Ψ

)}
Then, the regression problem in (17) can be equivalently
represented by

min
f∈Hr

‖f∗ − f‖2 , (19)

which implies that the explicit rank condition is embedded as
a single layer convolutional framelets.

However, (19) holds for any signals that can be represented
by arbitary (Φ, Φ̃) and (Ψ, Ψ̃) satisfying (18), and we should
find ones that are optimized for given data. In our deep
convolutional framelets, Φ and Φ̃ correspond to the gener-
alized pooling and unpooling which are chosen based on the
application-specific knowledges [25], so we are interested in
only estimating the filters Ψ, Ψ̃. Then, the main goal of the
neural network training is to learn (Ψ, Ψ̃) from training data
{(f(i), f

∗
(i))}

N
i=1 assuming that {f∗(i)} are associated with rank-

r Hankel matrices. Thus, (19) can be modified for the training
data as follows:

min
{f(i)}∈Hr

N∑
i=1

‖f∗(i) − f(i)‖2 (20)

which can be converted to the neural network training prob-
lem:

min
(Ψ,Ψ̃)

N∑
i=1

∥∥∥f∗(i) −Q(f(i); Ψ, Ψ̃)
∥∥∥2

(21)

where

Q(f(i); Ψ, Ψ̃) =
(

Φ̃C[f(i)]
)
~ ν(Ψ̃) (22)

C[f(i)] = Φ>
(
f(i) ~ Ψ

)
. (23)

The idea can be further extended to the multi-layer deep
convolutional framelet expansion with nonlinearity. Then, (21)
is equivalently to the standard neural network training. Once
the network is fully trained, the inference for a given noisy
input f is simply done by Q(f ; Ψ, Ψ̃), which is equivalent to
find a denoised solution. Therefore, using deep convolutional
framelets with insufficient channels, we do not need an ex-
plicit shrinkage operation and the update equation (3) can be
replaced by

fn+1 = µg + (1− µ)Q(fn; Ψ, Ψ̃) , (24)

where Q(fn) is the deep convolutional framelet output.

However, one of the main differences of (24) from (3) is that
our deep convolutional framelet does not satisfy the tight frame
condition that is required to guarantees the convergence of
(3). Therefore, to guarantee the convergence, we need to relax
the iteration using Krasnoselskii-Mann (KM) method [38] as
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described in Algorithm 1. Then, using the standard tools of
proximal optimization [38], we can show that the sequence
generated by Algorithm 1 converges to a fixed point.

Theorem 2.1. There exists a parameter µ ∈ (0, 1) such
that the deep convolutional framelet denoising algorithm in
Algorithm 1 converges to a fixed point.

Proof. See Appendix B.

Algorithm 1 Pseudocode implementation.
1: Train a deep network Q using training data set.
2: Set 0 ≤ µ ≤ 1 and 0 < λn < 1,∀n.
3: Set initial guess of f0 and f1.
4: for n = 1, 2, . . . , until convergence do
5: qn := Q(fn)
6: f̄n+1 := µg + (1− µ)qn
7: fn+1 := fn + λn(f̄n+1 − fn)
8: end for

Algorithm 1 corresponds to a recursive neural network
(RNN) as shown in Fig. 1, which is related to an iterative
network in [23]. If we use µ = 0, λn = 1, the first iteration of
Algorithm 1 corresponds to a feed-forward deep convolutional
framelet denosing algorithm, which is also important by itself.
In Experimental Results, we show the improvement using
RNN. However, our feed-forward network is much faster
with compatible image quality. Thus, we believe that both
algorithms are useful in practice. Both algorithms have the
same neural network backbone Q(·), which will be described
in detail in the following section.

Fig. 1. Proposed RNN structure for deep convolutional framelet denoising.

D. Optimizing the Network Architecture

In order to have the best denoising performance in frame-
based denosing, the frame bases should have good energy
compaction properties. For example, due to the vanishing
moments of wavelets, wavelet transforms can annihilate the
smoothly varying signals while maintaining the image edges,
thus resulting in good energy compaction. Thus, wavelet
frames such as contourlets [39] are often used for denoising.
Furthermore, low-dose X-ray CT images exhibit streaking
noise, so the contourlet transform [39] is good for detecting the
streaking noise patterns by representing the directional edge
information of X-ray CT images better. Thus, we are interested
in using WavResNet [31] that employs the contourlet trans-
form [39]. The proposed WavResNet architecture is illustrated
in Fig. 2. WavResNet has three unique components: contourlet

transform, concatenation, and skipped connection. WavResNet
is an extension of our prior work [13] that has similar network
architecture except that residuals at each subband are estimated
by the neural network [31]. In this paper, we provide a
new interpretation of WavResNet using the theory of deep
convolutional framelets [25].

Fig. 2. The proposed WavResNet backbone (i.e. Q(f) in Algorithm 1 and
Fig. 1) for low-dose X-ray CT restoration.

Specifically, for a given signal f ∈ Rn, the directional sub-
band transform {Tk}pk=1, Tk ∈ Rn×n in contourlet transform
satisfies the resolution of identity:

p∑
k=1

T̃ (k)>T (k) = In×n, (25)

which implies that there exists inverse transform {T̃k}pk=1 to
utilize all subband signals to recompose the original signal.
Thus, the signal f can be decomposed into directional com-
ponents:

f =

p∑
k=1

T̃ (k)>T (k)f =

p∑
k=1

T̃ (k)>fk

where fk = T (k)f ∈ Rn corresponds to the k-th subband
signals. Then, our goal is to obtain the deep convolutional
framelet representation of the input matrix

Tf :=
[
T (1)f · · · T (p)f

]
.

Because this multi-channel input size is big, we further de-
compose the signal using patch extraction operator

Zl = PlTf =
[
PlT

(1)f · · · PlT
(p)f

]
.

where {Pl}l denotes the (overlapping) patch that has the same
spatial location across all subbands. The WavResNet does
not use any pooling, i.e. Φ = Φ̃ = In×n, since the global
correlations have been removed using the contourlet transform.
Thus, by inserting each Zl in (14) and (13), we have

Zl = C ~ ν(Ψ̃) (26)
C = (Zl) ~ Ψ . (27)

The successive layers are similarly implemented using the
standard multi-channel convolution in CNN. The resulting
patch-by-patch CNN processing are performed on all parts of
images, and the final results are obtained by averaging.

Another important component of WavResNet is the boosting
using the concatenation layer. This is closely related to the
boosting scheme in classification that combines multiple weak
classifiers to obtain a stronger classifier [40]. Specifically,
suppose that perfect recovery (PR) condition satisfies for
all cascade of encoder-decoder network. Then, the recovery
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condition for deep convolutional framelets up to L-layer can
be written by

Zl = C(1) ~ ν
(

Ψ̃(1)
)

...
Zl = C(L) ~ ν

(
Ψ̃(L)

)
· · ·~ ν

(
Ψ̃(1)

)
where

C(i) =

{(
C(i−1) ~ Ψ

(i)
)
, 1 ≤ i ≤ L

Zl, i = 0
(28)

and the superscript (i) denotes the i-th layer. Thus, for a given
intermediate encoder output {C(l)}Ll=1, by denoting h(l) :=

ν
(

Ψ̃(l)
)
· · ·~ν

(
Ψ̃(1)

)
, a boosted decoder can be constructed

by combining multiple decoder representation:

Zl =

L∑
i=1

wi

(
C(i) ~ h(i)

)
, (29)

where
∑L
i=1 wi = 1. This procedure can be performed using a

single multi-channel convolution after concatenating encoder
outputs, as shown in Fig. 3(a). In Experimental Results, we
will show that this provides improved denoising performance
thanks to the boosting effect.

Finally, WavResNet has the skipped connection [41] as
shown in Fig. 3(b). In order to understand the role of the
skipped connection, note that the low-dose input f(i) is con-
taminated with noise so that it can be written by

f(i) = f∗(i) + h(i),

where h(i) denotes the noise components and f∗(i) refers to the
noise-free ground-truth. Then, the network training (21) using
the skipped connection can be equivalently represented as the
network training to estimate the artifacts:

min
(Ψ,Ψ̃)

N∑
i=1

∥∥∥h(i) − Q̃(f(i); Ψ, Ψ̃)
∥∥∥2

(30)

where

Q̃(f(i); Ψ, Ψ̃) =
(

Φ̃C[f∗(i) + h(i)]
)
~ ν(Ψ̃), (31)

C[f∗(i) + h(i)] = Φ>
(

(f∗(i) + h(i)) ~ Ψ
)
.

Therefore, if we can find a convolution filter Ψ such that it
approximately annihilates the true signal f∗(i) [42]:

f∗(i) ~ Ψ ' 0 =⇒ C[f∗(i) + h(i)] ' C[h(i)] (32)

then we can find the decoder filter Ψ̃ such that(
Φ̃C[h(i)]

)
~ ν(Ψ̃) =

(
Φ̃Φ>

(
(h(i)) ~ Ψ

))
~ ν(Ψ̃)

= h(i) ~ Ψ ~ ν(Ψ̃)

' h(i) .

Thus, our deep convolutional framelet with a skipped connec-
tion can estimate the artifact h(i) and remove it from f(i). On

Fig. 3. (a) Concatenation layer, and (b) skipped connection.

the other hand, using the similar argument, we can see that if

h(i) ~ Ψ ' 0 =⇒ C[f∗(i) + h(i)] ' C[f∗(i)] (33)

then a deep convolutional framelet without the skipped con-
nection can directly recover the ground-truth signal f∗(i), i.e.
Q(f(i); Ψ, Ψ̃) ' f∗(i). Then, which one is better ? In our case,
the true underlying signal has lower dimensional structure
compared to the random CT noises, so the annihlating filter
relationship in (32) is more easier to achieve [42]. Therefore,
we use the skipped connection as shown in Fig. 3(b).

By combining the contourlet transform, boosting and
skipped connection, we conjecture that WavResNet can repre-
sent the signal much more effectively which makes the deep
convolutional framelet denoising effective.

Fig. 4. A symmetric network architecture to investigate the importance of
boosting layers in WavResNet.

III. METHOD

A. Proposed network architecture

In Fig. 2, we first apply non-subsampled contourlet trans-
form to generate 15 channels inputs [39]. There is no down-
sampling or up-sampling in the filter banks; thus, it is a
shift invariant. We used 4 level decomposition and 8, 4, 2,
1 directional separations for each level, which produces the
total 15 bands. Thus, we have 15 subband channels.

The first convolution layer uses 128 set of 3 × 3 × 15
convolution kernels to produce 128 channel feature maps. The
shift invariant contourlet transform allows the patch processing
and we used 55×55×15 patches for the training and inference.
Then, the final contourlet coefficients are obtained by taking
patch averaging. Based on the calculation in [25], a sufficient
condition to meet the PR is that the number of output channel
should be 270, which is bigger than 128 channels. Thus, the
first layer performs a low-rank approximation of the first layer
Hankel matrix. Then, the following convolution layers use
two 3× 3× 128 convolution kernels, which is again believed
to perform low rank approximation of the extended Hankel
matrix approximation. Later, we will provide an empirical



6

result showing that the singular value spectrum of the extended
Hankel matrix indeed becomes compressed as we go through
the layers.

We have 6 set of main module composed of 3 sets of
convolution, batch normalization, and ReLU layers, and 1
bypass connection with a convolution and ReLU layer. Finally,
as shown in Fig. 2, our network has the end-to-end bypass
connection [25] so that we can directly estimate the noise-
free contourlet coefficients while exploiting the advantages of
skipped connection [41]. Another uniqueness of the proposed
network is that it has the concatenation layer as shown in
Fig. 3(a). Specifically, our network concatenates the outputs of
the individual modules, which is followed by the convolution
layer with 128 set of 3 × 3 × 896 convolution kernels. As
discussed before, this corresponds to the signal boosting using
multiple signal representation. In optimization aspect, this
also provides various paths for gradient back-propagation.
Finally, the last convolution layer uses 15 sets of 3× 3× 128
convolution kernels. This may correspond to the pair-wise
decoder layers with respect to the first two convolutional
layers.

B. Network training

We trained two networks: a feed-forward network and an
RNN. We applied stochastic gradient descent (SGD) optimiza-
tion method to train the proposed network. The size of mini-
batch was 10. The convolution kernels were initialized by
random Gaussian distribution. The learning rate was initially
set to 0.01 and decreased continuously down to 10−7. The
gradient clipping was employed in the range [−10−3, 10−3] to
use a high learning rate in the initial steps for fast convergence.
For data augmentation, the training data were randomly flipped
horizontally and vertically. Our network was implemented
using MatConvNet [43] in MATLAB 2015a environment
(Mathworks, Natick).

The training processes are composed by three stages. In
stage 1, we trained the network using original database DB0

which consists of a pair of quarter-dose and routine-dose
CT images. After the network converged initially, stage 2 is
proceeded sequentially. In stage 2, we add databases DBi
gradually which consists of quarter-dose input, inference re-
sults from Qk(fi), and routine-dose CT images. Here, Qk
dentoes the trained network until k-th epochs and fi is the
i-th inference results. Finally, in stage 3, we added a database
whose both input and target images are routine-dose CT
images. The theoretical background of such training is from
the framelet nature of deep convolutional neural network [25].
Specifically, the neural network training is to learn the framelet
bases from the training data that has the best representation of
the signals. Thus, the learned bases should be robust enough to
have near optimal representation for the given input data set.
In our KM iteration, each iterative steps provided the improved
images, which needs to be fed into the same neural network.
Thus, the framelet bases should be trained to be optimal not
only for the strongly aliased input but also for the near artifact-
free images. The resulting network was used for both our RNN
and feed-forward networks.

C. Training dataset

We used projection data obtained from “2016 Low-Dose CT
Grand Challenge”. The raw projection data were measured
by a 2D cylindrical detector that moves along a helical
trajectory using a z-flying focal spot [44]. These projections
were approximated into fanbeam projection data by a single
slice rebinning technique [45]. We reconstructed X-ray CT
images using conventional filtered backprojection algorithm.
The number of pixels in X-ray CT images is 512×512 and the
slice thickness is 3mm. We have 9 patient data sets of routine
dose and quarter dose data for the training. Eight patient data
were used for the training and validation, and the remaining
one patient data was used for testing. Among the eight patient
data, we used 3236 slices for the training and the remaining
350 slices for the validation.

For phantom studies, we used CT image data from Seoul
National University Bundang Hospital, Korea. The number
of pixels is 512 × 512 and the slice thickness is 4mm. The
network was trained using 50 patient data sets of routine-
dose, 13% dose, 25% dose, and 50% dose images. This study
received technical support from Siemens Healthcare (Erlangen,
Germany) to simulate CT images at various low dose levels.
Low dose images were simulated by inserting Poisson noise
into the projection data of routine dose and reconstructing
images from those projection data using the filtered back
projection method. The number of individual dose images
is 7617 slices and we arbitrarily selected 540 slices and 60
slices for training and validation, respectively, for every 50
epoch. To quantify the resolution and contrast at test phase, we
used the Catphan 500 (The Phantom Laboratory, Salem, NY,
USA) composed of various modules. The spatial resolution
was evaluated using a high-resolution module (CTP528), and
contrast-to-noise ratio (CNR) were evaluated using a low
contrast module (CTP515). The contrast was calculated as the
difference of mean CT numbers between a supra-slice target
(contrast of 1.0% and diameter of 15mm) and the adjacent
background area. The noise was defined as the standard
deviation of the CT numbers of the adjacent background area.
Mean CT numbers and standard deviations were calculated
from circular region-of-interest (ROI) having a diameter of 1
cm in the target and the adjacent background area. ROIs were
placed at the exactly same locations on the images produced
by different algorithms.

D. Baseline algorithms

We compared the proposed method with the other denoising
algorithms such as BM3D [46], MBIR regularized by total
variation (TV), ALOHA [47], the image domain deep learning
approach (RED-CNN) [14], and CNN with GAN loss [21].
MBIR regularized by TV was solved using an alternating
direction method of multiplier (ADMM) [2] and Chambolle’s
proximal TV [48]. The details of RED-CNN and GAN were
obtained from the original paper and we have implemented
them accordingly [14], [21].

To verify the improvement of the new algorithm, we per-
form comparative study with our previous deep network in
wavelet domain for “2016 Low-Dose CT Grand Challenge”
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Fig. 5. Transverse view restoration results with routine-dose and quarter-dose images. AAPM-Net is the algorithm which we applied to the “2016 Low-Dose
CT Grand Challenge”. Intensity range is (-160,240) [HU] (Hounsfield Unit). (a) Example of liver, (b) example of intestine and (c) example of pelvic bone.

[13]. We call this network as AAPM-Net. The main difference
between the proposed one and the AAPM-Net comes from
the definition of the target images. In AAPM-Net, the target
images was the original wavelet coefficients except the lowest
frequency band. More specifically, in AAPM-Net, the lowest
frequency band target is the residual, whereas the higher
frequency band signals are the wavelet coefficients themselves.
Therefore, this is not a ResNet from the perspective of deep
convolutional framelets. On the other hand, in WavResNet,
the residual wavelet coefficients between the routine-dose
and low-dose inputs are estimated for every subband. In the
current implementation, the final network output is the artifact-
corrected images by subtracting the estimated artifacts using
the end-to-end skipped connection as shown in Fig. 2. In
order to demonstrate the importance of signal boosting, we
also implemented a symmetric network as illustrated in Fig.
4. Except for the concatenation layers, the symmetric network
also has identical 6 modules structures with symmetric encoder
and encoder structures.

IV. EXPERIMENTAL RESULTS

A. Comparison with AAPM-net

To confirm the improvement over the AAPM-Net, we
present the restoration images of one patient data in the test
data set (see Fig. 5). This data have routine-dose images that
can be used for subjective evaluation and objective evaluation
using RMSE, PSNR, and SSIM.

In Fig. 5, various kinds of slices such as liver and pelvic
bones are described and the magnified images are expressed
in the yellow boxes. In AAPM-Net results, noise level was

Fig. 6. PSNR values of restoration results according to iterations are plotted.

significantly reduced, but the results are blurry and loses
some details. On the other hand, the result of the proposed
networks (feed-forward and RNN) results clearly shows that
the improved noise reduction while maintaining the edge
details and the textures which is helpful for diagnostic purpose.
More specifically, for the case of an liver image in Fig. 5
(a), the proposed network results retain the fine details such
as vessels in the liver and it has better sharpness than the
AAPM-Net. In Fig. 5 (b), the detail of internal structure of
intestine was not observed in quarter-dose images and AAPM-
Net results, while they are well-recovered in proposed network
results. To examine the streaking noise reduction ability, we
presented the slice which has the pelvic bone in Fig. 5(c).
Proposed networks were again good at preserving the edge
details such as inside region of the bones and the texture of
the organ which located between the bones, while the streaking
artifacts were completely removed. Among the feed-forward
and RNN network structure, the results by RNN suppresses
more streaking artifacts compared to the feedforward neural
network. In Fig. 6, the PSNR plots for Q(fn) and fn in



8

Fig. 7. Coronal and sagittal view restoration results along RNN iterations.
Intensity range is (-160,240) [HU]. The red dashline boxed images come from
the last iteration.

Fig. 8. Difference images between restoration images and routine dose image.
Images are same slice in the second row of Fig. 5. Intensity range is (-1100,-
950) [HU].

Algorithm 1 are illustrated. The result shows that averaged
PSNR values for RNN (fn) are increased according to the
iterations and it converged after 5 iterations. On the other hand,

PSNR values for the direct network output Q(fn) increase
initially but started to decrease with iteration after the initial
peak. Eventually, the PSNR values for RNN surpass the feed-
forward network. This again confirms the convergence of the
proposed RNN approach thanks to the KM iteration. However,
our feed-forward network at the 1st iteration is also useful
thanks to the computational advantage, so we provide the both
results. In our KM iteration, µ is a parameter for incorporating
the effect of the original low-dose image. This parameter
also control the convergence behavior of KM iteration. The
experimental results with various values of µ showed that the
lower value tends to provide better results. However, if µ is less
than 0.1, it did not converge and the image quality decreased
in terms of iterations. Thus, we set µ = 0.1 to get the best
results while the algorithm retains the robustness.

The coronal and sagittal view of the restoration results by
our RNN are described in Fig. 7. The quarter-dose images
show that the noise levels are different depending on the slices.
The lower part of the images exhibit a high noise level because
the pelvic bones are included. The results shows that the noise
level was reduced gradually according to the iterations. The
last iteration reconstructed result maintains the edge details
and textures which is helpful for diagnostic purpose. The
yellow arrow indicates the vessel in the liver and the last
iteration result has better sharpness. The proposed method
can remove a wide range of noise levels and maintain the
texture and edge information. The difference images between
the result images and routine-dose images in Fig. 8 confirm
the superiority of our method over AAPM-net. The difference
images of proposed network only contains the noise of low-
dose X-ray CT images, while the difference images of AAPM-
Net also contains the edge information.

Fig. 9. Performance dependency on various hyper-parameters of the network.
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B. Ablation study
To demonstrate the advantages of the proposed method, we

preformed the ablation study by excluding some structures
from the network and applying the same training procedures.
Table I presents the averaged RMSE, PSNR and SSIM index
values of the results from 486 slices. The qualitative results
shows that proposed feed-forward and RNN network have the
best results, and among them the RNN was better. The PSNR
and SSIM values of the symmetric network in Fig. 2 are lower
than those of the proposed methods, which confirms the signal
boosting effect from the concatenation.

In addition, we have investigated the effects of network
hyper-parameters such as the number of channels, the number
of layers in module, the number of modules, the kernel
size, and the patch size as shown in Fig. 9. Here, network
performance improves with more layers in each module until
it reaches 3. With more than three layers we have found that
the network is difficult to train due to many parameters to
be optimized. As the number of modules increases, network
performance improves slightly at the expense of increased
reconstruction time. Given the compromise between perfor-
mance and reconstruction time, we used six modules for our
network. We have observed that the filter size 3× 3 gave the
best result with reasonable processing time for real applica-
tions. In addition, we found that the patch size is not critical.
However, the reconstruction time and its receptive field lead us
to choose the patch size of 55× 55 for our network. Finally,
with more channels, the performance improved. But due to
the memory requirement as well as to prevent overfitting, we
chose 128 channels.

TABLE I
ANALYSIS OF NETWORK STRUCTURE

RMSE PSNR [dB] SSIM index
Exclude external bypass connection 48.09 33.63 0.828

Exclude concatenation layer (symmetric) 28.43 38.20 0.893
Proposed feed-forward (128 channels) 27.32 38.54 0.899

Proposed RNN (128 channels) 26.90 38.70 0.893

C. Low-rank approximation property
To verify our theory that CNN is closely related to the

Hankel matrix decomposition [25], we performed experiments
to verify whether the trained network imposes low-rank ap-
proximation of the Hankel matrix. Specifically, we constructed
extended Hankel matrices using the output channel images
from each module in Fig. 2. Then, we plotted the singular
value spectrum in Fig. 10. Blue dashed line is the result of
the first module’s extended Hankel matrix constructed from
output feasture maps and the red solid line is the sixth
module’s extended Hankel matrix constructed from output
features maps. We observed that the singular value spectrum
becomes compressed as we go through layers, which indicates
each layer of CNN performs the low-rank approximation of the
Hankel matrix. These results clearly suggests the link between
trained CNN and the low rank Hankel matrix decomposition.

D. Comparison with existing algorithms
Fig. 11 shows the results by the comparative algorithms

such as BM3D [46], MBIR regularized by TV, ALOHA [47],

Fig. 10. The singular value spectrum of the extended Hankel matrix along
layers.

RED-CNN [14], and GAN loss [21]. BM3D is a state-of-art
of image denoising algorithm using nonlocal patch processing,
MBIR is currently a standard algorithm of low-dose X-ray CT
images and the RED-CNN is recently proposed deep network
for low-dose X-ray CT and ALOHA is the latest low rank
Hankel matrix method.

The intensity of the transverse view in Fig. 11 is adjusted
to see inside structures of the lung. The result of BM3D
loses the details in the lung such as vessels and exhibited
some cartoon artifact. The result of MBIR appears a little
blurred and textures are reconstructed incorrectly. On the other
hand, deep learning based denoising algorithms have better
performances than the other algorithms. However, RED-CNN
results are somewhat blurry and exhibits remaining noises in
the coronal view, while the proposed method provides clear
restoration results.

TABLE II
EXECUTION TIME (MINI-BATCH: 55× 55× 10,SLICE: 512× 512)

Training Time [mini-batch/sec] Implementation environment

RED-CNN 0.19 MatConvNet, GTX 1080 Ti

Proposed 0.44 MatConvNet, GTX 1080 Ti

Restoration Time [slice/sec] Implementation environment

BM3D 2.73 MATLAB, i7-4770

MBIR TV 9.45 MATLAB, GTX 1080

ALOHA 1405 MATLAB, GTX 1080

RED-CNN 0.38 MatConvNet, GTX 1080 Ti

Proposed feed-forward 2.05 MatConvNet, GTX 1080 Ti

With regard to the computation time, the CNN frameworks
need learning to train the networks. Our method took 20
hours to train the network through 3 stages as described
in Section III, and RED-CNN took 6 hours to train. For
the restoration step, the CNN framework is advantageous
compared to the other classical algorithms such as BM3D
or MBIR TV. Our method takes approximately 2.05 seconds
per slice for restoration which have 512 × 512 pixels with
MATLAB implementation using a graphical processing unit
(NVidia GeForce GTX 1080 Ti).

E. Contrast and resolution loss study

To evaluate the contrast and spatial resolution loss, we com-
pared the various algorithms using Catphan phantom at various
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Fig. 11. Restoration results with routine-dose and quarter-dose image.
Transverse view restoration images’ intensity range is adjusted to see the
details in the lung. Intensity range is (-1000,100) [HU].

dose levels such as 13%, 25%, 50% of the original dose. In
Fig. 12, the representative restoration results from 25% dose
are illustrated, where the magnified areas are indicated by
yellow boxes. By visual inspection, we can see that RED-

CNN and the proposed method preserve the resolution lines
better than other methods, and among them our method was
better at all resolution grids.

Fig. 12. Reconstruction results of Catphan data from %25 dose. Images by
(a) routine dose, (b) quarter dose input, (c) BM3D, (d) RED-CNN, (e) GAN,
and (f) the proposed feed-forward network.

To investigate the spatial resolution loss at lose dose level,
Fig. 13 illustrates the intensity profile along the two resolution
grids in Catphan phantom at various dose level. Down to
quarter dose level, the proposed feed-forward network does
not exhibit significant resolution loss. At 13% dose, we started
to observe resolution loss especially at area (a). In addition,
Table III shows the contrast to noise (CNR) variations at
various radiation dose levels. The CNR values of our method
gradually decreases from 50% to 13%, but they outperformed
the CNR values of FBP results at the same dose levels. These
results clearly confirm the robustness of the proposed method
at various dose levels.

Fig. 13. Resolution profile at various level by the proposed feed-forward
network.

TABLE III
CNR EVALUATION AT VARIOUS DOSE LEVELS

Radiation dose level 100% 50% 25% 13%

Alogrithm FBP FBP Proposed FBP Proposed FBP Proposed

Contrast 8.49 8.44 8.44 8.96 9.46 10.85 11.08

Noise 6.38 8.94 6.24 13.69 9.46 17.26 11.45

CNR 1.33 0.94 1.35 0.65 1.00 0.63 0.97

F. Evaluation of lesion detection

To verify the proposed method, we have performed task-
driven experiment to evaluate the lesion detection performance
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TABLE IV
EVALUATION OF LESION DETECTION

Ground-truth Quarter-dose MBIR TV Proposed

The number of lesions 37 21 23 27

Lesion detection rate - 57% 62% 73%

by quarter-dose FBP, MBIR TV and a proposed method. We
used 20 test data sets from the 2016 Low dose CT grand chal-
lenge. A board-certified radiologist (Won Chang) with seven
years of experience in liver CT interpretation assessed the data
set and recorded the exact locations of the lesions with blind
to the reconstruction methods. The detection rates for solid
focal hepatic lesions were compared using the McNemar test
with Bonferroni correction and a difference with a p > 0.017
was considered significant. Since small number of radiologist
involved in this study, it was not statistically significant, but the
proposed method showed a significant higher lesion detection
rate than FBP (73% vs. 57%, p-value=0.0412) and MBIR(73%
vs. 62%, p-value=0.1336). With more radiologists involved,
we are currently studying large scale statistical evaluation of
the method, which will be reported later in a clinical journal.

V. CONCLUSION

In this paper, we proposed a deep convolutional framelet-
based denoising algorithm for low-dose X-ray CT restoration
by synergistically combining the proven convergence of the
classical framelet-based algorithm and the expressive power
of deep learning. To provide the theoretical background for
performance improvement, we employed the recent proposal
of deep convolutional framelets that interprets a deep learning
as a multilayer implementation of convolutional framelets
with ReLU nonlinearity. Our theory resulted in two network
structures: a feed-forward and RNN architectures. Moreover,
by combining the redundant global transform, residual network
(ResNet) and signal boosting from concatenation layers, the
proposed feed-forward and RNN network provided significant
improvement compared to the prior work by retaining the
detailed texture. Using extensive experimental results, we
showed that the proposed network is good at streaking noise
reduction and preserving the texture details of the organs while
the lesion information is maintained.
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APPENDIX A
MATHEMATICAL PRELIMINARIES

For a given mapping T : D → H, the set of the fixed points
of an operator T : D → D is denoted by FixT = {x ∈
D | Tx = x}. Then, T is called non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ D, (34)

Then, we have the following convergence theorem for the non-
expansive operator:

Theorem 1.2 (Krasnoselski-Mann algorithm). [38] Let D be
a nonempty closed convex subset of H , let T : D 7→ D be
a nonexpansive operator such that FixT 6= ∅, let (λn) be a
sequence in [0, 1] such that

∑∞
n=1 λn(1− λn) = +∞ and let

f0 ∈ D. Consider the following seqeunce:

fn+1 = fn + λn(Tfn − fn). (35)

Then, the sequence fn converges to a point in FixT .

APPENDIX B
PROOF OF THEOREM 2.1

Let the mapping T be defined by

T (f) := µg + (1− µ)Q(f)

where Q is the deep convolutional framelet network output.
Our goal is to show that the operator T is non-expansive. Note
that

‖Tx− Ty‖ = ‖(1− µ)Q(x)− (1− µ)Q(y)‖
= (1− µ)‖Q(x)−Q(y)‖
≤ (1− µ)‖Q′(z)‖‖x− y‖

where Q′(z) denotes the Jacobian of the network at z, and we
use the mean value theorem for the last inequality. Therefore,
if the Jacobian of the deep convolutional framelet is finite, we
can choose µ = 1− 1/maxz∈D ‖Q′(z)‖ such that

‖Tx− Ty‖ ≤ ‖x− y‖,

i.e. T is non-expansive. Thus, the remaining step is to show
that maxz∈D ‖Q′(z)‖ < ∞. This is true because the convo-
lutional framelets consists of convolutional filters with finite
coefficients and ReLU, so the Jacobian can be represented
as the product of the filter norms [49]. Thus, by denoting
f̄n+1 = Tfn, Theorem 1.2 informs that our KM iteration
for deep convolutional framelet inpainting converges. This
concludes the proof.
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