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Abstract

Recent studies show that pulmonary vascular diseases may specifically affect arteries or veins 

through different physiologic mechanisms. To detect changes in the two vascular trees, physicians 

manually analyze the chest computed tomography (CT) image of the patients in search of 

abnormalities. This process is time-consuming, difficult to standardize and thus not feasible for 

large clinical studies or useful in real-world clinical decision making. Therefore, automatic 

separation of arteries and veins in CT images is becoming of great interest, as it may help 

physicians accurately diagnose pathological conditions.

In this work, we present a novel, fully automatic approach to classifying vessels from chest CT 

images into arteries and veins. The algorithm follows three main steps: first, a scale-space particles 

segmentation to isolate vessels; then a 3D convolutional neural network (CNN) to obtain a first 

classification of vessels; finally, graph-cuts (GC) optimization to refine the results.
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To justify the usage of the proposed CNN architecture, we compared different 2D and 3D CNNs 

that may use local information from bronchus- and vessel-enhanced images provided to the 

network with different strategies. We also compared the proposed CNN approach with a Random 

Forests (RF) classifier.

The methodology was trained and evaluated on the superior and inferior lobes of the right lung of 

eighteen clinical cases with non-contrast chest CT scans, in comparison with manual 

classification. The proposed algorithm achieves an overall accuracy of 94%, which is higher than 

the accuracy obtained using other CNN architectures and RF. Our method was also validated with 

contrast-enhanced CT scans of patients with Chronic Thromboembolic Pulmonary Hypertension 

(CTEPH) to demonstrate that our model generalizes well to contrast-enhanced modalities.

The proposed method outperforms state-of-the-art methods, paving the way for future use of 3D 

CNN for A/V classification in CT images.

I. Introduction

In the last decades, computed tomography (CT) has become the most common imaging 

modality for diagnosis and assessment of lung disease [1], [2]. Modern CT scanners 

combined with modern imaging techniques allow for the use of low radiation doses to 

(semi-)automatically identify and extract pulmonary structures, such as vessels and bronchi 

with relatively high accuracy. However, despite the recent progress in segmentation 

techniques for CT images, many tasks remain unresolved. Among them, recognition and 

discrimination of pulmonary arteries and veins represent one of the most challenging 

problems.

Classification of lung vessels into artery/vein (A/V) may be of great help for physicians to 

accurately diagnose pulmonary diseases that may affect either the arterial or the venous trees 

in specific ways. As an example, recent studies show that A/V classification allows for better 

assessment of pulmonary emboli [3], whereas changes in the arterial tree have been 

associated with the development of chronic thromboembolic pulmonary hypertension 

(CTEPH) [4]. Also, changes in intraparenchymal pulmonary arteries have been associated 

with evidence of right ventricular dysfunction [5], [6].

A basic approach to separate the two vascular trees consists in the manual inspection of 

individual CT slices to trace the vessels back to their origin in search of features that 

specifically characterize arteries and veins. However, intrinsic issues of CT images, like a 

large number of slices, scan resolution, and partial volume effect, along with the extreme 

complexity and density of the vessel tree, make this manual separation a long and tedious 

job, which may be prone to mistakes. For this reason, having a method to 

(semi-)automatically segment vascular structures on CT images may be crucial to improve 

the physician’s ability to assess pathological conditions.

Throughout the years, several methods have been proposed to either enhance or segment 

vessels from lung CT images [7]. Although these methods are not able to separate arteries 

and veins, they are often used as a starting point for most of the A/V segmentation 

algorithms available in the literature [8]–[12]. Moreover, most methods try to utilize A/V 
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local information, like seed points automatically defined in the lung region [13], [14] or the 

proximity of arteries to bronchi [12], to separate the two vascular trees.

The idea of exploiting the proximity of airways to arteries to classify vessels was used in 

several other methods available in the literature. In [8] a method which searched for airways 

in the neighborhood of vessel segments (defined as the portion of a vessel between two 

branching points) to define an arterialness measure was proposed. The arterialness is 

assigned a higher value when the vessel segment and the near bronchus run parallel to each 

other. However, the risk of mislabeling vessels using this method increases with decreasing 

vessel radius, as on CT images small vessels are better visible than bronchi of similar size. 

In [9], A/V separation is performed integrating the assumption of proximity of arteries and 

bronchi with the idea that veins run close to the inter-lobar fissures (estimated by a Voronoi 

diagram). However, this work lacks a method for accurate extraction of vessel regions and a 

proper comparison set, as it has been tested only on 3 CT images. [10], [11] designed an 

algorithm that utilizes a morphological multiscale opening operator with differently sized 

kernels to separate attached arteries and veins at various scales and locations, starting from 

two sets of manually picked seed points. Although a specific GUI was introduced in [11] to 

pick the points, this manual operation requires high expertise and may be tedious. The 

method in [14] consists in the construction of a minimum-spanning-tree and an edge cutting 

step to separate vessel branches. The main drawback of this method is represented by the 

final crucial step that involves manual interaction to refine the A/V separation. In [15], a 

novel fully-automatic algorithm is proposed. This method exploits the energy minimization 

of higher-order potentials, where the higher-order cliques are chosen according to the data 

and on the prior knowledge about the desired shape, to encourage sets of voxels to belong to 

arteries or veins entirely. The method was evaluated on ten chest CT Angiography images, 

considering only vessels with CT values more than 200 HU in the lungs.

Recently, two works have been published with the aim of improving available A/V 

segmentation approaches [12], [16]. In [16], the vessel tree is represented as a graph and 

local information is used to extract a set of small sub-trees. The sub-trees are linked to each 

other by analyzing the peripheral vessels under the assumption that since arteries and veins 

only meet at alveolar sacks, which are far below the CT resolution, they merely approach 

each other in the vessel segmentation. Classification is then done by simply considering the 

difference in the vessel sub-tree volumes. Although this method does not need information 

about airways, discrimination based only on the volume of the trees may not be ideal, 

especially in patients with specific diseases that may differentially affect arterial and venous 

volumes, or that may have different effects on different regions of the lung. In [12], a fully 

automatic A/V separation algorithm based on [8] is proposed. Vessels are classified by 

combining both local and global properties using two integer programs. First, vessel sub-

trees are extracted based on vessel geometry. Then, a second integer program is performed 

to use two anatomical properties of the vessels: the uniform distribution of arteries and 

veins, computed using a Voronoi diagram, and the close proximity of arteries and bronchi, 

measured by means of a specific arterialness measure. The method was tested on 25 non-

contrast CT images and is reported to outperform [14]. However, the method is highly 

sensitive to parameters, with those used for calculation of arterialness being the most 

effective.
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In this work, we present a fully automatic algorithm that combines a convolutional neural 

network (CNN) approach [17] with a graph-cuts (GC) strategy [18], [19] to classify vessels 

into arteries and veins on chest CT images. Small 3D patches are extracted from the CT 

image around the vessel candidates, defined using the scale-space particles approach 

described in [20], [21], and used to train the neural network.

A preliminary version of this paper was proposed in [22]. In the present paper, a new CNN 

architecture that uses 3D convolutions is proposed and compared to five alternative 

architectures that are provided different patches as input. The goal is to demonstrate that 3D 

convolutions are more effective in separating arteries from veins than 2D convolutions, 

where only workarounds can be used to provide connectivity information to the network. To 

prove this hypothesis, a full evaluation and analysis of results are performed. Moreover, the 

proposed method is compared to the method in [16], and the ability of the algorithm to 

perform AV segmentation both on non-contrast and contrast CT images and to generalize 

results to whole lungs, despite being trained on only two lobes, is demonstrated.

To justify the use of the proposed CNN architecture, we compared different CNN strategies 

for both 2.5D and 3D patches. First, we followed the idea proposed in [12] to exploit the 

proximity of bronchi to arteries and combined the original CT patches with bronchus-

enhanced patches and vessel-enhanced images. Then, for a better comparison between 2D 

and 3D approaches, 2.5D patches were constructed taking into account connectivity 

information of the single particles, based on their location and strength.

Eighteen non-contrast thoracic CT scans from the COPDGene study [23] were used to 

perform a quantitative evaluation by assessing agreement between human observers and the 

proposed method. Comparison between CNN and Random Forests (RF) [24], a different 

machine learning approach, was also performed. To get a proper comparison with competing 

methods, we also evaluated the proposed method on the annotated CT images provided by 

[16].

We then set up two tests in an attempt to explain the obtained results. First, an analysis of the 

results sub-divided into three groups based on vessel size (defined by the particles scale) was 

performed to assess the sensitivity of A/V classification to vessel size. Then, we computed 

the receiver operating characteristic (ROC) curve to evaluate sensitivity and specificity of the 

different machine learning classifications.

Finally, to further validate the algorithm and demonstrate its reliability across different 

cohorts and modalities, we tested the proposed method on a group of 33 contrast CT images 

from patients with and without chronic thromboembolic pulmonary hypertension (CTEPH) 

using the model trained with non-contrast CT cases.

II. Methods

The outline of the proposed method is shown in Fig. 1. Our A/V classification follows three 

main steps. First, we extract the lung region from the chest CT image and segment vessels 

using a scale-space particles algorithm to define vessel candidates (Section II-A). Then, we 

train a CNN architecture using 3D patches extracted from the CT image around the 
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computed particles. To justify the use of this architecture, we compared it to five different 

CNNs that use 2D and 3D patches extracted around the CT image with or without additional 

local information (Sections II-B and II-C).

Since each patch is extracted around a single particle, A/V classification with CNN is 

carried out independently on each point. This may cause spatial inconsistency in the vessel 

segments. Therefore, the last step consists in a classification refinement achieved using a 

graph-cuts optimization [18], [19] that combines both connectivity and pre-classification 

knowledge to obtain the final A/V segmentation (Section II-D).

A. Pre-processing Operations

The first step of the proposed method consists in extracting the vascular tree from the CT 

image to define the vessel candidates for A/V classification. To this end, we first segment the 

lung region using the method described in [25]. Then, a vessel enhancement is applied in the 

lung area using a Frangi filter [26] with parameters α = 0.53 and β = 0.61 (obtained by 

implementing a grid search that used a Dice coefficient score to compare the output of the 

particles algorithm to manual segmentation) followed by a thresholding and a binary 

skeletonization to define initial candidate locations.

In addition to location, the patch extraction method here implemented also requires vessel 

orientation. For this reason, the skeletonized vessel mask is used as input to the scale-space 

particles sampling method described in [20], [21]. This approach starts from a vessel mask 

and exploits the second-order local information of the image (Hessian matrix) to identify 

and represent the vascular tree as a collection of particles, a set of points containing 

information about vessel scale, orientation (through Hessian eigenvectors and eigenvalues), 

and intensity of the considered vessel. This approach capitalizes on the multi-scale self-

similarity of the vasculature, making it more robust to noise in the smaller vessels than 

typical approaches. An example of lung vessel extraction through scale-space particles is 

given in Fig. 2. Particles provide a convenient representation of a tree geometry as the 

particles know the local orientation of the vessel axis based on the corresponding Hessian 

eigenvector as a by-product of the optimization. Nevertheless, our method is general to other 

vascular segmentation approaches for which a skeleton can be easily extracted, and the 

vessel orientation can be resolved by standard scale-space analysis or by means of local 

connectivity of skeleton points.

B. Proposed Method

Once the vessel candidates are extracted, an initial A/V classification is performed for each 

particle using CNN. We compared the proposed CNN with five different architectures, based 

on the patch dimensionality (2- or 3-D) and whether vessel strength and arterialness are 

considered.

In the following sections, we first describe the proposed approach, both regarding patch 

extraction and CNN architecture, and then we detail the alternative architectures used for 

comparison.
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1) Patch Extraction—The proposed CNN utilizes only 3D patches extracted from the CT 

image around the vessel of interest. A central patch covering a neighborhood of 32×32 

pixels is extracted on the reformatted plane along the particle’s main axis, given by the first 

eigenvector of the Hessian matrix and obtained using an isotropic spacing of 0.625 mm, 

achieved by resampling the original image by means of cubic interpolation. The 3D patch is 

then obtained considering the patch of the given central particle and the patches around 4 

particles (two above and two below) belonging to the same vessel along its reformatted 

direction. Therefore, every patch represents a small vessel segment of 32×32×5 voxels on 

the reformatted plane along the vessel of the considered point.

2) CNN Architecture—Fig. 3 shows the architecture of the proposed CNN. The network 

consists of three convolutional layers separated by a single max pooling and two dropout 

layers and followed by three fully-connected layers.

C. Alternative CNNs

We hypothesize that a 3D approach performs better than 2D CNNs for AV segmentation, as 

connectivity information plays a very important role in the distinction of the two trees, 

which using 2D CNNs can be simulated only by means of specific workarounds. Moreover, 

we considered that the inclusion of more information, such as the one provided by bronchus- 

and vessel-enhanced images do not particularly help the network to better learn 

characteristics of arteries and veins. To demonstrate this hypothesis, we defined five 

alternative CNN architectures to be compared with the proposed one. To this end, we 

extracted 2D and 3D patches around each particle point with different strategies. A summary 

of the data patches provided to the different CNN architectures is described in Table I.

1) Alternative Patch Extraction—For the extraction of 3D patches, we used the same 

approach used for the proposed method, while for 2D patches we considered only the 

neighborhood region of 32×32 pixels on the reformatted plane of the particles. However, 

since connectivity between vessel points may provide crucial information for A/V 

classification, we also combined the 2D patch of the sample of interest with those of the two 

closest particles that have the most similar orientation. The difference with a 3D patch is 

given by the fact that the extracted patches are merged to the original patch as additional 

channels, in an attempt to simulate a 3D representation and obtain a better comparison. We 

define these patches as 2.5D. Therefore, a 2.5D patch extracted around a vessel candidate 

consists of 32×32 pixels and three channels, defined by the CT images of the central point 

and the two points most proximal to it (2.5D CT only, alternative 1 in Tab. I).

To determine whether CNN may benefit from the inclusion of structural information (such 

as bronchi-arteries proximity) to separate arteries from veins, in four of the five alternative 

architectures we included the bronchus- and vessel-enhanced images. While the inclusion of 

the vessel-enhanced image might be redundant, as the whole analysis is based on particles 

that come from the vascular structure, we considered that some additional local information 

of the vessel might be identified and analyzed by the CNN on this image. For the 

enhancement, we used a Frangi filter [26], with optimal parameters defined by means of grid 

search (that compared the result of the particles algorithm to manual segmentation using a 
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Dice coefficient score as metric), to enhance vessels and bronchi from CT images (α = 0.53, 

β = 0.61, and C=245 for vessel enhancement, α = 0.29, β = 0.77, and C=105 for 

enhancement of airways). From these enhanced images, we then extracted 2D and 3D 

patches around the candidate points, and we integrated these patches to those of the CT 

using two different strategies. In the first case, we integrated them as new channels of the 

patch (2.5D 3 Ch. or 3D 3 Ch., alternatives 2 and 4 in Tab. I). In a second approach, we let 

the network learn from the three patches independently, and we concatenate them at the fully 

connected level (2.5D 3 MI or 3D 3 MI, alternatives 3 and 5 in Tab I). As an example, a 

2.5D patch with enhanced images integrated as additional channels consists of 32×32 pixels 

around the particle point and 9 channels, given by the CT, the bronchus-enhanced, and the 

vessel-enhanced images of the central point and the two most proximal ones. On the other 

hand, if the enhanced images are used as independent inputs of the 2D network, three 

patches of 32×32 pixels and three channels (central point and two closest ones) are used.

2) 2D Architecture (Alternative Networks 1 to 3)—Fig. 4 shows the architecture of 

the CNN when using 2.5D patches with either the only CT image or with the inclusion of 

enhanced images as additional channels or as separate inputs. As shown, the basic CNN 

architecture is the same in all three cases. Five 2D convolutional layers separated and 

followed by two max pooling and two dropout layers, respectively, and three fully-connected 

layers define the network structure.

Although the architecture remains the same, when providing arterialness and vessel strength 

as separate inputs on top of the local information provided by the CT, the convolutions and 

max-pooling operations are executed in parallel on the three inputs to let the network learn 

new features from each patch independently. Therefore, the obtained weights and biases are 

concatenated just before the fully connected operations begin. The hyper parameters of each 

network have been empirically chosen to optimize results for the specific problem at hand.

3) 3D Architecture (Alternative Networks 4 and 5)—The CNN architectures for the 

3D patches when using the enhanced images either as additional channels or as external 

inputs are presented in Fig. 5. For both cases, the structure is the same as the one used for 

the proposed CNN, with the only difference that the same operations are run in parallel in 

case arterialness and vesselness are provided as external patches, and, as for the 2D CNNs, 

with the hyper parameters empirically chosen to optimize results for each network.

D. Final Graph-Cuts Refinement

Despite efforts to provide enough spatial information to the network to ensure spatial 

consistency, inconsistencies may still occur during A/V classification (see Fig. 6), mainly 

due to the presence of touching and intertwined areas in the two vascular trees and because 

classification is done on each particle independently without explicitly modeling the 

smoothness at the tree level. For this reason, once the initial classification with CNN is 

concluded, we employ an automatic graph-cuts (GC) strategy to refine the classification. To 

this end, we use the approach described in [27], which combines graph theory [28], that 

aggregates a set of subtrees into a graph, with methods for energy minimization to find the 

minimum-cuts in the graph that defines the optimal solution. In particular, a graph consists 
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of a set of vertexes  = {vi | i = 1… Nnodes} and a set of edges connecting different nodes ε 
= {(vi, vj) | i, j = 1… Nnodes}. The set of vertexes include two terminal (or virtual) nodes, 

source, s and sink, t, s. t. t = {s} ∪ {t}, and a group of real non-terminal nodes, n-t. 

Similarly, ε contains two types of edges; edges connecting pairs of non-terminal nodes 

(known as nlinks), εn-t = {(vi, vj) | vi, vj ∈ n-t}, and edges that connect one terminal node 

with a non-terminal node (tlinks), εt = {(s, vi)∪(vi, t) | vi ∈ n-t and s, t ∈ t}. The search for 

the minimum cut is an energy minimization problem, where the energy is defined as:

ℰ = ℰbound + ℰreg (1)

where bound is the boundary term that designate the coherence between neighborhood 

nodes (connectivity information) and it is given by the weights of the nlinks, while reg 

represents the regional term that describes the likelihood of each class (artery-vein similarity 

score), given by the weights of the tlinks. Therefore, the minimal cut gives the classification 

that globally minimizes the combination of both energies.

In the problem proposed here, the artery-vein similarity score of the regional term, 

represented by the edges εt, is provided by the probability obtained in the pre-classification 

step using CNN. Therefore, the weights of the edges tlinks are directly fixed to the 

probabilistic estimations:

w(s, pi) = Partery(pi) (2)

w(pi, t) = Pvein(pi) = 1 − Partery(pi) (3)

with pi being the i-th particle and P(pi) indicating the computed probability.

On the other hand, the boundary term, represented by εn-t, should include information about 

the connectivity of particles. Since particles do not provide this information, and due to the 

complex topology of arterial and venous trees, a conservative structural connectivity strategy 

is used, which initially allows the creation of links between each particle and all the particles 

within a cylinder created along the main direction of the vessel with radius rneigh = 3mm 

(empirically tweaked after several tests). To avoid issues in areas with high density of edges, 

we also empirically fixed the number of possible connections that a node is allowed to have 

(Ncon = 5). In order to define the weight of the nlinks, which represents the strength of the 

connections between particles, three main characteristics are considered. First, scale 

consistency, (wσ(p1, p2)): two particles with similar scale have a higher probability of being 

neighbors. Second, particle proximity wdist(p1, p2): the closer the particles are in terms of 

Euclidean distance, the higher the probability of belonging to the same tree. Finally, 

direction consistency (w||(p1, p2)): defined by the parallelism between the connectivity 

vector between two particles and the local direction of the considered particles. Therefore, 
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based on these three characteristics, we can construct different weighting functions to define 

the strength of the nlinks:

w(p1, p2) = f (wσ(p1, p2), wdist(p1, p2), w (p1, p2)) (4)

In some cases, the restriction introduced to construct the nlinks may create a few isolated sub-

trees that may complicate the classification. For this reason, after a first GC classification, a 

final step is executed to connect all edges of the sub-trees iteratively. In particular, the 

following steps are repeated until the whole graph consists of a single connected component: 

a) the biggest connected component is selected as principal one; b) the Euclidean distance 

between the points belonging to the isolated sub-trees and the principal component is 

computed; c) the particles belonging to the isolated sub-trees with minimum distance are 

connected by an edge with weight defined by Eq. (4).

Once the final graph is obtained, the minimum cut, Cmin is computed using the min-cut/

max-flow conversion proposed in [18], providing a partition of the graph G into two 

connected components G1 and G2:

Cmin = argmin
G1, G2

(ℰ(G1, G2)) = argmin
G1, G2

(ℰbound(G1, G2) + α · ℰreg(G1, G2)) (5)

where α = 8 was found as optimal by means of grid search to balance the regional and 

boundary terms:

ℰbound(S, T) = ∑
p1 ∈ S ∩ 𝒱n − t
p2 ∈ T ∩ 𝒱n − t
(p1, p2) ∈ εn − t

w(p1, p2) (6)

ℰreg(S, T)) = ( ∑
p1 ∈ S ∩ 𝒱n − t

(p1, t) ∈ εt

w(p1, t) + ∑
p2 ∈ T ∩ 𝒱n − t

(s, p2) ∈ εt

w(s, p2)) (7)

III. Experimental Setup

A. Data Description

We trained and evaluated the proposed method on twenty-one non-contrast CT scans from 

patients with COPD randomly extracted from the COPDGene study [23]. The scans were 

acquired using multi-detector CT scanners with at least 16 detector channels. COPDGene 

centers were approved by their Institutional Review Boards and all subjects provided written 
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informed consent. For the COPDGene study, CT scans are acquired using multi-detector CT 

scanners (at least 16 detector channels).

For this study, we used only CT images acquired on full inspiration (200 mAs) that have 

been reconstructed with sub-millimeter slice thickness and a smooth reconstruction kernel, 

and with voxel size varying from 0.6 to 0.75 mm. More information on the acquisition 

protocols used for the COPDGene study can be found in [23]. For each subject, only the 

right lung, which was segmented and separated into its three lobes using the method 

described in [29], was considered. In this study, only upper and lower lobes were utilized. 

This gives us a total of 42 independent lobes for AV classification, as the two lobes present 

specific and unique characteristics.

To create a reference standard for evaluation, manual labeling of arteries and veins was 

performed by a pulmonary expert for each of the two lobes. To this end, the Kruskal’s 

minimum spanning tree algorithm [30] was used to connect vessel particles. A relative angle 

of greater than 20 degrees or a gap of greater than 5mm between adjacent particles served as 

break points in the tree, creating a set of vessel segments. Segments with 4 or fewer particles 

were discarded. A 3D rendering of the vasculature superimposed on the initial CT scan 

allowing for scrolling in all three planes was used to trace the origins of the proximal vessels 

to the main pulmonary artery and the pulmonary veins. Once proximal segments were 

labeled, distal segments were then similarly traced back to the proximal segments that were 

already marked by tracing the vasculature to make sure that the segments were indeed 

connected. This was repeated until all distal segments were marked [31]. As a final result, a 

total of 693,287 particles (384,710 arteries, 308,577 veins) have been labeled.

For the training of the convolutional neural networks, we use both lobes of three subjects, 

corresponding to a total of six lobes that include 56,667 particles for arteries, and 39,914 

particles for veins. The remaining 36 lobes from eighteen subjects (596,706 particles with 

328,043 arteries and 268,663 veins points) were used for evaluation. Both lobes of two 

subjects (69,895 particles) were used for validation during training.

We also validated the proposed network trained on non-contrast CT scans on the full lung 

(considering all lobes) of thirty-three patients with computed tomography pulmonary 

angiograms (CTPA) retrospectively acquired for presenting potential clinical evidence of 

CTEPH [6]. 18 subjects were diagnosed with CTEPH by a panel of experts based on their 

hemodynamics and imaging characteristics, while 15 were assigned to a control group as no 

evidence of pulmonary or heart disease was found. These subjects all had CT angiograms of 

the lungs within one year of invasive testing. The reference standard of arteries and veins 

was created by a pulmonary expert that manually labeled each particle following the same 

approach used for the COPDGene cohort. A total of 976,417 arteries and 786,674 veins 

were labeled corresponding to the 33 subjects.

B. Training Details

Before starting the network training, the intensity values of the single patches were 

standardized by subtracting the patch mean and dividing by the patch’s standard deviation, 
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in an attempt to make A/V classification independent from image characteristics and 

contrast.

All CNN architectures were trained for a total of 200 epochs using a Nesterov-momentum 

update using a cross-entropy loss function and with a softmax function as output 

nonlinearity, which is a typical choice in classification tasks, with a learning rate of 0.01, 

and batch size of 128. A rectified linear unit (ReLU) was used as activation for both 

convolutional and fully connected layers, while a Glorot uniform was selected to initialize 

the weights of the convolutional kernels. Zero-padding was used for the convolutional inputs 

so that the output has the same length as the original input. Finally, early stopping (with a 

latency of 30 epochs, monitoring the validation loss with a delta of 0.1) was implemented 

and data was augmented during training by generating random rotation of the patches to 

avoid overfitting.

All CNN operations were computed on an NVIDIA Titan X GPU machine, using the deep 

learning framework Keras [32] on top of TensorFlow [33], [34].

C. Evaluation Experiments

To evaluate the performance of the proposed algorithm, we carried out two main 

experiments on all cases not used during the training phase. First, we compared the 

classification obtained using the proposed approach to the reference standard manually 

created as described in Section III-A. To this end, we computed a per-particle accuracy 

measure. The accuracy is computed for all CNN architectures for both steps of the 

algorithm: after CNN, classifying all particles with a probability higher than a 0.5 threshold 

as arteries and all other points as veins, and after applying GC with the refined graph. 

Sensitivity and specificity (considering arteries as the positives) of each method were also 

computed.

As a second experiment, we compared the accuracy obtained with the proposed method and 

the other CNNs to those obtained using an RF approach [24] as the initial classifier for GC. 

The RF implementation is described in Section III-D. As for the first experiment, we used 

accuracy as the main testing measure, and we completed the evaluation with the analysis of 

sensitivity and specificity of the different methods.

As an additional test, we compared the proposed method to the one proposed in [16], where 

a dataset of 55 CT scans has been made publicly available. For these datasets, annotations 

were divided into two separate sets. The first set consists of full annotation of all vessel in a 

subset of ten randomly selected scans. The second set consisted of 50 randomly selected 

vessels that were annotated for all 55 scans, for a total of 2,750 vessel segments. These 

segments were independently annotated by two observers. The set of observer one was 

considered to be the reference standard, while a consensus set was constructed from 

annotation for which both observer 1 and 2 agreed. Despite training the network on only the 

right upper and lower lobes, we considered all annotations belonging to the whole lung for 

this test, to demonstrate the ability of the algorithm to generalize results on full lungs. As in 

[16] the mean and median accuracy is used to compute results.
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In an attempt to analyze the obtained results, we performed two final tests. First, we 

evaluated whether the algorithm classification may be affected by vessel size by sub-

dividing the particle points into three size groups based on their scale (0.1 to 2.29 mm, 2.30 

to 4.14 mm, and 4.15 to 6.0 mm) and analyzing results for each group both with and without 

GC. Then, we computed a ROC curve analysis by varying the threshold on the probabilities 

provided by the different machine learning approaches (CNN and RF). For this analysis GC 

was not applied as the goal of the test was to evaluate how the classification approaches 

compare to each other.

Lastly, in order to demonstrate the reliability of the proposed method on a different cohort 

and CT modality, we evaluated the performance of the proposed method on the full lung of 

33 contrast CT images from the CTEPH cohort in comparison to manual labeling. We 

considered classification accuracy results both on the whole cohort and stratified by CTEPH 

diagnosis.

D. Random Forest Implementation

To justify the choice of using CNN as the initial classifier, we re-implemented the RF 

machine learning algorithm described in [27]. This method defines an arterialness measure 

depending on the distance of vessels to bronchi, segmented using a scale-space particle 

approach similar to the one we used for vessel segmentation. This approach gives us the 

opportunity to compare our method to one that is based on the common assumption of 

arteries-bronchi proximity. In particular, for each vessel candidate the distance to the closest 

airway points, the distance between the closest airway points, and the similarity in the 

orientation of vessel and the closest airway points are computed together with scale, local 

intensity histogram, and Hessian eigenvalues to define the feature space used for training RF. 

To initialize airway particles, we used a mask created from the same bronchus-enhanced 

image (created with a Frangi filter) used in this work to provide CNN with additional local 

information.

IV. Results

The automatic algorithm we propose was able to generate A/V classification for all 

considered cases in an average time of approximately 89 seconds per lobe (around 62 

seconds for CNN classification, around 27 seconds for GC, with an average time of 

approximately 3 ms to classify a single 3D patch). The most complex CNN method (3D 

patches with 3 independent inputs) took an average time of approximately 12 minutes 

(around 693 seconds for CNN classification), while the re-implementation of RF took an 

average time of approximately 42 seconds per lobe, running on the CPU of an AMD Athlon 

II X4 630 @ 2.8Ghz with 12GB of RAM. The computation time for generating the scale-

space particles is around 30 minutes per case, running on the CPU of an Intel Core i7-6850K 

@ 3.60GHz with 12GB of RAM.

The different experiments and the corresponding tables containing the results are 

summarized in Tab. II.

Nardelli et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Comparison to Manual Classification

An overview of the accuracy obtained for all clinical cases with the different CNN strategies 

is shown in Table III. The accuracy has been computed individually for each case, and the 

mean (in %) of all score values obtained is reported as summary statistics. Results from the 

best scoring method are presented in bold. Sensitivity (true positive rate, TPR) and 

specificity (true negative rate, TNR) are also reported.

As shown, the proposed method yields to an overall mean accuracy of 93.6% (median: 

95.1%, range: 77.2% to 98.3%). When the patches of bronchus- and vessel-enhanced images 

are included in the 3D patches as additional channels, an accuracy of 89.1% is obtained 

(median: 92.2%, range: 64.1% to 98.3%), whereas when the CT and the two enhanced 

images are analyzed as independent inputs by the network an overall mean accuracy of 

91.4% (median: 94.3%, range: 70.4% to 98.1%) is achieved.

On the other hand, 2D approaches yield lower accuracy results. Training the 2D CNN with 

the CT only, an overall mean accuracy of 81.6% is obtained (median: 84.3%, range: 53.2% 

to 98.4%). Mean accuracies of 87.5% and 87.4% are obtained when using a 2D strategy with 

bronchus- and vessel-enhanced images integrated either as additional channels (median: 

88.3%, range: 66.1% to 97.2%) or as independent inputs (median: 90.2%, range: 59.3% to 

98.0%), respectively.

For this study, we have also performed a separate evaluation of the two lobes (right superior 

lobe, RSL, and right inferior lobe, RIL) comparing results with the manual reference. 

Results are reported in Table III. In case 3D patches are used, an accuracy of 94.3% 

(median: 96.2%, range: 81.4% to 98.1%) for RSL and 92.8% (median: 95.9%, range: 76.1% 

to 98.3%) for RIL were obtained when only the CT image is considered, whereas the 

inclusion of the enhanced images as additional channels gives accuracies of 89.7% (median: 

93.3%, range: 73.4% to 97.8%) and 88.7% (median: 92.2%, range: 64.5% to 97.3%) for 

RSL and RIL, respectively. Finally, when the network learns A/V characteristics 

independently from the three images, an accuracy of 93.1% (median: 95.3%, range: 81.4% 

to 97.9%) is achieved for RSL, and 89.8 % (median: 94%, range: 70.5% to 97.2%) for RIL.

For the 2D approach with only CT, an accuracy of 84.7% (median: 87.2%, range: 56.3% to 

97.9%) is obtained for RSL and 78.9% (median: 80.2%, range: 53.3% to 96.1%) for RIL. 

When including the enhanced images as additional channels, an accuracy of 87.9% (median: 

88.3%, range: 70.1% to 97.3%) and 87.1% (median: 90.4%, range: 66.3% to 97.2%) were 

obtained for RSL and RIL, respectively, while integrating the enhanced images as separate 

inputs yields to an accuracy of 89.0% (median: 91.2%, range: 75.3% to 98.0%) for RSL and 

85.8% (median: 90.2%, range: 59.4% to 97.1%) for RIL.

B. Comparison to Random Forests

Table III also shows the results obtained with the proposed approach in comparison with 

those of the alternative CNNs and RF.
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As shown in Section IV-A, the proposed algorithm (with GC) yields to an overall accuracy 

of 93.6%. On the other hand, if RF is used as initial classifier combined with GC, the 

algorithm achieves an overall accuracy of 73.2% (median: 74.3%, range: 51.5% to 89.2%).

Analyzing the performance of the two machine learning approaches without applying GC, 

all CNN methods outperform RF, with the proposed architecture yielding to the best results. 

In particular, while RF has an overall accuracy of 62.4% (median: 63.4%, range: 49.1% to 

75.2%), the 3D CNN learning only from the CT gives a mean accuracy of 79.8% (median: 

79.4%, range: 65.6% to 91.2%). An accuracy of 77.2% (median: 76.3%, range: 64.4% to 

91.3%) is obtained when the enhanced images are integrated as additional channels to the 

3D patches, while a score of 77.4% (median: 77.3%, range: 63.3% to 90.2%) is achieved 

using the enhanced images as separate inputs. Using 2D CNNs yields to higher accuracies 

compared to RF, but for all 2D patches and 2D architectures the scores are lower than those 

obtained using any 3D CNN.

Finally, the proposed method provides the highest specificity, both with (TNR: 89.5%) and 

without GC (TNR: 74.2 %), while the highest sensitivity (even though differences are small) 

is obtained using 2D patches extracted from the CT image only.

C. Comparison to [16]

Considering the 10 fully annotated cases, while in [16] a mean and median accuracy of 92% 

(95%-CI [88,95]) and 94% (95%-CI [84,96]), respectively, are reported, our algorithm 

achieved a mean accuracy of 94% (95%-CI [91,96]) and a median accuracy of 95% (95%-CI 

[93,97]), which confirms the results obtained on the COPDGene cases used for evaluation in 

this work (see section IV-A). No evaluation of sensitivity and specificity was performed in 

[16], while our method achieved a sensitivity of 97% and a specificity of 89%. The results 

were computed for all lobes of both lungs. When evaluating the algorithm on the reference 

standard of the 2,750 annotated segments randomly selected provided in [16], for the 

reference set a mean and median accuracy of 90% and 91% (sensitivity: 95%, specificity: 

85%), respectively, were obtained, compared to a mean and median accuracy of 88% and 

89%, respectively, reported in [16]. Finally, the comparison to the consensus set resulted in a 

mean accuracy of 91% and a median accuracy of 93% (sensitivity: 95%, specificity: 86%), 

compared to the mean and median accuracy both at 89% of [16].

D. Results by Vessel Scale

Results obtained sub-dividing the vessels into three groups based on their scale are presented 

in Tab. IV. As shown, both before and after applying GC the algorithm worsen results for 

group 3, containing large vessels (mean accuracy for CNN + GC: 88.9%, median: 92.5%, 

range: 54.2%–99.8%), while the highest accuracy is obtained for group 2 (mean accuracy for 

CNN + GC: 95.2%, median: 97.2%, range: 79.3%–99.9%), having medium scales, and it 

slightly decreases for the smallest vessels of group 1 (mean accuracy for CNN + GC: 93.4%, 

median: 95.1%, range: 75.4%–99.7%). These results are confirmed by the sensitivity and 

specificity of the algorithm for each group. While a similar sensitivity was obtained for the 

three groups, the algorithm has the highest specificity for group 2 and the lowest one for 

large vessels, regardless of the use of GC.
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E. ROC Analysis of the Classifcation Step

The ROC curves and the area under the curve (AUC) obtained for the different CNN 

architectures and RF are presented in Fig. 7. All measures were done without applying GC. 

As well as being the one that best classifies the positives as such, the proposed CNN 

architecture also has the lowest false positive rate, with an AUC of 0.88. As already shown 

in Section III-D, all the CNN architectures outperform RF, which despite having a high 

sensitive rate, is highly affected by a high false positives rate (AUC = 65%).

F. Validation on Contrast-CT Images

Results obtained on the thirty-three contrast CT images from the CTEPH cohort are 

presented in Tab. V, both considering all subjects and separating them into two groups based 

on the presence of disease (18 patients with CTEPH, 15 controls). As shown, on th whole 

cohort a mean accuracy of 89.1% (median: 90.2%, range: 75.2% to 97.1%) is obtained. If 

considering only CTEPH subjects, the algorithm yields to an accuracy of 86.9% (median: 

88.3%, range: 75.4% to 94.4%), while for the control group (no disease) an accuracy of 

91.7% (median: 93.2%, range: 78.1% to 97.3%) is obtained.

V. Discussion

The results obtained on the COPDGene cases indicate that the proposed approach achieves 

higher mean and median overlap with manual reference A/V segmentation than other 2.5D 

and 3D CNN architectures, and similar results (~94% against ~93%) are obtained in the 

mean accuracy achieved for RSL and RIL. Examples of good results in comparison to 

manual segmentation are shown in Fig. 8, where RSL and RIL from three different subjects 

are presented in comparison with the manual reference.

Among the 36 right lung lobes used for evaluation (18 clinical cases), our method provided 

an accuracy below 80% (accuracy = 76.3%) only in the inferior lobe of one subject, mainly 

due to a low specificity of the algorithm for this case (sensitivity = 97.2%, specificity = 

58.4%). A/V classification of the RIL of this subject is presented in Fig. 9. From a detailed 

analysis, we noticed that vessels in this lobe have a larger size and higher density than in the 

other lobes of the same lung. This may explain why the network has a higher classification 

failure rate. However, since segmentation is done independently on each particle point, the 

errors are localized to this specific lobe, and they do not affect the classification in the 

superior lobe of the same subject (accuracy = 91.3%).

From an accurate analysis of the results, we also noticed that while the algorithm may fail to 

segment isolated vessel segments, in some cases, it seems to improve mistakes done during 

manual segmentation. An example showing this type of situations is presented in Fig. 10.

While using 2.5D patches the CNN seems to require information from both the CT image 

and the bronchus- and vessel-enhanced images (accuracy = ~82% when using only the CT 

image, accuracy = ~87% when including the enhanced images), a 3D CNN can learn all the 

necessary information from the CT image alone. Although we provided connectivity 

information to the 2.5D patches by including the two closest vessel points, the usage of 3D 

patches appears to provide the network with vessel segments that contain more local and 
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global information for A/V separation. Moreover, the inclusion of images with enhanced 

vessels and bronchi does not improve the results for 3D patches. This suggests that the extra 

complexity of pre-computing feature enhanced images is not necessary as the 3D CNN 

approach can extract the relevant features.

For completeness, we also conducted an additional experiment to investigate the 

performance of the proposed 3D network on patches of 32×32×32 pixels extracted around 

the particle point without reformatting the plane along the vessel direction. For this 

particular case, isotropic convolutional filters of 7×7×7 pixels were used. Results on both 

lobes of the COPDGene cases showed that with this configuration the performance of our 

method worsens, both before and after applying GC. A mean accuracy of 83.6% (median 

accuracy: 84%, range: 69% to 95%), with a sensitivity and a specificity of 88.9% and 

77.5%, respectively, was obtained after GC, while the use of the CNN only yields to a mean 

accuracy of 74.3% (median: 75%, range: 62% to 86%), with a sensitivity of 78.1% and a 

specificity of 69.9%. This demonstrates that considering small vessel segments along the 

vessel direction provides the network with optimal information for the purpose of A/V 

segmentation.

To motivate the choice of using CNN as the initial classifier, we also compared the 

performance of CNN against an RF approach which uses airway segmentation to define 

proximity of arteries to bronchi. The results showed that a CNN approach achieves higher 

results both in terms of overall classification (after GC) and as single classifier. Our CNN 

approach is an optimal starting point for the specific task of A/V separation on chest CT 

images without the need of explicitly segmenting airways, which might be a complex and 

error-prone process in disease cases like advanced emphysema.

To date, the only reliable comparison that can be accomplished with other methods available 

in the literature is with the approach recently presented in [16], where a publicly available 

challenge dataset for evaluating A/V separation algorithms has been proposed. The results 

on the subset of ten fully annotated cases, and of the reference and consensus set obtained on 

the 2,750 segments randomly selected from all 55 cases show that our algorithm 

outperforms the one in [16]. An important aspect to take into account is that results were 

obtained considering the whole lung for all considered cases. This demonstrates that the 

CNN well generalizes results despite being trained on only two lobes.

Moreover, in [16] an additional test on CT images of patients with COPD was also 

performed. In particular, a subset of 25 patients, seven of which were diagnosed with COPD 

with the remaining eighteen patients diagnosed as not having COPD, were considered. A 

mean accuracy of 88.57% was reported for the cases with COPD, while an accuracy of 

88.56% was achieved for the no-COPD group. Although a direct comparison is not possible, 

as these cases are not publicly available, the eighteen cases considered for evaluation in this 

work (Section IV-A) were extracted from the COPDGene study and sixteen of them were 

diagnosed as having COPD. In these cases our algorithm yields to a mean accuracy of 

93.6%, outperforming [16]. Since the same mean accuracy was obtained for the ten fully 

annotated cases provided by [16], which to the best of our knowledge were diagnosed as not 

having COPD, our algorithm seems to be reliable regardless the presence of disease in the 
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lung, and it can be considered a good candidate for the investigation of morphological 

changes in the arteries and veins of patients with and without COPD. However, an important 

study to accomplish in the future is the evaluation of the algorithm for varying imaging 

parameters, such as slice thickness, reconstruction kernels, and radiation dose, to 

demonstrate the reliability of the algorithm under different imaging conditions.

Although a direct comparison is not possible, the approach we propose also seems to 

outperform the method described in [12], where an overall accuracy of 91.1% is reported. 

Moreover, while the method in [12] requires a bronchus-enhanced image to compute an 

arterialness measure, which is very sensitive to the quality of the enhancement and the 

parameters used, we use the CNN to solve parameter optimization and to let the network 

automatically learn the proximity of arteries to veins. This highly reduces the complexity of 

the algorithm and sensitivity to the chosen parameters.

An additional test we performed to evaluate the results on the vessels sub-divided into three 

groups based on their scale (Section IV-D), shows that the algorithm fails more in the large 

vessels, while it is optimal in the particles of medium size. This may be explained by the fact 

that for some points a patch size of 32×32 pixels may not be large enough to include all 

information necessary to distinguish arteries from veins. Also, due to the anatomy of the 

lung vessels, the training set is richer in medium size vessels than in large ones. Another 

important aspect to take into account is that the analysis of the results obtained before and 

after implementing GC indicates that while the CNN can well separate arteries from veins 

for central vessels, GC seems to have a key role for peripheral vessels. This may be due to 

the gradual vanishing of relevant information, such as the presence of airways in the 

proximity of arteries while moving toward the periphery. A possible solution to overcome 

these issues is an independent classification of the three groups, also applying a volume 

down-sampling to the patches of the large vessels to make the whole process scale-invariant.

To better understand the results on the COPDGene cohort, we also sub-divided the subjects 

based on the presence of COPD (4 cases with mild COPD, 10 cases with moderate COPD, 

and 4 cases with advanced COPD) and the presence of emphysema (12 subjects with the 

disease, 6 without). It is important to point out that two of the three cases used for training 

presented mild COPD and one had moderate COPD, while only one subject had 

emphysema. As shown in Tab. VI, the proposed method seems to be affected by a strong 

presence of COPD, while mild and moderate COPD and emphysema do not seem to affect 

much the performance of the algorithm. Moreover, the presence of disease affects more the 

specificity than the sensitivity of the algorithm, which decreases compared to control cases. 

This may suggest that using more cases with the presence of COPD and emphysema for 

training the CNN might help better generalize results.

To further validate the proposed method, we lastly compared the classification obtained with 

the proposed method on thirty-three CT contrast images from the CTEPH cohort. The 

obtained results indicate that the algorithm is reliable across different scan protocols and it is 

insensitive to the presence of contrast in the image. As expected, accuracy is higher in cases 

without disease, as CTEPH may distort the lung and vascular anatomy that may complicate 

distinction of arteries from veins. However, these results are encouraging as they 
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demonstrate the ability of the algorithm to generalize the A/V classification regardless of the 

contrast in the image. Moreover, improved results may certainly be achieved by including 

contrast CT cases into the training set.

The obtained results also showed that the proposed architecture has a higher sensitivity 

(~97% for the COPDGene cohort, ~93% for the CTEPH cases) than specificity (~89% for 

COPDGene, ~84% for CTEPH), with the imbalance mainly introduced by GC (sensitivity 

and specificity for CNN on COPDGene cases before GC: ~84% and ~74%, respectively), 

probably based on the connectivity assumptions made to construct the graph. To avoid this 

issue and potentially improve results, a further opportunity for future work is to modify the 

last iterative step of the proposed GC to connect isolated subtrees with an integer program, 

similar to [12], to take into account more local and global structural information, and not 

only connected component, to construct the final graph.

Finally, from an analysis of the available data, the various datasets we used for evaluating 

the proposed algorithm always presented more arteries than veins (mean difference = 3, 

625.38 ± 2, 508.53). This is consistent with the difference that has been shown in 

physiological studies of the pulmonary morphology in post-mortem analysis [35]. However, 

more investigations are needed to define how lung injury affects arterial and venous 

volumes.

VI. Conclusions

In this work, we have presented a novel fully automatic algorithm that utilizes a CNN 

approach combined with graphcuts optimization to separate arteries and veins in chest CT 

images. We compared different CNN architectures to the one proposed, training the network 

with both 2D and 3D patches that we extracted and integrated using different strategies. 

Since the classification is done on independent particles, which define the vessel candidates 

but do not provide connectivity information, we employed a GC approach to refine the 

segmentation and reduce any spatial inconsistency that may occur.

We showed that a 3D CNN can learn specific A/V characteristics from small vessel 

segments directly extracted from non-contrast CT images, and no further operations (i.e., 

bronchi and vessel enhancement, segmentation, etc.), are necessary. Our method 

outperforms the most recent algorithms proposed in [16] and [12], in comparison with the 

performance of human observers. Also, compared to [16], our approach yields higher 

performance for images of patients diagnosed both with and without COPD. Moreover, 

validation on the full lung of contrast CT images showed that the proposed trained method 

could be generalized to other modalities and it is reasonably insensitive to contrast and 

acquisition protocol variation.

In general, our results are promising and pave the way to future use of 3D CNN for A/V 

classification in CT images.
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Fig. 1. 
Overview of the proposed method for A/V classification. After lung and vessel 

segmentation, a 3D CNN algorithm is implemented in combination with GC optimization to 

classify vessel candidates into arteries and veins.
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Fig. 2. 
Example of vessel segmentation from a clinical chest CT image through the scale-space 

particles method.
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Fig. 3. 
The proposed 3D CNN classifier for A/V segmentation. 3D patches are extracted from the 

CT image around vessel candidates defined by a scale-space particle algorithm. The CNN 

learns A/V characteristics on these patches through three 3D convolutional layers, one max 

pooling and three fully connected layers.
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Fig. 4. 
Scheme of the CNN architectures using 2.5D patches around the vessel particles. The CNN 

takes as input either patches from only the CT image (blue) or from the CT combined with 

the enhanced images, integrated either as additional channels or as separate inputs. Patch 

size is reported as: number of patches × (x,y, channels)
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Fig. 5. 
Scheme of the two alternative CNN architectures using 3D patches around the vessel 

particles. The CNN takes as input patches extracted from the CT image and the vessel- and 

bronchi-enhanced images, integrated either as additional channels (blue) or as separate 

inputs (red). Patch size is reported as: number of patches × (x,y, depth, channels)
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Fig. 6. 
An example of spatial inconsistency obtained after CNN classification.
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Fig. 7. 
ROC curve obtained for the different CNN architectures and RF. AUC stands for area under 

the curve.
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Fig. 8. 
An example of good results obtained from the RSL (a, b) and RIL (c) of three different 

subjects in comparison to manual segmentation.
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Fig. 9. 
Example of bad AV classification (<80%) obtained from the RIL of one subject.
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Fig. 10. 
An example showing of isolated vessels (dotted circle) that are wrongly segmented by the 

automatic algorithm (right) in comparison with manual segmentation (left). The same case 

presents an example where the proposed automatic algorithm improves manual 

segmentation (full circle).
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TABLE I

Summary of the patch sizes for all the different CNNs utilized in this work. Ch. stands for channels, MI for 

multi-inputs (indicating that CT and enhanced images are used as separate inputs to the network), and # is 

used for number.

# Ch. Enhanced images (Y/N) # of patches # patches × (x, y, depth, ch.)

Proposed

3D CT only 1 N 1 1×(32,32,5,1)

Alternatives

1. 2.5D CT only 1 N 1 1×(32,32,1,3)

2. 2.5D 3 Ch. 9 Y 1 1×(32,32,1,9)

3. 2.5D MI 3 Y 3 3×(32,32,1,3)

4. 3D 3 Ch. 3 Y 1 1×(32,32,5,3)

5. 3D MI 1 Y 3 3×(32,32,5,1)
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TABLE II

Summary of the different experiments computed and number of the table (if available) containing the 

corresponding results.

Experiment Summary Corresponding Table

1 Comparison to manual classification Table III

2 Comparison to manual Random Forests Table III

3 Comparison to [16] /

4 Results by vessel scale Tab. IV

5 ROC analysis of results /

6 Validation of results on contrast-CT images Table V
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TABLE V

Results (mean accuracy (in %) ± standard deviation) obtained on contrast CT images from 33 patients with 

pulmonary hypertension.

Whole Cohort CTEPH No Disease

Mean Accuracy 89.1 ± 5.9 86.9 ± 5.3 91.7 ± 5.6

Sensitivity 93.4 ± 3.5 92.4 ± 3.2 94.5 ± 3.5

Specificity 83.9 ± 9.9 80.2 ± 9.2 88.3 ± 9.7
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