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Efficient enhancement of stereo endoscopic images
based on joint wavelet decomposition and binocular

combination
Bilel Sdiri, Mounir Kaaniche, Member IEEE, Faouzi Alaya Cheikh, Senior Member IEEE, Azeddine Beghdadi,

Senior Member IEEE, and Ole Jakob Elle

Abstract—The success of minimally invasive interventions and
the remarkable technological and medical progress have made
endoscopic image enhancement a very active research field. Due
to the intrinsic endoscopic domain characteristics and the surgical
exercise, stereo endoscopic images may suffer from different
degradations which affect its quality. Therefore, in order to
provide the surgeons with a better visual feedback and improve
the outcomes of possible subsequent processing steps, namely a
3D organ reconstruction/registration, it would be interesting to
improve the stereo endoscopic image quality. To this end, we
propose in this paper two joint enhancement methods which
operate in the wavelet transform domain. More precisely, by
resorting to a joint wavelet decomposition, the wavelet subbands
of the right and left views are simultaneously processed to exploit
the binocular vision properties. While the first proposed tech-
nique combines only the approximation subbands of both views,
the second method combines all the wavelet subbands yielding
an inter-view processing fully adapted to the local features of
the stereo endoscopic images. Experimental results, carried out
on various stereo endoscopic datasets, have demonstrated the
efficiency of the proposed enhancement methods in terms of
perceived visual image quality.

Index Terms—Endoscopic images, stereo pairs, wavelet trans-
form, enhancement, joint processing, binocular vision.

I. INTRODUCTION

A. Medical Context

M INIMALLY invasive surgery (MIS) consists in using
techniques that limit the size and number of cuts during

the operation. Indeed, unlike conventional open surgery that
relies on making large incisions to get a direct access to the
surgical target, MIS is performed through tiny incisions not
exceeding 1.5 cm by which the surgeons pass the surgical
instruments and a long thin tube equipped with miniature
camera, called an endoscope, to visualize the operating field.
In the last decades, MIS has made remarkable medical and
technological progress and became a popular diagnosis and
treatment tool due to its benefits which include: decreasing
significantly the patient trauma and morbidity, reducing the
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length of hospital stay and recovery time, and yielding less
scarring.

In a traditional laparoscopic/endoscopic surgery with a sin-
gle two-dimensional (2D) visual system, different challenges
are facing the surgeons, namely the restricted field of view and
the loss of both tactile feedback and depth perception which
are important for the navigation and to perform the surgical
tasks. To solve the latter problem, three dimensional (3D)
vision surgical systems [1], based on stereoscopic images,
have been developed. Indeed, this data is a combination of
left and right images taken from two different viewpoints.
One main advantage of using stereo endoscopic images (SEI)
is their ability to extract the 3D information related to the
anatomical structure of the organs. This information is then
used to perform accurate model-to-patient registration and
improve surgery planning such as the resection surface in
a Hepatectomy. Moreover, having good depth perception of
the endoscopic scene allows the surgeons to distinguish easily
the relative positions of the organs and surgical instruments,
and so, improve the navigation conditions. Due to the intrin-
sic characteristics of the endoscopic environment including
dynamic illumination conditions and moist tissues with high
reflectance, SEI may suffer, however, from different degrada-
tions such as specular reflection, noise, low contrast and inho-
mogeneous illumination, which may affect some subsequent
processing steps like segmentation, feature extraction/detection
[2] and 3D reconstruction [3], [4], [5]. Therefore, it becomes
necessary to enhance the quality of SEI.

B. Related Works

Generally, endoscopic image quality can be improved by
enhancing their contrast/sharpness or removing the surgical
tasks artifacts (e.g. surgical smoke [6]). To this end, dif-
ferent techniques have been reported in the literature. More
precisely, the enhancement of endoscopic images has been
mainly studied in the case of single images (i.e one 2D
view). In this context, enhancement methods based on retinex
theory have been proposed [7], [8], [9]. While a single scale
retinex approach is used in [7], [8], the method developed
in [9] resorts to a multiscale retinex approach [10]. However,
such methods present two main drawbacks. First, setting the
retinex parameters is a difficult task. Moreover, they may
lead to partial enhancement of the image. This problem
can occur especially if the image illumination is not well
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distributed and presents both over and under saturated re-
gions. As a result, other medical image enhancement methods
which adjust the coefficients using specific mapping functions,
neural networks [11], [12], or filtering techniques [13], [14],
have been designed. For instance, in [15], the luminance
component is adjusted using an adaptive sigmoid function
and new chrominance components are generated based on
the texture information. In [16], the authors propose two
simple enhancement methods and study their impact on feature
tracking. The first technique is based on histogram equalization
and the second one uses a morphological operator to enhance
the local contrast. A similar work is proposed in [17]. The
endoscopic images are first processed using a median filter to
highlight the image details. Then, an histogram information
correction is performed to adjust the dynamic range of the
image.

It is worth pointing out that unlike the two-dimensional
endoscopic images case, only few research works have been
devoted for stereo endoscopic image enhancement [18], [19].
For instance, Hai et al. [18] propose to apply contrast limited
adaptive histogram equalization (CLAHE) to the left and right
views of the SEI. CLAHE is a contrast enhancement technique
aiming at computing local histograms in different regions of
the image to avoid some drawbacks such as noise amplification
in homogeneous areas. In [19], an adaptive contrast enhance-
ment method combining depth data and edge information is
proposed. To avoid any over enhancement, the inter-view lumi-
nance differences are then processed based on a binocular just
noticeable difference (BJND) model [20]. The latter measures
the minimal distortion or noise in one of the stereo images that
can trigger a noticeable visual difference when binocularly
combined with the other view by the human visual system
(HVS). The application of the BJND model for sharpness
enhancement of stereo images has already been performed
as well in [21]. In addition to the endoscopic context, other
research works related to the enhancement of natural stereo
images are found in the literature [21], [22], [23], [24]. Indeed,
an adaptive sharpness enhancement algorithm is developed in
[22]. The effect of depth perception is studied and a concept
of just noticeable blur model is introduced. In [23], a contrast
enhancement method is designed by combining local edges
of both views and depth information. In [24], the left view is
decomposed using a wavelet transform (WT) and the resulting
subband coefficients are adjusted using a 2D contrast-measure-
based enhancement technique in the wavelet domain [25]. The
enhanced right image is then obtained by simply performing
a compensation of the enhanced left view using the disparity
map. Thus, such approach is not so efficient since the inter-
view redundancies are only exploited to generate the enhanced
right view whereas the left image is enhanced independently.
It should be noted that natural stereo images enhancement
techniques have been also reviewed since they may be applied
to endoscopic data and used especially for comparison purpose
as it will be performed in Section IV.

C. Contributions
In this paper, we propose to further investigate the quality

enhancement of SEI. The proposed methods operate in the

transform domain and rely on a joint wavelet decomposition
and a cross-view processing to exploit both depth information
and the inter-view redundancies of stereo images. More pre-
cisely, an efficient multiscale decomposition, based on Vector
Lifting Scheme (VLS) [26], is first applied to both views. Note
that, unlike conventional lifting scheme, the VLS is a joint
wavelet decomposition that aims at exploiting the inter-view
correlation to generate two compact multi-resolution represen-
tations of the left and right images. Then, the approximation
and detail subbands of both views are separately adjusted using
an adaptive parameterized mapping function as performed in
conventional 2D enhancement techniques [27], [28]. After
that, the resulting intermediate enhanced views, referred to
as pre-enhanced views, are jointly processed to exploit the
binocular vision features of the HVS, namely the binocular
rivalry. To this end, inspired by HVS-based perceptual studies
[29], [30], [31], a binocular combination of the left and right
processed views is performed to generate the final enhanced
images. Note that such binocular combination process aims
at synthesizing a cyclopean image which is close to what
is formed in the human visual cortex based on two separate
left and right retinal images [29], [30]. To the best of our
knowledge, this paper presents the first research work which
exploits a cyclopean image model for the enhancement of
stereo images. To perform this joint processing step, two stereo
combination models based on local image features, including
energy and contrast measures, are given. Finally, the inverse
VLS-based decomposition is applied to the resulting wavelet
representations to reconstruct the enhanced stereo endoscopic
images.

The remainder of this paper is organized as follows. In
Section II, the VLS-based joint decomposition applied to the
left and right views is presented. The proposed stereo adaptive
inter-view processing techniques are described in Section III.
Finally, experimental results are given in Section IV and some
conclusions are drawn in Section V.

II. SYMMETRIC JOINT WAVELET DECOMPOSITION

Wavelets have been attracting much attention in various
image processing applications due to their intrinsic
properties: multiscale representation and good space-
frequency localization. Among these applications, we
mention super resolution [32], denoising [33], enhancement
[34], and pattern/shape recognition [35]. For this reason, we
propose to enhance SEI in the wavelet transform domain. To
this respect, two wavelet representations of the left and right
images are first generated. While classical (i.e 2D) wavelet
transformations have already been employed in recent still
and stereo image enhancement [24], [28], we resort here to
a joint wavelet decomposition based on the concept of VLS
[26]. This later has the advantage of allowing the exploitation
of inter-view redundancies and correlation thanks to the
estimated disparity maps.

By assuming that the disparity map is obtained by us-
ing the standard correlation-based disparity estimation (DE)
technique, we focus on the description of the joint wavelet
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Fig. 1: VLS-based joint wavelet decomposition. Note that
the green color is employed to show the intra-prediction and
update filters used for each view. However, the red (resp. blue)
color is employed to show the inter prediction step in the right
(resp. left) view based on the information coming from the
other left (resp. right) view.

decomposition. The analysis structure of this decomposition
is shown in Fig. 1. For both left I(l)

j and right I(r)
j images at

resolution level j, a lifting stage composed of Predict-Update-
Predict (PUP) steps is applied to each line m. To describe these
steps, we consider in the following the wavelet decomposition
of the right image. For instance, an intermediate detail signal
d̂

(r)
j+1 (at level j + 1) is obtained thanks to the first prediction

step as follows:

d̂
(r)
j+1(m,n) = I

(r)
j (m, 2n+ 1)−

∑
k∈P(r)

j

p
(r)
j,kI

(r)
j (m, 2n− 2k),

(1)

where P(r)
j and p(r)

j,k denote respectively the predictor support
and the weights of the first predictor operator. The following
step consists in applying an update process to generate the
approximation coefficients I(r)

j+1:

Ĩ
(r)
j+1(m,n) = I

(r)
j (m, 2n) +

∑
k∈U(r)

j

u
(r)
j,kd̂

(r)
j+1(m,n− k), (2)

where U (r)
j and u

(r)
j,k designate respectively the support and

the weights of the update filter. In the last step, the final
detail coefficients d̃(r)

j+1 are obtained using the second hybrid
prediction step:

d̃
(r)
j+1(m,n) = d̂

(r)
j+1(m,n)−

( ∑
k∈Q(r)

j

q
(r)
j,k Ĩ

(r)
j+1(m,n− k)

+
∑

k∈P(r,l)
j

p
(r,l)
j,k I

(l)
j (m, 2n+ 1 + z

(r)
j (m, 2n+ 1)− k)

)
, (3)

where q(r)
j,k (resp. p(r,l)

j,k ) and Q(r)
j (resp. P(r,l)

j ) represent the
weights and support of the second intra (resp. inter)-image
predictor, and z(r)

j is generated by down-sampling and dividing
by 2j the input estimated disparity map z(r) associated to the
right view:

z
(r)
j (m,n) =

1

2j
z(r)(2jm, 2jn). (4)

In this paper, this decomposition is carried out by taking
the following supports and weights for the intra prediction
and update filters: P(r)

j = {−1, 0}, U (r)
j = {0, 1}, p(r)

j,−1 =

p
(r)
j,0 = 1

2 and u
(r)
j,0 = u

(r)
j,1 = 1

4 , which are similar to
those used in the standard 5/3 lifting scheme (LS) [36]. For
the hybrid prediction step, it is performed with the spatial
supports Q(r)

j = {−1, 0} and P(r,l)
j = {−1, 0, 1}. The

associated weights q(r)
j,k and p(r,l)

j,k are optimized by minimizing
the variance of the deatil signal d̃(r)

j+1.
Once this decomposition strategy is performed for each line

of the right view, a similar P-U-P structure is applied to each
line of the left view, which will result in an approximation
subband and a detail one for each image. By repeating
the same decomposition along the columns of the resulting
subbands, one approximation subband I

(v)
j+1 and three detail

subbands oriented horizontally I(HL,v)
j+1 , vertically I(LH,v)

j+1 and
diagonally I

(HH,v)
j+1 , are generated for each view v ∈ {r, l}.

Finally, two multi-resolution representations of both views can
be produced by iterating the same decomposition strategy on
their approximation subbands.

We should note that the main feature of this joint wavelet
decomposition compared to a standard LS-based WT concerns
the prediction stage. For instance, while only intra prediction
and update filters are used in conventional LS, the VLS is
designed by adding an hybrid prediction step which aims at
exploiting simultaneously the intra and inter-view redundan-
cies. Indeed, in order to generate the final detail coefficients
of the right image, our decomposition uses the corresponding
left view pixels (I

(l)
j (m, 2n+1+z

(r)
j (m, 2n+1)−k))

k∈P(r,l)
j

(using the disparity compensation (DC) process), in addition to
the surrounding pixels of the right view sample to be predicted
I

(r)
j (m, 2n+ 1).

Moreover, compared to VLS-based decomposition which
was firstly developed for stereo image coding purpose [26], the
current analysis structure, shown in Fig. 1, presents one main
difference. Indeed, in stereo image compression applications,
and in order to guarantee their decoding, only one view
is encoded with such joint decomposition and the second
view (known as reference image) is encoded in intra mode
(i.e. independently of the other view) using a classical LS.
However, since such decoding constraint is not required in the
context of stereo endoscopic image enhancement, the joint
wavelet decomposition developed in this work is applied in
a symmetric way to both left and right images to exploit
efficiently the intra and inter-view redundancies, as shown in
Fig. 1 and explained in its caption.

Finally, it is important to note that such symmetric VLS
decomposition has been recently investigated in [37] to design
a statistical-based no reference stereo image quality assess-
ment method. However, this joint decomposition has not been
previously exploited for enhancement. While a dense and
smooth disparity map is required and used in [37] for relevant
statistical depth feature extraction purpose, the current devel-
oped joint wavelet decomposition can be simply performed
using a standard block-matching technique to capture the
matching pixels and enhance images. Once the stereo images
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are transformed and enhanced, more accurate disparity maps
that preserve edges should be estimated from the new data for
the 3D reconstruction step as performed in [5].

III. PROPOSED JOINT ENHANCEMENT TECHNIQUES

A. Background and Motivation

As mentioned in Section II, wavelets have been found to
be an efficient tool for image enhancement. In this context,
the main idea consists in modifying the approximation and/or
detail coefficients by applying a given transformation [24],
[27], [28]. For instance, in [27], [28], and for a given image
I with approximation subband Ij and detail subbands I

(o)
j

where o ∈ {HL,LH,HH}, the authors propose first to apply
the following transformation to the approximation coefficients:

Îj(m,n) = κj(m,n).Ij(m,n) (5)

where Îj is the enhanced approximation subband, κj(m,n) =
f(Ij(m,n)) is a scale factor and f(·) is a mapping function
which aims to adjust local image intensity.
Then, based on the fact that the detail coefficients contain
generally small number of significant coefficients, which rep-
resent the edge structure, and large number of non-significant
coefficients which can be considered as noise, the different
details subbands I(o)

j are transformed as follows:

Î
(o)
j (m,n) = κj(m,n).κ

(o)
j (m,n).λ

(o)
j (m,n).I

(o)
j (m,n) (6)

where Î(o)
j is the enhanced detail subband, κ(o)

j is a locality
factor obtained from detail coefficients using the mapping
function f (i.e κ(o)

j = f(I
(o)
j (m,n))), and λ(o)

j is a shrinkage
factor. According to [27], [28], it should be noted that the term
κj is re-used based on the fact that the energy of the detail
coefficients is proportional to the intensity level associated to
the approximation coefficients. The term κ

(o)
j contributes to

the preservation of edge information, and the shrinkage factor
λ

(o)
j is used for noise removal. The latter (i.e. λ(o)

j ) can be
computed by employing the technique presented in [38].

As it has been already shown in [28], the above wavelet-
based processing techniques have been found to be very
efficient for image enhancement. For this reason, we propose
in this paper to enhance the wavelet coefficients of the stereo
endoscopic images by first resorting to similar processing tech-
niques. Since this enhancement technique has been designed
for single (i.e mono-view) images, a straightforward solution
will consist in applying these processing strategies separately
on each view. However, such enhancement method is not so
efficient since it neglects the redundancies existing between
the left and right views and intrinsic characteristics of stereo
images, namely depth data. Therefore, we design an additional
joint processing stage that further exploits the binocular vision
features and depth information.
To this respect, two techniques are proposed in this paper. In
the first one, referred to as Adaptive Inter-View Processing
(AIVP), an energy-based combination model is only applied
on the approximation subbands of both views while the detail
subbands are kept unchanged using the intra subband mapping

as performed in [28]. In the second one, referred to as Fully
Adaptive Inter-View Processing (FAIVP), we propose to add
a contrast-based model to further combine the detail subbands
of both views. As it will be shown later, one main advantage of
the second method is the design of a local adaptive weighting
strategy. The flowcharts of the proposed enhancement methods
are shown in Figs. 2 and 3, and they will be described in the
following.
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Fig. 2: The proposed adaptive inter-view processing technique.
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B. Adaptive Inter-View Processing Technique

Given stereo endoscopic images, a disparity map is first
estimated and the joint wavelet decomposition is performed
on left and right views over J resolution levels. Thus, we
obtain one approximation subband at the coarsest scale I(v)

J
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and 3J detail subbands
(
I

(o,v)
j

)
o∈{HL,LH,HH}

j∈{1,...,J}
for each view

v ∈ {l, r}.
Then, wavelet-based mapping techniques, similar to those
given in Section III-A, are applied to the generated approxi-
mation and detail subbands yielding the intermediate enhanced
wavelet subbands of both views. The latter, called also pre-
enhanced wavelet subbands, are expressed as follows:

∀ v ∈ {l, r}, ∀ o ∈ {HL,LH,HH},
Î

(v)
J (m,n) = κ

(v)
J (m,n).I

(v)
J (m,n)

Î
(o,v)
j (m,n) = κ

(v)
J (m,n).κ

(o,v)
j (m,n).λ

(o,v)
j (m,n).

I
(o,v)
j (m,n)

(7)

where κ(v)
J , κ(o,v)

j , and λ
(o,v)
j are weighting terms similar to

those used in Eqs. (5) and (6). Finally, the pre-enhanced left
and right images are combined by exploiting the binocular
vision property to generate the final enhanced stereo images.
Indeed, since the approximation coefficients correspond to a
good approximation of the original image at a coarsest scale,
we propose in our first approach to combine only the approx-
imation subbands of both views while keeping unchanged the
other pre-enhanced detail subbands. More precisely, the new
enhanced approximation subbands of the right image Ī(r)

J and
the left one Ī(l)

J are given by:
Ī

(r)
J (m,n) = w

(r)
J (m,n).Î

(r)
J (m,n) +

w
(l)
J (m,n).Î

(l)
J (m,n+ z

(r)
J )

Ī
(l)
J (m,n) = w

(l)
J (m,n).Î

(l)
J (m,n) +

w
(r)
J (m,n).Î

(r)
J (m,n− z(l)

J )

(8)

where w
(r)
J and w

(l)
J are the weighting coefficients of the

corresponding right and left approximation subbands. Note
that the dependence on (m,n) of (z

(r)
J , z

(l)
J ) has been dropped

to simplify the notation.
One simple way to define these weights consists in taking an
average combination of both views (i.e w

(r)
J = w

(l)
J = 1

2 ).
However, this choice is not efficient since it is not correlated
with the binocular perception, especially in a rivalry situa-
tion when the two views have different qualities. For this
reason, we propose to resort to a local adaptive weighting
combination model that is correlated with the HVS binocular
vision features. Indeed, according to Levelt’s study [31] and
others investigations on binocular vision/rivalry [39], the linear
weighting model given by Eq. (8) is equivalent to that used
for simulating a cyclopean image , which is formed within the
observer’s visual cortex when two retinal views are captured
by the left and right eyes [29], [40]. It is important to note
that the use of the cyclopean image model has already been
investigated for the quality assessment of stereo images [41],
[42]. However, to the best of our knowledge, this paper
presents the first research work which exploits such model
for the enhancement of stereo images.
To set the stereo weights in a way simulating the visual
stimulus strength, we used the gain control theory model [40],

which is one of the latest successful theories for modeling
the cyclopean perception. Since our approach operates in
the wavelet transform domain, we have employed an energy
weighted summation model to synthesize the final enhanced
approximation subbands Ī(r)

J and Ī(l)
J . Therefore, the weight-

ing terms w
(r)
J and w

(l)
J used in Eq. (8), are computed as

follows:

∀ v ∈ {l, r}, ∀ (m,n) ∈ ΩJ ,

w
(v)
J (m,n) =

E
(v)
J

E(l) + E(r)
, (9)

where ΩJ represents the coordinates set of the approximation
coefficients I(v)

J , and E(v)
J and E(v) are respectively the energy

of the approximation and all the wavelet subbands given by:

∀ v ∈ {l, r},

E
(v)
J =

∑
(m,n)∈ΩJ

|I(v)
J (m,n)|2

E(v) = E
(v)
J +

J∑
j=1

∑
o∈{HL,LH,HH}

∑
(m,n)∈Ωj

|I(o,v)
j (m,n)|2

(10)

with Ωj represents the coordinates set of the detail subband
coefficients I

(o,v)
j . Thus, increased energy of either (right

and left) stimulus reduces the contribution of the other view
when there is binocular rivalry. The steps of the proposed
enhancement method are summarized in Fig. 2.

C. Fully Adaptive Inter-View Processing Technique

As mentioned in the previous section, the joint processing
of the left and right images has been only performed on
the approximation subbands of both views while their detail
subbands have been separately enhanced using Eq. (6). In the
second approach, we propose to add also an efficient joint
processing technique of the detail subbands yielding a fully
adaptive method. The block diagram of this method is shown
in Fig. 3. More precisely, similarly to the combination model
used with the approximation subbands, the new enhanced
detail subbands of the right image Ī(o,r)

j and the left one Ī(o,l)
j

are obtained as follows:

∀ o ∈ {HL,LH,HH}, ∀ j ∈ {1, . . . , J},
Ī

(o,r)
j (m,n) = w

(o,r)
j (m,n).Î

(o,r)
j (m,n) +

w
(o,l)
j (m,n).Î

(o,l)
j (m,n+ z

(r)
j )

Ī
(o,l)
j (m,n) = w

(o,l)
j (m,n).Î

(o,l)
j (m,n) +

w
(o,r)
j (m,n).Î

(o,r)
j (m,n− z(l)

j )

(11)

where w(o,r)
j and w

(o,l)
j are the weights used with the right

and left detail subbands.
Unlike the weights used with the approximation subbands, we
propose to set those associated to the detail subbands by using
a perceptual measure of the image. More precisely, based
on the observation that human contrast sensitivity is highly
dependent on spatial frequency [43], we adopt a local contrast
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weighted summation model to synthesize the final enhanced
details subbands Ī(o,r)

j and Ī(o,l)
j . Thus the resulting weighting

terms are computed as follows:

∀ o ∈ {HL,LH,HH}, ∀ j ∈ {1, . . . , J},
w

(o,r)
j (m,n) =

C
(o,r)
j (m,n)

C
(o,r)
j (m,n)+C

(o,l)
j (m,n+z

(l)
j )

w
(o,l)
j (m,n) =

C
(o,l)
j (m,n)

C
(o,l)
j (m,n)+C

(o,r)
j (m,n−z(r)

j )

(12)

where C(o,v)
j is the contrast measure in the wavelet transform

domain [44], [25]. While different definitions of contrast have
been proposed in the literature, we retain the local band-
limited contrast measure, developed by Peli [43], which has
the advantage of assigning a contrast value to each pixel of
each frequency band of the image. The latter is given by:

C
(o,v)
j (m,n) =

I
(o)
j (m,n)

I
(v)
J (d m

2J−j e, d n
2J−j e)

(13)

with d·e is the rounding up operator. Note that this operator
is applied to the coordinates of the approximation coefficients
since the size of I(v)

J is equal to that of I(o,v)
j divided by

(2J−j × 2J−j).
It is worth pointing out that, contrary to the previous energy-
based weighting model where a similar weight is applied to
all the approximation coefficients as shown in Eq. (9), the
contrast-based weighting model uses a local measure adapted
to each pixel of the stereo image.

IV. EXPERIMENTAL RESULTS

A. Experimental setup and datasets

The experimental tests are carried out on 4 various datasets
containing a total number of 120 SEI. The main characteristics
of these datasets are summarized in Table I and some samples
are illustrated in Fig. 4. Indeed, the first dataset is composed
of 20 stereo pairs extracted from five stereo ex-vivo video
sequences of a pig liver. The choice of the pig can be explained
by the fact that its liver has similar structures and tissue
textures to the human liver. The acquisition is performed in
an operating room in the The Intervention Center (IVS) at
Oslo University Hospital with a stereo laparoscope used in the
laparoscopic surgical routine work by IVS surgeons. The liver
was captured in illumination conditions simulating the dark
closed endoscopic environment and with clinical conditions
that are similar to a real laparoscopic liver resection surgery
in terms of camera settings. The laparoscope was moved
according to different angles and zooming scales, simulating
the navigation of the surgeons and leading to different image
contents with some imperfections such as blur, dark regions
and specular reflections. The 3 other datasets contain a total
number of 100 SEI, taken from different in-vivo sequences
of the Hamlyn Centre laparoscopic/endoscopic dataset1 [45],
[46]. The SEI are categorized into three main classes: Vessels,
Liver and Heart. Therefore, using different organs with various
tissue structures (fine details, homogeneous/texture regions)

1Hamlyn.doc.ic.ac.uk/vision/

and acquisition settings (scale change, rotation, motion of the
laparoscope and/or patient) allow us to increase the diversity
of our experimental data.

B. Comparison Methods

In order to evaluate the performance of the proposed joint
enhancement approaches, we compare them to the following
state-of-the-art methods developed by: Selka et al. [16], Attar
et al. [17], Hai et al. [18], Sdiri et al. [19], Subedar and Karam
[22], Hachicha et al. [23], and Cho et al. [28]. The main ideas
behind these enhancement techniques have been addressed in
Section I. For instance, let us recall that, in [16], [17], the
methods are developed for single (i.e one view) endoscopic
images, and so, they have been separately applied to the left
and right images in this work. The methods designed in [18],
[19] (rep. [22], [23]) correspond to stereo endoscopic (resp.
natural) images. The wavelet-based approach developed in
[28] is for 2D images, and so, it has been applied to each
view of the SEI. It should be noted here that our first (resp.
second) approach based on VLS followed by an adaptive (resp.
fully adaptive) inter-view processing are performed using two
resolution levels (i.e J = 2), and will be designated in the
following by VLS-AIVP and VLS-FAIVP, respectively.

C. Objective Quality Assessment Metrics

To assess the contrast enhancement methods, the proposed
and baseline comparison ones are evaluated using metrics
based on local and global image properties such as edginess
information, image intensity and local contrast. It is worth
pointing out that the stereoscopic image quality assessment for
contrast enhancement is not well investigated in the literature.
Indeed, only few works have been developed relying mainly
on subjective evaluations which are generally expensive and
time consuming [47], [48]. Therefore, due to the lack of stereo
contrast enhancement evaluation (CEE) metrics, the following
conventional 2D-CEE measures are used: Region Contrast
(RC) [25], Edge Content (EC) [49], Absolute Measure of
Enhancement (AME) [50], Second Derivative like Measure of
Enhancement (SDME) [51], the Image Enhancement Metric
(IEM) [52], Visual Information Fidelity (VIF) [53] and Mean
Brightness (MB) [28]. While MB, AME and SDME measure
the image intensity adjustment, RC, EC and IEM evaluate
the local contrast and indicate the ability of detecting local
image features which is a key step for different subsequent
processing tasks like 3D reconstruction and tracking. MB
is an indicator about the average image intensity level that
shows whether the image is too bright or too dark. A good
MB should be close to the mid-intensity range defined as the
mean of the maximum and minimum intensity values. AME
combines the Weber’s contrast law and Michelson’s contrast
law modulation to simulate the HVS appreciation of the image
contrast enhancement. The final score is estimated based on an
average value of the relation between the sum and spread of
luminance intensities within each bloc. In the same way, the
SDME incorporates the center pixel within each block in the
computation of the visibility operator to reduce the sensitivity
to noise. Both RC and EC metrics are based on local image

http://hamlyn.doc.ic.ac.uk/vision/
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intensity variations computed either by Sobel operator or any
other gradient-based filter depending on the level of edges to
be detected and the sensitivity to noise. Based on the idea that
variations in contrast/sharpness reflect the changes between a
given pixel and its neighbors, the IEM consists in comparing
the absolute intra-bloc differences between the initial and the
enhanced image. Inspired by HVS features, the VIF predicts
the perceived quality of contrast enhanced images using an
image information measure that quantifies an estimation of the
information extracted by the brain when observing an image.
Compared with other image quality assessment metrics, VIF
is reported to be consistent and correlated with the subjective
evaluation of the HVS [53], [54]. Instead of using the spatial
domain implementation of the VIF, we used the wavelet-based
version which has been found to yield better performance
[53]. In case the enhancement processing does not add or
amplify noise, the obtained VIF score is larger than 1, which
implies a superior perceptible quality compared to the original
image. Note that these metrics are applied on the left and right
enhanced views, and their average values correspond to the
final objectives scores. The mathematical expressions of all
these quality measures detailed above can be found in [54].
Higher scores of RC, EC, IEM and VIF, and lower scores of
AME and SDME, show good performance.

D. Results
The performance of the different enhancement methods for

a sample SEI as well as the average scores on all images are
given in Tables II-V and Tables VI-IX, for the IVS and Hamlyn
Centre datasets respectively. For each dataset, the proposed
methods are compared separately in two different tables with
2D and 3D enhancement techniques. Note that the first line of
each table, denoted by ”Original”, indicate the initial scores
computed on the input data before the enhancement step.
Moreover, to easily identify the efficient enhancement meth-
ods, the objective quality scores of the two best methods have
been highlighted in bold. From these tables, it can be firstly
noticed that the endoscopic image enhancement methods [16],
[17] as well as the 3D enhancement approach [22] often
outperform the other state-of-the-art methods. Moreover, our
first proposed approach ”VLS-AIVP” relying on the stereo
approximation subbands processing leads to better results,
especially for the IVS liver dataset which is characterized by
large homogeneous liver structures and more drastic dynamic
illumination conditions. Finally, thanks to the fully adaptive
inter-view processing technique ”VLS-FAIVP”, a significant
gain is achieved for both datasets images in terms of image
intensity, contrast and edginess information. The gain is more
significant for the Hamlyn dataset SEI in terms of sharpness
and edge information (RC and EC metrics) since these images
contain much more structure details with regular/micro edges
representing fine veins and vessels. Indeed, the stereo high-
frequency subbands processing of the proposed ”VLS-FAIVP”
technique enhances the images details and local contrast,
which exhibits the subtle tissues structures and fine vessels.

In addition to this quantitative evaluation, the visual quality
of the processed images shows the efficiency of the proposed

methods. Figs. 5 and 6 illustrate the original and enhanced
right views for two SEI taken from IVS and Hamlyn Cen-
tre datasets, respectively. It can be observed that the 2D
endoscopic image enhancement methods [16], [17] result in
an over-enhancement illustrated by both over brightened and
darkened regions despite better exposure of the edges in some
other areas. Furthermore, the 3D endoscopic enhancement
methods [18], [19] yield better results without efficiently en-
hancing the small image details. By using our approach ”VLS-
FAIVP”, the obtained images show better image luminance
and contrast while improving and emphasizing the local image
details such as the liver edges of the IVS dataset and the fine
textures and structures of the Hamlyn dataset.

Moreover, in order to better show the benefits of the
different blocks related to the proposed approaches, we will
focus now on the following comparisons. First, our methods
will be also evaluated by modifying the wavelet decomposition
step. Indeed, instead of using a joint wavelet transform based
on VLS, a standard 2D 5/3 Lifting Scheme (LS) is used by
applying it separately to each view of the stereo pairs. These
methods are denoted by ”LS-AIVP” and ”LS-FAIVP”. Note
that the results obtained with the wavelet-based intra-view
processing technique [28] allow us to show the interest of
exploiting both the depth and binocular stereo information by
resorting to an inter-view processing. Tables X and XI provide
the performance of these latter methods. Thus, it can be
seen that our approaches outperform significantly the method
developed by Cho et al. [28] which confirms the benefits
of the proposed inter-view processing techniques compared
to a simple intra-view processing. Further improvements are
also achieved using the joint wavelet decomposition (VLS)
compared to a conventional 2D LS-based one. Figs. 7 and
8 illustrate the enhanced images obtained by our approaches
”VLS-AIVP” and ”VLS-FAIVP” as well as that of Cho et
al. [28]. Compared to the latter, it can be noticed that the
”VLS-AIVP” leads to better visual image quality in terms of
local contrast and image intensity. Indeed, the dark regions
are reduced and the liver structures and edges are sharper
and clearer. The images are further enhanced by resorting to
an inter-view processing technique fully adapted to the local
characteristics and activity of the stereo endoscopic images.

Finally, we propose to evaluate the impact of the proposed
method VLS-FAIVP on two typical subsequent processing
steps. The first one concerns the feature matching which is cru-
cial in many robotic-assisted MIS applications [55] and aims to
find the image similarities between the two views. The second
one is the 3D organ surface reconstruction step. To this end,
we have used the Hierarchical Multi-Affine (HMA) Feature-
Matching Toolbox [55] and the dense surface reconstruction
algorithm developed recently for stereo endoscopic images [5].
The results, obtained with the original SEI and the enhanced
versions using different methods, are shown in Fig. 9. More
precisely, the original and enhanced right views are displayed
in the first column of Fig. 9, while the corresponding feature
matching results between the left and right views as well as
their 3D reconstructed organs are illustrated in the second and
third columns, respectively. It can be firstly observed that using
an enhancement step improves clearly the matching process



8

TABLE I: Datasets description. 1 Taken from Hamlyn Centre dataset [45], 2 Taken from the dataset of The Intervention Center
(IVS) at Oslo University Hospital.

Dataset Type Number of SEI Size Acquisition settings Tissue features

Vessels1 in-vivo 10 640× 480 Scale variation (laparoscope navigation)
10 640× 480 Orientation variation (laparoscope rotation) Fine details, edges,

Liver1 in-vivo 20 360× 288 Static laparoscope and liver and micro edges
20 640× 480 deformation due to respiration

Heart in-vivo 20 360× 288 Heart phantom deformation due to Medium homogeneous
Phantom1 20 360× 288 cardiac motion with different angles region, few edges

Liver2 ex-vivo 20 1080× 1728 Static liver and orientatin/scale variation Wide homogeneous
due to laparoscope rotation/navigation regions with edges

TABLE II: Performance comparison of the proposed methods with 2D enhancement techniques for SEI-1 of the IVS dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Original 122.87 60.43 134.11 65.49 5.97 - 1

VLS-AIVP 134.44 50.35 105.87 91.69 33.10 2.52 1.31
VLS-FAIVP 128.54 48.14 98.40 110.33 46.27 3.03 1.52

Cho et al. [28] 165.42 61.26 116.82 77.63 7.89 1.26 1.11
Selka et al. [16] 98.87 51.94 118.11 81.27 5.58 1.25 1.24
Attar et al. [17] 122.42 56.84 137.97 88.30 12.39 1.27 1.17

TABLE III: Average scores of the proposed methods compared with 2D enhancement techniques for the IVS dataset images.

Method/Measure MB AME SDME EC RC IEM VIF
VLS-AIVP 121.70 40.33 91.13 81.19 20.41 1.97 1.39
VLS-FAIVP 123.73 38.59 88.60 96.53 23.81 2.19 1.47

Cho et al. [28] 108.23 48.42 112.95 52.17 5.51 0.89 1.14
Selka et al. [16] 78.37 50.41 92.46 64.35 4.74 1.11 1.33
Attar et al. [17] 102.02 47.71 108.87 70.24 10.05 1.13 1.26

TABLE IV: Performance comparison of the proposed methods with stereo enhancement techniques for SEI-1 of the IVS dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Original 122.87 60.43 134.11 65.49 5.97 - 1

VLS-AIVP 134.44 50.35 105.87 91.69 33.10 2.52 1.31
VLS-FAIVP 128.54 48.14 98.40 110.33 46.27 3.03 1.52

Hai et al. [18] 115.11 54.04 118.86 80.58 8.47 1.29 1.17
Sdiri et al. [19] 122.86 53.78 120.20 86.97 11.00 1.52 1.19

Subedar and Karam [22] 123.10 50.79 118.18 88.33 25.31 2.01 1.16
Hachicha et al. [23] 122.31 56.66 122.71 79.06 7.74 1.26 1.14

TABLE V: Average scores of the proposed methods compared with stereo enhancement techniques for the IVS dataset.

Method/Measure MB AME SDME EC RC IEM VIF
VLS-AIVP 123.39 43.89 94.60 84.95 24.13 2.10 1.34
VLS-FAIVP 132.47 36.96 85.97 98.16 28.49 2.66 1.68

Hai et al. [18] 109.98 55.49 105.81 67.15 17.43 1.71 1.19
Sdiri et al. [19] 101.80 57.66 106.68 66.75 16.40 1.67 1.16

Subedar and Karam [22] 114.82 51.13 101.92 70.64 19.10 1.97 1.22
Hachicha et al. [23] 97.18 63.71 110.04 60.28 14.10 1.51 1.11

TABLE VI: Performance comparison of the proposed methods with 2D enhancement techniques for SEI-1 of the Hamlyn
Centre dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Original 100.56 57.22 137.83 64.95 42.75 - 1

VLS-AIVP 123.08 50.35 101.54 99.98 92.20 1.98 1.19
VLS-FAIVP 130.54 48.14 96.04 119.25 126.27 2.65 1.28

Cho et al. [28] 150.58 59.90 112.38 84.62 67.65 1.44 1.09
Selka et al. [16] 98.41 54.04 107.12 70.63 40.01 1.03 1.04
Attar et al. [17] 117.58 50.41 147.67 88.77 45.07 1.05 1.06
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TABLE VII: Average scores of the proposed methods compared with 2D enhancement methods for the Hamlyn Centre dataset.

Method/Measure MB AME SDME EC RC IEM VIF
VLS-AIVP 126.71 42.78 99.40 99.31 66.36 1.87 1.32
VLS-FAIVP 128.35 40.44 93.22 119.81 87.03 2.59 1.48

Cho et al. [28] 130.41 60.20 116.20 71.94 29.83 0.88 1.09
Selka et al. [16] 93.53 45.32 122.59 84.56 22.53 1.02 1.07
Attar et al. [17] 127.54 47.01 135.32 110.99 45.46 1.21 1.13

TABLE VIII: Performance of the proposed and conventional stereo enhancement techniques for SEI-1 of the Hamlyn dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Original 100.56 57.22 137.83 64.95 42.75 - 1

VLS-AIVP 123.08 50.35 101.54 99.98 92.20 1.98 1.19
VLS-FAIVP 130.54 48.14 96.04 119.25 126.27 2.65 1.28

Hai et al. [18] 103.10 53.63 127.02 74.64 42.71 1.19 1.09
Sdiri et al. [19] 100.47 53.26 129.76 82.20 68.12 1.45 1.11

Subedar and Karam [22] 100.66 52.18 110.50 77.05 64.66 1.73 1.13
Hachicha et al. [23] 100.53 56.91 136.91 65.96 43.23 1.02 1.03

TABLE IX: Average scores of the proposed methods compared with stereo enhancement methods for the Hamlyn dataset.

Method/Measure MB AME SDME EC RC IEM VIF
VLS-AIVP 134.92 36.41 86.77 149.32 68.83 2.04 1.41
VLS-FAIVP 122.66 32.82 80.04 162.15 76.98 2.65 1.54

Hai et al. [18] 86.39 46.65 95.47 123.39 62.05 1.72 1.26
Sdiri et al. [19] 84.82 48.75 99.11 122.61 59.72 1.66 1.25

Subedar and Karam [22] 89.24 39.83 92.94 131.18 66.12 1.89 1.29
Hachicha et al. [23] 78.81 50.96 102.70 120.35 44.25 1.51 1.18

TABLE X: Average scores of LS and VLS-based enhancement methods for the IVS dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Cho et al. [28] 172.83 69.32 119.44 73.39 16.77 1.38 1.13

LS-AIVP 144.65 52.71 107.28 79.66 20.68 1.81 1.26
VLS-AIVP 123.39 43.89 94.60 84.95 24.13 2.10 1.34
LS-FAIVP 137.12 40.50 92.35 89.59 26.23 2.44 1.52

VLS-FAIVP 132.47 36.96 85.97 98.16 28.49 2.66 1.68

TABLE XI: Average scores of LS and VLS-based enhancement methods for the Hamlyn Centre dataset.

Method/Measure MB AME SDME EC RC IEM VIF
Cho et al. [28] 159.76 63.62 108.51 97.70 54.86 1.66 1.17

LS-AIVP 147.51 47.14 95.26 134.85 62.12 1.90 1.28
VLS-AIVP 134.92 36.41 86.77 149.32 68.83 2.04 1.41
LS-FAIVP 136.26 35.62 84.48 155.36 73.84 2.36 1.44

VLS-FAIVP 122.66 32.82 80.04 162.15 76.98 2.65 1.54

by increasing the number of matched features. Moreover, the
stereo pairs enhanced with our proposed method result in
more matched features that are well distributed around almost
the entire organ surface especially in edges and textures. In
terms of 3D organ reconstruction, our method yields larger
reconstructed organ surfaces that present better details with
sharper edges and textures, while reducing the staircasing
effect which appears on the right side of the liver test image.
These improvements are expected since having dense well
distributed inter-view feature matching should result in a better
reconstructed 3D shape.

Before concluding the paper, we evaluate the proposed en-
hancement methods in terms of execution time. Indeed, using a
computer with an Intel Core i7 processor (2.3 GHz), a matlab
implementation and a test image with the highest spatial
resolution in our dataset (1080 × 1728), the FAIVP (resp.
AIVP) technique takes 0.46 (resp. 0.31) seconds while the
VLS decomposition takes 2.5 seconds. Note that this execution
time can be further reduced since these two steps could be

efficiently implemented on parallel computing architectures.

(a) SEI-1 (Liver-IVS) (b) SEI-2 (Liver-Hamlyn)

(c) SEI-1 (Vessels-Hamlyn) (d) SEI-3 (Heart-Hamlyn)

Fig. 4: Sample right views taken from the IVS and Hamlyn
Centre datasets.
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(a) Original image (b) VLS-FAIVP

(c) Hai et al. [18] (d) Sdiri et al. [19]

(e) Attar et al. [17] (f) Selka et al. [16]

Fig. 5: The enhanced right image for the SEI-1 of the IVS
dataset using different methods.

(a) Original image (b) VLS-FAIVP

(c) Hai et al. [18] (d) Sdiri et al. [19]

(e) Attar et al. [17] (f) Selka et al. [16]

Fig. 6: The enhanced right image for the SEI-1 of the Hamlyn
Centre dataset using different methods.

V. DISCUSSIONS AND CONCLUSION

In this paper, we have focused on the enhancement of stereo
endoscopic images. For this purpose, two efficient methods
have been designed in the wavelet transform domain. More
precisely, a joint stereo wavelet decomposition is used to

(a) Original image (b) Cho et al. [28]

(c) VLS-AIVP (d) VLS-FAIVP

Fig. 7: The enhanced right images for the SEI-1 of IVS dataset
using the two proposed inter-view processing techniques and
the intra-view processing one [28].

(a) Original image (b) Cho et al. [28]

(c) VLS-AIVP (d) VLS-FAIVP

Fig. 8: The enhanced right images for the SEI-1 of Hamlyn
Centre dataset using the two proposed inter-view processing
techniques and the intra-view processing one [28].

generate the wavelet subbands of the left and right views, and
two inter-view processing techniques are proposed to exploit
the depth information and binocular vision properties. The
obtained experimental results confirm the efficiency of the
proposed techniques compared to the state-of-the-art methods.
It should be noted that there are two main novelties in this
work. The first one aims to show the interest of the VLS-
based joint decomposition compared to a standard lifting
scheme-based decomposition for enhancing the left and right
endoscopic images. The second one is the design of a local
contrast-based binocular combination model fully adapted to
the image contents.

While the proposed methods are more performant than
state-of-the-art methods, some possible limitations should be
mentioned. First, the proposed enhancement methods seem
to increase in some cases the specular reflection components
as shown in the results obtained with the liver IVS dataset.
However, to overcome this drawback, one can firstly apply
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(a) 3D Liver reconstruction using original SEI.

(b) 3D Liver reconstruction using enhanced SEI with Subedar et Karam [22].

(c) 3D Liver reconstruction using enhanced SEI with Hai et al. [18].

(d) 3D Liver reconstruction using enhanced SEI with proposed VLS-FAIVP technique.

(e) 3D Heart reconstruction using original SEI.

(f) 3D Heart reconstruction using enhanced SEI with Subedar et Karam [22].

(g) 3D Heart reconstruction using enhanced SEI with Hai et al. [18].

(h) 3D Heart reconstruction using enhanced SEI with proposed VLS-FAIVP technique.

Fig. 9: Enhancement evaluation in terms of feature matching and 3D organ reconstruction. The first column illustrates the
original and enhanced right views of the input stereo images, the second column displays the corresponding feature matching
results using HMA toolbox [55], and the third column shows the 3D organ reconstruction results obtained using [5].
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an efficient pre-processing step to remove the specularities
before performing the enhancement step. Another solution is
to perform a selective image quality enhancement by using
a specular reflection detection algorithm [56]. Moreover, the
efficiency of the proposed inter-views processing techniques
may be affected in the case where the stereo endoscopic
images present large occlusions.

In future work, we aim at resorting to other combination
models involving perceptual weights and taking into account
the occlusion effect. Moreover, the inter-subband correlations
within each view could be further exploited in the joint en-
hancement process. Finally, the use of other mapping functions
to adjust the wavelet coefficients could be investigated.
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