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Can Atlas-Based Auto-Segmentation Ever Be
Perfect? Insights From Extreme Value Theory

Bas Schipaanboord, Djamal Boukerroui , Devis Peressutti, Johan van Soest, Tim Lustberg,
Timor Kadir, Andre Dekker, Wouter van Elmpt, and Mark Gooding

Abstract— Atlas-based segmentation is used in radio-
therapy planning to accelerate the delineation of organs at
risk (OARs). Atlas selection has been proposed to improve
the performance of segmentation, assuming that the more
similar the atlas is to the patient, the better the result.
It follows that the larger the database of atlases from which
to select, the better the results should be. This paper seeks
to estimate a clinically achievable expected performance
under this assumption. Assuming a perfect atlas selection,
an extreme value theory has been applied to estimate the
accuracy of single-atlas and multi-atlas segmentation given
a large database of atlases. For this purpose, clinical con-
tours of most common OARs on computed tomography of
the head and neck (N = 316) and thoracic (N = 280) cases
were used. This paper found that while for most organs,
perfect segmentation cannot be reasonably expected, auto-
contouring performance of a level corresponding to clinical
quality could be consistently expected given a database
of 5000 atlases under the assumption of perfect atlas selec-
tion.

Index Terms— Radiotherapy, extreme value theory,
atlas-based segmentation, auto-contouring.

I. INTRODUCTION

ACCURATE contours of organs at risk (OARs) are a
crucial link in radiotherapy treatment planning. In radio-

therapy, ionising radiation is used to treat tumour cells. The
aim of radiotherapy is to maximise dose to the tumour,
while sparing healthy OARs. Radiotherapy treatment planning
involves carefully made decisions to balance conflicting treat-
ment objectives. However, due to the physical nature of irra-
diation techniques it is unavoidable that dose is also delivered
to healthy OARs surrounding the tumour. It is therefore of
utmost importance that OAR segmentations are an accurate
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representation of the in-vivo morphology, such that the actual
delivered dose to the patient reflects the intended trade-offs
as carefully made during planning. Segmentation of OARs
and tumours is typically performed by clinical experts on a
3D anatomical image, normally Computed Tomography (CT).
However, manual segmentation of the structures of interest
is prone to inter- and intra-observer variability and is time
consuming. For instance, mean manual segmentation times
for Head & Neck cases ranging from 28.5 minutes [1] up
to 3 hours [2] are reported in literature. The large variation in
reported segmentation times relates to the number of structures
to be segmented, e.g. the number OARs or lymph-node
regions. Indeed, it is natural to assume that segmentation times
should increase with the increasing number and complexity
of structures that have to be segmented. As a consequence,
automatic contouring techniques have gained popularity in the
last decade to segment OARs, with atlas-based segmentation
being favoured in commercial systems [3].

While atlas-based segmentation has been shown to improve
consistency and reduce contouring time [3], little is known on
the upper bounds in clinically achievable performance by such
methods.

In this paper we seek to address this question of what auto-
contouring performance could be achieved if a very large, but
clinically realistic, size of atlas database was created. To do
so, the statistical technique of Extreme Value Theory (EVT) is
applied to estimate accuracy performance of single-atlas and
multi-atlas segmentation assuming a database of 5000 atlases.1

It is important to notice the difference between the atlas
database size used for atlas selection (i.e. the number of atlases
to select from) and the number of atlases used for multi-
atlas segmentation (i.e. the number of atlases that will be
combined to form one fused contour). The aim of this paper is
to investigate the convergence in segmentation performance for
increasing the size of the database of atlases to select from, and
not the number of atlases used for multi-atlas segmentation.

A. Atlas-Based Auto-Segmentation

Atlas-based segmentation uses prior knowledge provided
by previously contoured images (i.e. atlases) to automatically
segment OARs of a patient image [3], [5]. This is achieved by
calculating a spatial transformation, using deformable image

1This work builds on preliminary results presented at the ESTRO [4].
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Fig. 1. Overview of approaches to atlas-based segmentation (from [7]). Left: single-atlas only, Center-left: multi-atlas fusion, Center-right: single-atlas
selection, Right: multi-atlas selection and fusion.

TABLE I
OVERVIEW OF ATLAS SELECTION METHODS PROPOSED IN THE LITERATURE. TYPE INDICATES ONLINE OR OFFLINE SELECTION. ABBREVIATIONS

USED ARE: NORMALISED MUTUAL INFORMATION (NMI), MEAN ABSOLUTE DIFFERENCE (MAD), MANIFOLD DISTANCE (MD),
CROSS-CORRELATION (CC), DEFORMATION FIELD (DEF), DICE SIMILARITY COEFFICIENT (DSC), HISTOGRAM OF

ORIENTED GRADIENTS (HOG), DEFORMABLE IMAGE REGISTRATION (DIR), CONFOCAL MICROSCOPY (CM),
MAGNETIC RESONANCE (MR) AND COMPUTED TOMOGRAPHY (CT)

registration (DIR), which maps the atlas image coordinate
system to the patient image coordinate system. The atlas
contours are subsequently warped to the patient coordinate
system using the estimated spatial transformation. When only
one atlas is used to estimate the contours of the patient
image, the process is referred to as single-atlas segmentation
(Fig. 1, Left). In multi-atlas segmentation (Fig. 1, Center-left),
the registration and contour warping is repeated for several
atlases. Then, the warped contours from each atlas are fused
into a single contour. By averaging out random registration
errors, multi-atlas segmentation has been shown to outperform
single-atlas segmentation [3], [5], [6]. Furthermore, the quality
of the obtained contours depends not only on the DIR and
fusion algorithms used but also on the quality of the atlases
themselves.

Given a large database of atlases, the selection of a single
atlas or multiple atlases more suitable to segment the patient
image has been proposed as a way to improve segmentation
accuracy [5], [8] (Fig. 1, Center-right & Right). Selection may
also improve computational speed by using only a subset of
one or more atlases instead of the entire database. For this
reason, methods of atlas selection have been an active research
field in the past decade, as demonstrated by the methods
summarised in Table I.

Two main types of atlas selection methods exist in the liter-
ature [5]: i) offline methods do not use the patient image in the
selection process. ii) online methods make use of the current
patient image to search for the best atlas(es) for that patient.
Selection methods can differ in the type of the employed image
similarity measure (e.g. intensity- or deformation-based),
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Fig. 2. Example of threshold selection for the shape (a) and scale (b) parameter for the single-atlas segmentation of the oesophagus. A maximum
likelihood estimation of the PDF parameters is performed for a range of threshold values. For each threshold value, the estimated parameter and its
Confidence Interval, denoted by the circles and black vertical lines respectively, are plotted. The largest threshold value leading to small variation
of the estimate and the associated error of both the shape ξ and modified scale σu (modified by subtracting the shape multiplied by the threshold)
parameters is selected. The red dashed line represents the selected threshold at 0.7 DSC. The threshold selection was performed using the “tcplot”
function from the POT package in R [26].

on the region of interest considered (e.g. global or local) or the
utilized atlas strategy (e.g. exhaustive or template-based
search). Furthermore, variations in the registration model
(e.g. rigid, affine or deformable) or similarity representa-
tion (e.g. manifold representation) have been used. A thorough
review of atlas selection methods is given in [5]. A selection
of the representative methods proposed in the literature is
presented in Table I.

The assumption of atlas selection is that finding a more
similar atlas to the patient will result in improved auto-
segmentation performance. Can it be assumed, therefore, that
the larger the pool of atlases from which to choose from, the
better the match that can be achieved and correspondingly
the better the auto-segmentation results that can be obtained?
A priori it is expected that the set of atlases that will perform
very well for a given patient and a given OAR is small even
when the selection is performed on a very large pool of can-
didate atlases. In other words, observing a high segmentation
performance, specifically higher than a certain given threshold,
could be seen as a rare event. Consequently, Extreme Value
Theory can be applied to help answer the above question.

B. Extreme Value Theory
Extreme Value Theory (EVT) is a statistical tool used for

modeling the probability distribution of rare events. The theory
has been successfully applied in finance, engineering and
physics, with examples including the estimation of extreme
floods in hydrology, environmental loads in mechanical con-
structions or large insurance losses [25]. A first approach
of EVT is the “block maxima” method which leads to the
Generalized Extreme Value (GEV) distribution. A popular
alternative is Peaks-Over-Threshold (POT) method, aiming
at modeling the distribution of observed data exceedances
over a sufficiently high threshold. This is achieved by using
the Generalized Pareto Distribution (GPD), as a model for
the upper tail of the distribution. Both methods do not
enforce any assumption on the underlying Probability Density
Function (PDF), except that the observations are independent
and identically distributed (i.i.d.). Therefore, the theory is
particularly suited when no prior knowledge on the PDF of the

observed data is available, as is the case for the distribution of
segmentation performance measures. POT has the advantage
over the GEV of using the available data more efficiently. Note
however, the choice of the threshold is crucial, as it defines
which part of the data is considered to be extreme.

1) Fundamental POT: Let X1, · · · , Xn be a set of i.i.d.
random variables with a distribution function F and a right
endpoint xF = sup{x; F(x) < 1}. The function Fu(x) =
P{X − u ≤ x |X > u}, x ≥ 0 is called the distribution
function of exceedances above the threshold u < xF . Let
Y j = Xi −u for Xi > u, then under certain conditions, and for
a large enough threshold u, the distribution of the exceedances
(Y1, · · · , Ynu ), can be approximated by a GPD [25]:

Gξ,σu (y) = 1 −
(

1 + ξ
y

σu

)− 1
ξ

+
, y ≥ 0 (1)

where ξ and σu > 0 are respectively the shape and scale
parameters and z+ = max (z, 0). Given a fitted GPD model
(u, ξ, σu) to sample data, one can estimate a value, xM ,
that is expected to be exceeded once every M observations.
M is known as return period. xM is the return level and is
estimated as:

xM = u + σu

ξ

[
(M · P{X > u})ξ − 1

]
, (2)

where P{X > u} is approximated by the proportion of
observations exceeding u in the observed sample.

As mentioned earlier, a challenge in using the POT method
is the determination of a good threshold value u. As u
increases, the number of samples exceeding the threshold
decreases, impairing the fitting of a robust model. Conversely,
as u decreases the validity of assuming a GPD is questionable.
To overcome this issue, a maximum likelihood approach was
employed to estimate an optimal set of parameters (ξ, σu) for
a given threshold u. Then, standard errors for the estimated
parameters (ξ, σu) were computed for varying values of u.
The threshold u was then chosen to be the highest value that
provided a robust estimate of the model parameters with low
standard error (Expected Fisher Information). For example,
in Figure 2 the estimated model parameters remain stable
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Fig. 3. Example of GPD model fitting for the Dice similarity coefficient
exceedances for single-atlas segmentations of the oesophagus.

up to a threshold value of 0.7 DSC. Beyond this point the
standard error of the model parameters increases, impairing
the fit of a robust model. Therefore, a threshold of 0.7 DSC
was selected just before the fitted model becomes unstable.
In this way, a robust model is fitted while maintaining validity
to use a GPD to model the extremes. The threshold selection
was performed using the “tcplot” function from the Points
Over Threshold (POT) package in R [26].

2) Practical POT: In the context of atlas-based segmentation,
it is reasonable to assume that for a given OAR and a given
segmentation performance measure, the observed values are
sampled from the same distribution as long as the same atlas
based auto-contouring algorithm is used and the contouring
guidelines are also the same. Furthermore, the observations are
independent as they are obtained from different atlas-patient
pairs. Therefore, each segmentation performance measure for
a particular OAR can be treated as an observation, x . Fitting
a GPD model to the observed data, for every pair of OAR
and performance measure, will allow us to investigate the
expected extreme performance ( i.e. the return level, xM ) for a
particular database size (i.e. the return period, M), since this
estimates an expected performance once in M observations.
The threshold for each OAR and similarity measure is found
using the approach described above. Figure 2 illustrates the
DSC threshold selection for the single-atlas segmentation of
the oesophagus, where the estimates of the shape and scale
parameter become unstable beyond a DSC value of 0.7.
Figure 3 shows the corresponding GPD model fitting for
the values over this threshold for single-atlas segmentation.
Following, fitting of the GPD model, the return level is
then estimated for particular database size (return period),
as illustrated in Fig. 4.

In the subsequent section, we evaluate the potential per-
formance of both single-atlas (Section II-B) and multi-
atlas (Section II-C) segmentation using the POT for a clinically
achievable but nonetheless large database.

II. MATERIALS AND METHODS

A. Data
Two databases of clinically contoured cases were created for

use in these investigations. A head and neck (H N) database
comprised 316 CT patient cases, while the thoracic (L N)

Fig. 4. Example of return level xM as a function of the return period M.
Specifically, the plot shows the expected Dice score performance for
the single-atlas segmentation of the oesophagus function of the size of
atlas database conditional on having a perfect atlas selection algorithm.
The dashed curves show the 95% Confidence Interval (CI). Observe
for example that segmentation performance improves by 0.1 (DSC)
when the size of the database increases from 10 to 5,000 atlases. Note
however that the error on the estimation of the return level increases
with the return period. In other words, the larger the return period the
bigger the error on the estimation will be. The chosen return period
of 5000 atlases allows for a reasonably accurate estimation (95% CI <
0.03 DSC) of the segmentation performance. The asymptotic trend of the
curve gives insight on how the segmentation performance may evolve
with the increase of the database size.

TABLE II
LIST OF OAR CONSIDERED IN THIS STUDY FOR THE HN AND LN
DATABASES. THE SECOND AND FOURTH COLUMNS (#) REPORT

THE NUMBER OF OCCURRENCES FOR EACH OAR

database consisted of 280 CT patient cases. Both databases
were acquired at the Department of Radiation Oncology
MAASTRO (Maastricht, Netherlands), and consisted of the
CT with clinical contours created according to institutional
guidelines and reviewed by the treating radiation oncologists.
The clinical contours are used as a reference for segmen-
tation performance and referred to as reference contours
for the remainder of this study. The study was approved
by the local Institutional Review Board. The ranges of the
isotropic in-plane and through-plane CT image resolution were
of 0.803-1.602mm and 1-4mm, respectively. Table II reports
the OARs considered in this study for both H N and L N data-
bases. The number of occurrences for each OAR considered is
also reported in the table, since only the clinically necessary
organs had been contoured in each case. Investigations were
performed using only the OARs listed in the table, all other
less frequently contoured OARs and target volumes were not
considered.
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B. Performance Expectation for
Single-Atlas Segmentation

As input to EVT, samples from distributions of segmenta-
tion performance measures for each OAR are required. To gen-
erate this, exhaustive single-atlas segmentation was carried out
between each possible pair of case combinations within each
dataset. This evaluation corresponds to a leave-one-out cross-
validation, where each case image is in turn considered to be
the patient image and the remaining cases are considered as
candidate atlases for segmentation. Deformable image regis-
tration between atlases and test patients were performed using
methods available in commercial software (Workflow Box 1.4,
Mirada Medical Ltd., Oxford, UK).

The reference contours of the case treated as patient are then
employed to assess the accuracy of the segmentation. In this
study, Dice Similarity Coefficient (DSC) [27], Hausdorff
contour distance (HD) [28], average symmetric surface dis-
tance (AD) [29] and root-mean-square symmetric surface dis-
tance (RMSD) [29] between the estimated atlas-based contour
and the clinically delineated contour were used. This process
resulted in approximately 100,000 and 78,000 evaluations for
the H N and L N databases, respectively for each performance
measure. POT was applied to model extreme values of the
distribution of each pair of performance measure (i.e. DSC,
HD, AD, RMSD) and OAR.

A database of 5,000 atlases is used as representative of
a very large, yet clinically achievable, size for which to
consider expected performance. Around 600 lung cancer and
900 breast cancer patients are treated with radiotherapy at
Maastro Clinic each year. If all previously treated patients
from the preceding 5 years were used as thoracic atlases,
a databases of 7,500 could be build. However it is expected
that not all clinical cases would be suitable to be used as
an atlas. Thus 5,000 atlases was chosen as an ambitious,
but potentially achievable, size. Additionally, the error on
the estimation of the return level was taken into account.
The dashed curves in Figure 4 denote the 95% Confidence
Interval (CI) of the estimation. Note that the larger the chosen
return period the bigger the error on the estimation will be. The
chosen return period of 5000 atlases allows for a reasonably
accurate estimation (95% CI < 0.03 DSC) of the segmentation
performance. For estimation beyond 5000 atlases the 95% CI
becomes larger and will yield less meaningful results given
the dataset we had available.

C. Performance Expectation for
Multi-Atlas Segmentation

Ten atlases were used for multi-atlas segmentation,
as evidence shows that this represents a good trade-off
between computational efficiency and segmentation accuracy
[12], [30], [22]. However, the computational cost of evaluating
every possible combination of ten atlases for each case within
the databases becomes prohibitive (e.g. assuming 250 atlases,
there are

(249
10

) × 250 = 5.3 × 1019 combinations). Therefore,
the segmentation results were computed assuming perfect
selection of atlases had been performed in a greedy approach

from the single-atlases prior to multi-atlas segmentation for
the analysis of multi-atlas segmentation performance.

The 11 atlases providing the best single-atlas segmentation
performance according to DSC against the reference contours
for each OAR and each patient image in the database were
considered. Any other segmentation performance measure or a
combination of measures could have been utilized. Given
the set of best 11 performing atlases for each patient image
and OAR, all combinations of 10 atlases were employed
to perform contour fusion. Fused contours were generated
using a commercially available implementation of majority
voting (Workflow Box 1.4, Mirada Medical Ltd., Oxford, UK).
For each organ the voxel-wise contour labels are of a binary
form: a voxel either belongs to the organ or is located
outside of the organ. Considering each of the input contours,
the majority voting fusion method predicts binary contour
labels (organ/non-organ) on a voxel-based level. Selecting
the 11 best atlases and performing multi-atlas segmentation
with 11 different combinations of 10 atlases (11 choose 10)
provides 11 times more observations than solely performing
multi-atlas segmentation with the 10 best atlases. This allows
for sufficient observations to provide a performance estimate
with a reasonable accuracy. Thus, 11 multi-atlas segmentation
contours were generated for each OAR of each case in the
database, resulting in approximately 3,400 and 3,000 multi-
atlas segmentation results for each organ for the H N and L N
databases respectively. Although the results may not be strictly
independent because a given atlas may be used in multiple
segmentations, we assume that this effect is relatively small
and hence POT was applied to the multi-atlas segmentation
performance measures for each OAR, in the same manner as
for single-atlas segmentation. The impact of this assumption
is further discussed in Section IV-A.

III. RESULTS

A. Performance Expectation for
Single-Atlas Segmentation

In the head and neck region, the expected single-atlas
segmentation performance given 5000 atlases was in excess
of a DSC of 0.85 for all organs. For the thoracic region, all
organs had a DSC in excess of 0.80. The expected performance
for each organ and metric are reported in Table III, including
the threshold values (u) used to fit the GPD model.

For some OAR, the best observed performance scores
exceeded the estimated return level. It should be noted that
the number of observations before applying the threshold is
much larger than the return period used of 5000. For example,
the HN database consisted of 261 cases including the right
parotid contoured. Treating each case in turn as patient image
and the remaining cases as candidate atlases for segmentation
results in 261×260 = 67860 observations. For the estimate of
the return level, the probability that an observation exceeds the
threshold (P{X > u}) is approximated based on the complete
set of observations, see equation 2. Therefore, it is likely that
segmentation performance scores are observed exceeding the
calculated expected value for a return period of 5000 atlases.
Additionally, the estimated return level for the Points Over
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TABLE III
RESULTS OF EVT FOR SINGLE-ATLAS SEGMENTATION. FOR EACH OAR AND FOR EACH SEGMENTATION MEASURE, THE VALUES OF THE

THRESHOLD u, THE BEST SCORE ACHIEVED max{xi} AND THE ESTIMATED RETURN LEVEL xM ARE REPORTED. M = 5,000

TABLE IV
RESULTS OF EVT FOR MULTI-ATLAS SEGMENTATION. FOR EACH OAR AND FOR EACH SEGMENTATION MEASURE, THE VALUES OF THE

THRESHOLD u, THE BEST SCORE ACHIEVED max{xi} AND THE ESTIMATED RETURN LEVEL xM ARE REPORTED. M = 5,000

Threshold approach states the value that is expected to be
exceeded at least once every return period, but it does not
state by how much it might be exceeded.

B. Performance Expectation for Multi-Atlas Segmentation
The expected performance of multi-atlas segmentation given

a database of 5,000 atlases was consistently higher than for
single-atlas segmentation for all organs.

To provide an overview of the results, without directly com-
paring between different OARs, the expected segmentation
performance in the head and neck region was in excess of
a DSC of 0.90 for all organs. While for the thoracic region,
all organs had a DSC in excess of 0.85.

Full results are provided in the Table IV. Similarly to
single-atlas segmentation, the threshold values, the maximum
observed values and the estimated performance return levels
are reported for each segmentation performance measure and
each OAR.

IV. DISCUSSION

A. Validity of the Use of Extreme Value Theory
The assumption of i.i.d. samples is made when estimating

return values using POT. This must be examined.

The assumption of identical distribution may be questioned
in that the distribution of segmentation results of all atlases
for one patient might be considered a different distribution to
the results with another patient. This objection would be valid
if the EVT block maxima method were applied patient by
patient. However, using the POT method, all the patient-atlas
results are considered as a single distribution representative of
the patient population, and the points over the threshold are
drawn from this distribution. Furthermore, the same process,
i.e. registration and fusion, was employed to process all cases
in the databases.

Regarding the assumption of sample independence, it might
be argued that applying case A as an atlas to case B will
generate a similar result to applying case B to atlas A and
therefore not all results are independent. However, if the
sampling of atlas and patient cases is regarded as a ran-
dom sampling experiment, sampling with replacement means
that the first experiment does not influence the outcome of
the second and as such the two experiments are independent
samples which have similar results. To support this statement;
the EVT analysis has been repeated on the upper and lower
triangular part of the leave-one-out result matrix separately.
In this way, only the segmentation results in one direction
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were included for analysis, but this also cuts the number of
observations used to fit the model by half. It has been observed
that, in general, the estimated segmentation performance for
a database of 5000 atlases is very similar. The same can
be argued of the multi-atlas segmentation experiment, while
multiple results shared the same input cases, these cases are
sampled with replacement thus the samples are, although
similar, statistically independent.

B. Registration and Fusion Methods

The impact of choice of registration method and contour
fusion were not evaluated in this research, but their impact is
worth consideration.

Taking the concept of atlas selection to an (unrealistic)
extreme, it could be expected that the selected atlas would
be identical to the patient in the presence of perfect atlas
selection. In that scenario, there is no need for DIR. However,
in practice such an infinite database is not available, thus
DIR is required to correct for differences between the atlas
and the patient. While currently state-of-the-art registration
cannot fully correct for differences in inter-subject registration
tasks, it is known that the smaller the non-rigid deformation
required, the lower the error [31]. As the size of the database
increases and the difference between patient and atlas is
reduced, the impact of DIR is reduced. Thus, in the extreme
value scenario, the choice of DIR becomes less important.
It is reasonable to assume that replacing the DIR method
with another choice may have a small impact on the absolute
performance of auto-contouring, but that the general trend
regarding extreme performance will be similar.

The same argument applies to contour fusion methods.
While the absolute performance may vary slightly, the relative
impact on performance of various methods should be unaf-
fected, and the general finding in the extreme scenario should
remain the same. Nevertheless, the impact of various contour
fusion methods on the segmentation performance would be an
interesting experiment to perform in the future. In particular,
locally weighted patch-based approaches may yield valuable
contributions towards segmentation performance [32], [33].

C. Clinical Interpretation of Expected Contouring Quality

The extreme value theory experiments suggest that, while
improvement can be expected with an increasing database size,
“perfect” segmentation may not be achieved routinely i.e. DSC
scores of less than 1 and distances of greater than 0 found as
the expected performance.

A limitation of atlas-based segmentation techniques in gen-
eral that needs to be discussed is the use of the reference
contours. As there is no objective measure to test whether
the contours are an accurate representation of the in-vivo
morphology, it is necessary to note that the used reference
contours may vary from the ground truth. With regards to
intra- & inter-observer variability it has been shown that
variability in contouring decreases in the presence of well-
defined guidelines [34]. The clinical contours used for this
study have been made according to the institutional guidelines,
and all contours were of sufficient quality for clinical use.

It should also be noted that such quantitative measures are
blunt tools when considering clinical impact of segmentation
errors. Small segmentation errors in some locations may have
high clinical significance, while gross errors in other locations
may not affect a treatment plan at all.

The expected performance appears similar to reported inter-
observer variability of manual contouring [3], meaning that,
assuming perfect atlas selection, atlas-based segmentation can
provide accuracy performance at level similar to clinical
contouring.

However, the failure to achieve perfect segmentation cannot
be attributed to inter-observer variability, since this experiment
considers the best segmentation performance measures. Thus,
lower performance measures resulting from differences in
contouring are unlikely to contribute to exceedance values. It is
noted that lower performance is found for more anatomically
variable and poorly defined (on CT imaging) structures, such
as the parotids or the oesophagus. This suggests that the
“less than perfect” performance may be explained from the
variability of shapes observed between patients rather than
contouring variation. If this is the case, the results imply
that even a very large database would not be sufficient to
capture the anatomical variation within the population to
deliver “perfect” auto-contouring. This is suggested by the
almost linear to log-log scale dependence of the return level
function of the database size as can be seen on Fig. 4.

It is noted, that in the absence of perfect single-atlas auto-
contouring, multi-atlas fusion remains a useful algorithmic
improvement.

V. CONCLUSION

A method to estimate a clinically achievable expected
performance in atlas-based auto-contouring has been proposed
and applied to OARs in the head and neck and thoracic
body regions. This approach suggested that, in the presence of
perfect atlas selection, atlas-based auto-contouring could reach
clinical performance levels given a large database of atlases.
However, the range of variability between subjects means that
perfect segmentation is not achieved using an ambitious but
clinically achievable database size. As a consequence multi-
atlas fusion remains beneficial.
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