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Abstract

Pulmonary fissure detection in computed tomography (CT) is a critical component for automatic 

lobar segmentation. The majority of fissure detection methods use feature descriptors that are 

hand-crafted, low-level, and have local spatial extent. The design of such feature detectors is 

typically targeted towards normal fissure anatomy, yielding low sensitivity to weak and abnormal 

fissures that are common in clinical datasets. Furthermore, local features commonly suffer from 

low specificity, as the complex textures in the lung can be indistinguishable from the fissure when 

global context is not considered. We propose a supervised discriminative learning framework for 

simultaneous feature extraction and classification. The proposed framework, called FissureNet, is 

a coarse-to-fine cascade of two convolutional neural networks. The coarse-to-fine strategy 

alleviates the challenges associated with training a network to segment a thin structure that 

represents a small fraction of the image voxels. FissureNet was evaluated on a cohort of 3706 

subjects with inspiration and expiration 3DCT scans from the COPDGene clinical trial and a 

cohort of 20 subjects with 4DCT scans from a lung cancer clinical trial. On both datasets, 

FissureNet showed superior performance compared to a deep learning approach using the U-Net 

architecture and a Hessian-based fissure detection method in terms of area under the precision- 

recall curve (PR-AUC). The overall PR-AUC for FissureNet, U-Net, and Hessian on the 

COPDGene (lung cancer) dataset was 0.980 (0.966), 0.963 (0.937), and 0.158 (0.182), 

respectively. On a subset of 30 COPDGene scans, FissureNet was compared to a recently proposed 

advanced fissure detection method called derivative of sticks (DoS) and showed superior 

performance with a PR-AUC of 0.991 compared to 0.668 for DoS.
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I. INTRODUCTION

COMPUTED Tomography (CT) measures X-ray projections of the body at different angles 

to reconstruct a volumetric image of the anatomy. The contrast produced in a CT image 

reflects differences in X-ray photon attenuation, which in the lungs broadly reflects tissue 

density. Technological advancements in CT hardware have made it possible to scan the 

entire thoracic cavity in less than one second and reconstruct images with submillimeter 

spatial resolution. These properties make CT imaging the standard modality for imaging the 

intricate structures of the lung. Pulmonary CT is routinely used for diagnostics, treatment 

planning and delivery, and post-intervention evaluation.

CT images provide a rich source of information regarding the extent and spatial distribution 

of pulmonary disease. Computer-aided systems are essential for objective quantification and 

characterization of the complex information present in the image. Algorithms have been 

developed for detection and classification of nodules [1], texture classification of obstructive 

disease [2], pulmonary embolism detection [3], and quantitative airway analysis [4]. 

Although CT is an anatomical imaging modality, functional information about the lung may 

be derived from CT scans collected at different inspiration levels using image registration 

[5].

The human lungs are composed of five lobar compartments, which are separated 

anatomically by three lobar fissures. The left oblique (major) fissure (LOF) separates the 

lower and upper lobes of the left lung. The right oblique (major) fissure (ROF) separates the 

lower lobe from the middle and upper lobes, and the right horizontal (minor) fissure (RHF) 

separates the middle and upper lobes of the right lung. It is often of clinical interest to 

perform quantitative analysis within each lobe individually. Boueiz et al. recently identified 

subgroups of upper-lobe-predominant emphysema and lower-lobe-predominant emphysema 

and found associations with clinical and imaging outcomes [6]. Accurate knowledge of lobar 

anatomy is critical for successfully treating severe emphysema with bronchoscopic lung 

volume reduction [7]. Lobar information also serves as a precursor to other image analysis 

algorithms including image registration. Currents- and varifolds-based registration 

algorithms rely on accurate surface representations of the lungs, lobes, and vessel trees [8].

The lobes are generally anatomically independent, but incomplete fissures are possible and 

the detection of incompleteness may be clinically relevant. An individual’s unique lobar 

structure is likely to influence lung tissue mechanics and patterns of regional ventilation. 

Fissure incompleteness and the resulting collateral ventilation reduces the efficacy of 

endobronchial valves [9–11]. Gopelmann et al. recently showed that apical vs. basal 

emphysema distribution varies with fissure integrity [12]. However, Pu et al. found no 

relationship between fissure integrity and COPD severity [13].
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Natural variability in lobar anatomy has impeded the development of robust CT analysis 

methods for fissure and lobar segmentation. In cross-sectional CT images the fissures appear 

as thin surface-like structures (less than 1 mm thick) with higher image intensity than the 

surrounding lung parenchyma. This makes it difficult to identify fissures in low-dose or 

thick-slice CT scans. Fissure segmentation in pathological lungs is further complicated by 

diseases that locally resemble fissures, for example, bullous lung disease and fibrosis may 

locally resemble fissures.

Despite these challenges, many attempts have been made to design automatic methods for 

lobar segmentation [14–20]. The majority of these methods consist of four common 

modules: lung segmentation, fissure detection using local appearance information, removal 

of falsely identified fissures, and surface fitting to interpolate and/or extrapolate incomplete 

fissures. Doel et al. presented an extensive review on pulmonary lobe segmentation and 

proposed that these individual components should be independently developed and 

evaluated, opposed to comparing entire pipelines [21]. We follow this proposal and focus on 

the fissure detection in this work.

Several methods have been proposed for the detection of fissures in CT images. 

Eigenanalysis of the Hessian matrix is commonly used to exploit the characteristic property 

that plane-like structures have one direction with large curvature in the intensity profile and 

two orthogonal directions with vanishing intensity curvature [19, 22–25]. Zhang et al. used a 

ridgeness operator based on 2D multi-local level set extrinsic curvature measure with 

structure tensor analysis (MLSEC-ST) [14, 26]. Other works use knowledge of fissure 

appearance on 2D cross sections to design a filter bank of 2D line filters to detect fissure 

structures [27–29]. Traditional machine learning approaches use domain-specific hand-

crafted features and labeled training data to train a classifier. van Rikxoort et al. used a 

feature set including intensity, Gaussian derivatives, gradient, and Hessian eigenvalues with 

labeled training data to build a kNN classifier [30]. The authors showed superior 

performance compared to conventional unsupervised fissure detection. Wei et al. trained an 

artificial neural network using texture-derived image features. However, a limitation of this 

method is that it requires extensive post-processing and only works on major fissures [31].

These existing fissure detection methods are limited to local descriptors of fissure shape and 

appearance. Although local information is necessary for the precise localization of the 

fissure, we argue that it is not sufficient. Weak and incomplete fissures diminish local 

response, and pulmonary disease can locally resemble fissures. We hypothesize that 

knowledge of global and contextual information can improve specificity by providing 

guidance when the fissure signal is low or noisy. However, it is far more challenging to 

design abstract features, such as those that capture global context, compared to low-level 

features, such as edges. Additionally, hand-crafting features requires domain expertise, and 

generalizing such a framework to other tasks is not trivial. Alternatively, convolutional 

neural networks (ConvNets or CNNs) are capable of learning abstract features directly from 

training data.

Several ConvNet architectures have been proposed for semantic segmentation; the majority 

are symmetrical networks consisting of an encoder and corresponding decoder [32–34]. 
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Compared to a classification ConvNet which yields a single prediction for each class, a 

segmentation ConvNet produces a prediction map that has the same spatial resolution as the 

input. U-Net and SegNet are notable encoder-decoder networks, each of which incorporate 

skip connections between corresponding encoder and decoder elements to preserve precise 

localization information that would otherwise be lost with pooling operations [32, 33]. 

These symmetrical networks are memory intensive and cannot be trained on entire 

volumetric medical images due to current GPU memory limitations. The majority of 

ConvNet methods use either 2D slices or small image crops to accommodate memory 

limitations thereby compromising the capacity of the network to learn large-scale 3D 

features or global patterns.

For the task of fissure segmentation, both 3D structure and global context are critical for 

accurate segmentation. Therefore 2D slices or patchwise approaches are not ideal. 

Furthermore, directly training a network to segment fissures is challenging due to the large 

class imbalance between fissure and non fissure voxels. High accuracy could be achieved by 

learning the trivial classifier that always predicts the majority class (i.e. non-fissure).

To address these challenges, we propose a new coarse-to-fine deep learning segmentation 

approach called FissureNet. FissureNet achieves superior segmentation performance 

compared to other methods by concatenating two Seg3DNet ConvNets. The new Seg3DNet1 

architecture is less memoryintensive compared to U-Net and SegNet, enabling it to learn 

global contextual information from entire lung images. Seg3DNet is a generic 3D 

segmentation network suitable for many applications. Within FissureNet, the first Seg3DNet 

is trained to detect an approximate fissure region of interest (ROI) and the second Seg3DNet 

is trained to detect precise fissure location within the ROI. The coarse-to-fine approach used 

by FissureNet overcomes the challenges associated with training a network to segment a thin 

structure that represents a very small fraction of the total voxel count.

II. Methods

A. Overview

We model fissure detection as a probabilistic classification problem. Given a dataset X and a 

finite class set Y, a probabilistic classifier models the conditional probability distribution 

P(Y|X). That is, given a feature vector x ∈ X, the classifier predicts a probability distribution 

over the class set Y. The features and the conditional probability distribution are learned 

jointly through end-to-end training of a Seg3DNet.

For pulmonary fissure classification the class set Y consists of the three fissures and a non-

fissure class, such that all voxels that are not fissure are assigned to the non-fissure class. 

The number of fissure voxels is very small compared to the number of non-fissure voxels; 

there is approximately one fissure voxel for every 100 non-fissure voxels within the lung 

mask (at the image resolution used in this study). FissureNet uses a coarse-to-fine approach 

by cascading two Seg3DNets (Fig. 1). The first Seg3DNet is trained to detect an 

1While Seg3DNet and the existing SegNet [33] are similar in name, the proposed Seg3DNet uses a different architecture and is not 
related to SegNet
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approximate fissure region of interest (ROI) and the second Seg3DNet is trained to detect 

the precise fissure location within the ROI. Separate pipelines are trained for the left and 

right lungs, yielding four total Seg3DNet classifiers: left fissure ROI, right fissure ROI, left 

fissure, and right fissure. The proposed Seg3DNet architecture is illustrated in Fig 2.

B. Convolutional Neural Network

A ConvNet is a specialized neural network model designed to exploit patterns in spatially 

correlated data, such as images and videos. At a high level, a ConvNet has multiple layers of 

learned feature detectors arranged hierarchically. The feature detectors in each layer are 

local, however, the composition of layers allows the spatial extent defined on the input 

image, called receptive field, to grow with layer depth. This design gives the network the 

capacity to learn global features, without the computational overhead and increased number 

of parameters required for large feature detectors. The feature detectors are shared spatially, 

making a given feature relevant at any location in the image. Layers with feature detectors 

are called convolutional layers. The feature detectors, or kernels, are not explicitly encoded 

but are the parameters being learned through optimization. Convolutional layers are typically 

followed by an elementwise nonlinearity and interleaved with pooling layers which serve to 

reduce the spatial resolution.

Each layer in a ConvNet takes a feature representation as input, performs an operation to 

transform the input, and produces a new feature representation as the output. The layers are 

arranged hierarchically: the output feature representation of one layer serves as the input to 

the following layer. Each feature representation consists of a set of spatial activation maps, 

each representing a different feature type. The activation maps are concatenated along a non-

spatial dimension, i.e. the channel dimension, to form the feature representation. Therefore, 

in a 3D ConvNet the intermediate feature representations are all 4D images. The channel 

dimension is analogous to that of an RGB image, i.e., the voxels are vector-valued and each 

vector element represents a different feature type.

The ConvNet parameters (feature detectors) are learned from labeled training data using 

backpropagation [35]. Starting with randomly initialized parameters, a training example is 

propagated through the network and a prediction is made. The dissimilarity between the 

prediction and the true label is quantified with a loss function. The gradient on the loss with 

respect to each parameter is calculated using backpropagation, which is a recursive 

application of the chain rule. All parameters are updated to decrease the error using 

stochastic gradient descent, or some variant thereof.

C. Seg3DNet

In this work, we propose a 3D ConvNet architecture for image segmentation called 

Seg3DNet (Fig. 2). Seg3DNet consists of an encoder which generates a high dimensional 

feature representation of the image, and a decoder which decodes the features to produce a 

segmentation. Unlike many segmentation architectures, the encoder and decoder modules in 

Seg3DNet are asymmetrical. The encoder module consists of L resolution levels li for i = 

0,1, ...,L — 1, where the activation maps in level li are downsampled by a factor of 2i 

relative to the full resolution level l0. Each level of the encoder has two convolutional layers 
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followed by a max-pooling layer. All convolutional layers use 3 × 3 × 3 voxel kernels, and 

the number of kernels in level li is given by Ni = 2i+5. After the second convolution layer of 

each level, max pooling with kernel size 2×2×2 and stride of 2 produces the downsampling 

factor of 2 between levels. While recent ConvNet architectures have eliminated pooling 

layers, downsampling is necessary to achieve a global receptive field on large input volumes. 

To mitigate the loss of precise localization information from the pooling layers, the decoder 

network combines representations from all scale levels.

The decoder module condenses the representation at each scale level to a single activation 

map using a convolutional layer with a single voxel kernel of size 1 × 1 × 1 x Ni. The lower 

resolution activation maps are upsampled to full resolution using nearest neighbor 

interpolation followed by a convolution with filter size 2i + 1, effectively performing a 

variant of deconvolution [36]. The resulting activation maps, one from each scale level, are 

concatenated along the feature dimension to form a multi-scale representation. Two more 

convolutional layers are used to combine information from different scales.

The representation at the last layer of the Seg3DNet has |Y | activation maps each with the 

same spatial dimensions as the input volume. The output at spatial location x of activation 

map y, fy (x), is interpreted as an unnormalized log probability of x belonging to class y. The 

softmax vector nonlinearity is used to obtain the conditional probability distribution, given 

by:

P(Y = y | x) = e
f y(x)

∑ j ∈ Y e
f j(x) (1)

We denote the probability for each class y ∈ Y as Py(x). By construction, Y is a valid 

probability distribution function with Py (x) ∈ [0,1] ∀y ∈ Y, and ∑y ∈ Y Py(x) = 1. For the 

right lung ConvNets, we define separate classes to distinguish between oblique and 

horizontal fissures. Therefore, the class set cardinality for the left and right lung ConvNets is 

| Y| = 2 and |Y | = 3, respectively.

Batch normalization [37] and ReLU nonlinearities [38] are used after each convolution layer 

with the exception of the last layer. All convolutional layers use zero-padding to prevent 

reduction in spatial dimensions.

D. FissureNet

As shown in Fig. 1, FissureNet has two parallel pipelines, each of which is a coarse-to-fine 

cascade of two Seg3DNets. The first Seg3DNet is trained to detect a fissure ROI. The 

original ground truth fissure segmentations are modified to produce the fissure ROI training 

labels. A voxel belongs to the fissure ROI if it is located within 5 mm of the corresponding 

fissure, otherwise it is non-fissure. This dilation of the singlevoxel ground truth reduces the 

class skewness. Additionally, by dilating the ground truth fissure the network is able to focus 

on global patterns rather than precise fissure appearance. As a result, the network is more 

robust to weak and radiograph-ically incomplete fissures. The fissure ROI allows for small 
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imperfections in the training data which are expected due to the nature of manually tracing a 

single voxel curve.

For training the first Seg3DNet, we define the loss associated with each voxel using 

categorical cross entropy of the form

L(x, Y) = − ∑y ∈ Y ty(x)logPy(x), (2)

where ty (x) represents a one-hot encoding of the target label for voxel x and class y, i.e., ty 

(x) is one when y corresponds to the true class and zero for all other classes The total loss 

for an input image is given by

LROI =
∑x ∈ Ω L x, YROI

Ω , (3)

where Ω is the input image domain and YROI is ROI classifier class set.

The second Seg3DNet is trained to detect the precise fissure location. The original ground 

truth fissure segmentations are used as training labels. The loss associated with each voxel is 

the same as the first Seg3DNet (2). However, the total loss is a weighted average using the 

probability that the voxel is in a fissure ROI

LF =
∑x ∈ Ω 1 − PNR(x) L x, YF

∑x ∈ Ω 1 − PNR(x)
(4)

where PNR (X) is the probability that voxel x is non-fissure ROI as predicted by the first 

Seg3DNet and YF is the fissure classifier class set. This weighting limits the contribution of 

the large number of non-fissure voxels to the loss function, mitigating the class imbalance 

problem while allowing for precise fissure localization.

E. Implementation

FissureNet was implemented using the open source frameworks Theano [39] and Lasagne 

[40]. Training was performed using a P40 NVIDIA GPU with 24 GB of RAM. Adam 

optimization was used with an initial learning rate of 5 × 10−4 [41]. All parameters were 

initialized using Xavier normal initialization [42]. Each network was trained for six epochs, 

which took approximately 48 hours. Inference time with the trained network is 10 seconds 

per lung on a consumer grade GPU card.
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III. Experimental Methods

A. Datasets and Preprocessing

Training and testing data were acquired from the COPDGene study, a large multi-center 

clinical trial with over 10,000 subjects with chronic obstructive pulmonary disease (COPD) 

[43]. COPD which includes emphysema and chronic bronchitis, is characterized by airway 

inflammation and large regions of trapped gas on CT.

The COPDGene image datasets were acquired across 21 imaging centers using a variety of 

scanner makes and models. Each patient had two breath-hold 3D CT scans acquired, one at 

total lung capacity (TLC) with a dose of 200 mAs and one at functional residual capacity 

(FRC) with a dose of 50 mAs. Original slice thicknesses ranged from 0.625 mm to 0.9 mm. 

see [43] for the complete image acquisition protocol.

A subset of 1601 subjects was selected for training and a separate disjoint subset of 3706 

subjects was selected for testing. The TLC scan and FRC scan for each subject were utilized, 

producing a training dataset with 3202 scans and a testing dataset with 7412 scans. All 

COPD GOLD levels [44] were used for training and evaluation; see Table I for distribution 

of disease severity in training and testing datasets. Each subject in COPDGene has a unique 

identifier consisting of five numbers and one letter, e.g., 10005Q. Subjects with identifiers 

that begin with values in the range 10–12 were included in the training dataset and subjects 

with identifiers that begin with values in the range 13–19 were included in the testing 

dataset.

An additional dataset of 20 4-dimensional computed tomography (4DCT) scans from a lung 

cancer clinical trial were used were used for evaluation. The 4DCT scans were acquired on a 

Siemens EDGE CT scanner with parameters of 120 kV tube voltage, 100 mAs tube current, 

0.5 second tube rotation period, 0.09 pitch, 76.8 mm beam collimation, 128 detector rows, 

and a reconstructed slice thickness of 0.6 mm. The 4DCT scans were acquired with audio 

guidance. The image data was retrospectively sorted and reconstructed into ten phase 

images. A single phase from each subject was selected for fissure evaluation, the selected 

phases were chosen to represent an assorted range of tidal volumes and phases. There were 

no scans of this type included in the training dataset.

Due to memory constraints on the GPU, all images were resampled to isotropic 1 mm3 

voxels. For each lung, subvolumes of size 64 × 200 × 200 voxels were extracted for training. 

For the majority of subjects, this crop size covers the entire sagittal view of the lung, 

however, it may not cover all sagittal slices. Therefore, for training we extracted three 

subvolumes centered at different sagittal slices to ensure the entire lung was covered.

For preprocessing, CT intensity values were clamped to the range of interest for fissure 

detection (i.e. −1024 HU and −200 HU) which also removes outliers caused by calcification 

and metal artifacts. Voxels outside of the lung mask were set to −1024 HU. After clamping 

and masking, the CT image intensities were linearly rescaled according to I′(x) =
I(x) − μHU

σHU
, 

where μHU and σHUare the mean and standard deviation of HU values calculated over the 
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entire training dataset and I(x) and I’(x) are the original HU values and rescaled image 

intensities, respectively, for a given voxel x.

B. Ground Truth

Lung and lobar segmentations in the COPDGene study were obtained using a commercial 

software package (Apollo, VIDA Diagnostics, Coralville, IA), followed by manual 

inspection and editing as needed. The Apollo software calculates a fissure probability 

measure using local fissure appearance and anatomical information from the airways and 

vasculature and then uses surface fitting to interpolate and extrapolate a complete fissure. 

The manual correction was performed by trained analysts (professional research assistants) 

with experience levels ranging from 0–4 years. Corrections were supervised by an 

experienced radiologist. Manual analysts were instructed to interpolate and extrapolate when 

necessary to completely divide the lung into five lobes. Fissure segmentations were extracted 

automatically from the lobar segmentations by identifying adjacent voxels with different 

lobe labels, producing a two-voxel thin fissure segmentation.

Fissure segmentations for the lung cancer 4DCT dataset were defined manually by an 

experienced medical physics PhD student using MimVista 6.4.7 software (MIM Software, 

Cleveland, OH). For this dataset, both complete fissures (forming full lobar boundaries) and 

visible fissures were identified. The visible fissures were first identified and subsequently 

interpolated and extrapolated to separate lobes when necessary.

C. Comparison of Fissure Detection Methods

We compared the proposed FissureNet to three other fissure detection methods: a 

conventional Hessian-based method [25], the derivative of sticks (DoS) method [29], and a 

deep learning approach using the popular U-Net architecture [32]. The Hessian-based and 

U-Net methods were evaluated on the entire testing dataset (7412 scans). For comparison to 

DoS, a subset of 30 scans from the testing dataset was used. For this subset, three subjects 

were randomly selected from each GOLD level. Both the TLC scan and the FRC scan were 

used for each subject. The DoS method consists of a fissure filtering step (DoS1) and a post-

processing step (DoS2). The aim of the post-processing step is to remove falsely detected 

fissure voxels, particularly those that are connected to the true fissure. This is done using a 

pipeline consisting of global multi-thresholding, junction detection and removal, and 

connected component analysis. The aim of the Hessian-based and DoS methods is the 

detection of visible fissures and thus no interpolation or extrapolation is performed. For the 

U-Net method, the depth of the U-Net was set to three levels and the branching factor was 

set to four to accommodate the increased memory demand of the decoder network. To 

mitigate the class imbalance, we used the approach from [32], which weights the 

underrepresented class to have higher misclassification cost.

D. Evaluation Metrics

Receiver operating characteristic (ROC) curves are commonly used to evaluate the 

performance of a binary classifier by measuring the tradeoff between true positive rate 

(TPR) and false positive rate (FPR) at different thresholds. Similarly, precision-recall (PR) 

curves measure the tradeoff between precision and recall (recall is the same as TPR). Recent 
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studies have demonstrated that PR curves are better at evaluating and comparing binary 

classifiers in problems with a skewed prior class probability [46]. In such cases, ROC curves 

tend to be overly optimistic and do not distinguish between methods with different false 

positive behavior. The prior probability of fissure voxels is very small, so we report PR 

results to better discriminate between methods.

For PR evaluation, we use a 3 mm margin as described in [29]. Briefly, for calculating 

precision, predicted fissure voxels are categorized as true positive (TP) or false positive (FP): 

TP if the voxel is within 3 mm of the ground truth fissure or otherwise FP. Likewise, for 

calculating recall, ground truth fissure voxels are categorized as TP or false negative (FN): 

TP if the voxel is within 3 mm of the predicted fissure or otherwise FN. The 3 mm margin 

accounts for the subjectivity in manual delineation of a thin structure with low contrast. All 

voxels within the lung mask are considered for PR calculation and the ground truth is a two-

voxel thin fissure. We report the PR curve and the area under the PR curve (PR-AUC). The 

optimal operating point on a PR curve is the upper right corner, and PR-AUC has values 

ranging from 0 to 1, with 1 describing a perfect classifier.

We evaluated the surface distance between predicted fissure and nearest ground truth fissure. 

For this analysis, we obtained hard fissure predictions by thresholding the probability output. 

The optimal threshold was determined separately for each method and was defined as the 

threshold on the PR curve where precision is equal to recall using a dataset of 20 

COPDGene subjects (using both TLC and FRC scans) that were not included in the training 

or testing datasets. For each scan the average surface distance (ASD) and standard deviation 

of surface distances (SDSD) was calculated.

IV. Results

We compared FissureNet against three other fissure detection methods: Hessian-based [25], 

DoS [29], and U-Net [32]. The Hessian and the DoS methods do not distinguish between the 

right oblique and horizontal fissures. Therefore, only an aggregated right fissure (RF) 

measure is made for the right lung. For comparison, the RF measure is evaluated on 

FissureNet and U-Net by adding the ROF and RHF probabilities.

Fig. 3 compares PR curves for FissureNet and U-Net methods on 3706 subjects (TLC and 

FRC scans for each subject) from COPDGene and 20 lung cancer subjects with 4DCT scans. 

PR-AUCs for FissureNet, U-Net, and Hessian are displayed in Tables II and III for the 

COPDGene and lung cancer datasets, respectively. Overall, PR-AUC for FissureNet, U-Net, 

and Hessian methods were 0.980, 0.963, and 0.158, respectively, on the COPDGene dataset 

and 0.966, 0.937, and 0.182, respectively, on the lung cancer dataset. All methods had 

similar performance on the COPDGene and the lung cancer datasets and FissureNet 

performed best with regards to PR-AUC. Table IV shows PR-AUCs on the lung cancer 

dataset using a ground truth which only indicates radiographically visible fissures. 

FissureNet and U-Net performed slightly better using the visible-only ground truth, while 

Hessian performed slightly worse. Table V shows PR-AUCs for FissureNet and DoS 

evaluated on a subset of 15 subjects (30 scans). The post-processing in the DoS method 

greatly improves the PR-AUC from 0.177 (DoS1) to 0.668 (DoS2), however, FissureNet 
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consistently performed better than DoS2 without any post processing with an overall PR-

AUC of 0.991. In Tables II-V, only LOF and RF fissures are included in mean calculation to 

avoid over-weighting right lung results.

Table VI shows ASD and SDSD averaged over all subjects. On average, the ASD for 

FissureNet was less than U-Net for all scan types and fissures. Fig. 4 shows a histogram of 

the differences in ASD between U-Net and FissureNet on a subject-by-subject basis; 97% of 

the histogram area is to the right of the vertical line corresponding to cases where FissureNet 

has a lower ASD compared to U-Net.

Statistical testing was performed to test for significant differences in performance between 

methods with regards to evaluation metrics. Paired t-tests showed that FissureNet had a 

significantly greater PR-AUC and a significantly lower ASD compared to U-Net on both the 

COPDGene and lung cancer datasets (p < 0.001). Additionally, FissureNet had a 

significantly greater PR-AUC compared to Hessian on both the COPDGene and lung cancer 

datasets (p < 0.001).

Representative fissure detection results are displayed in Fig. 5 for the COPDGene dataset 

and Fig. 6 for the lung cancer dataset. These results show DoS2 and U-Net have far fewer 

false positives compared to Hessian, however, FissureNet produces the fewest false positives 

while maintaining high sensitivity. The difference in false positive behavior between 

FissureNet and U-Net is further emphasized in Fig. 7, where surface renderings are 

annotated in red to depict false positives. The only post-processing performed to generate 

the renderings was thresholding at the optimal PR-AUC thresholds.

V. DISCUSSION

Existing fissure detection methods are limited to handcrafted and local features. These 

features typically suffer from low specificity as it is difficult to differentiate fissures from the 

other structures in the lung without global context. Additionally, it is difficult to design 

features that are robust against all fissure variations, especially for global compared to local 

features. To overcome the challenge of designing robust and discriminative features we use a 

deep learning approach to learn the feature detectors from labeled training cases. The main 

challenges associated with training a ConvNet to detect fissures in CT images are the size of 

the input images and the highly skewed class distributions.

The majority of ConvNets used in medical imaging applications use 2D image slices or use 

a sliding window approach with small image crops to overcome limitations in GPU memory. 

While this is a reasonable approach for some tasks, for fissure segmentation it is not 

desirable. The 3D appearance of a fissure is important to distinguish it from other structures 

that would otherwise appear similar on 2D slices. Global information provides additional 

context which is especially important when the fissure signal is weak, however, this 

information is not considered by patch-based approaches.

Compared to other segmentation architectures, Seg3DNet is an asymmetrical encoder-

decoder network which uses less memory in order to accommodate a 3D network, larger 

input images, and more network levels. This allows for global information to be learned and 
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results in higher specificity. By training separate Seg3DNets for the left and right lungs, we 

were able to reduce the size of the input image by a factor of two. This optimization does not 

degrade performance, as information from one lung does not provide global information for 

fissure detection in the other lung.

To handle the class imbalance, we use a coarse-to-fine ConvNet cascade: the first ConvNet 

learns the fissure ROI and the second ConvNet learns the precise fissure location. In addition 

to mitigating the effect of class imbalance, the fissure ROI classifier is more sensitive to 

weak and incomplete fissures. Since the second training phase weights the voxel 

misclassification costs by the probability of being in the fissure ROI, the contribution of 

costs from the large number of non fissure voxels is limited. Therefore, the class imbalance 

problem is mitigated while allowing for precise fissure prediction. A similar, and more 

elegant, approach would be to train a single network with two outputs: one for the fissure 

ROI and one for precise fissure prediction. However, current limitations on GPU memory do 

not allow for this.

Fully-connected layers are not used in Seg3DNet, making it a fully-convolutional network 

(FCN) [34]. This greatly reduces the number of parameters and makes the network less 

prone to overfitting; the proposed network has 3 million parameters compared to the popular 

VGG-16 network which has 138 million parameters. Furthermore, in a FCN the number of 

parameters is not dependent on the input image size, so the network can be trained and 

deployed on images of different sizes. Our network was trained on fixed-size image crops of 

64×200×200 due to limited GPU memory, however, in some cases the entire lung field does 

not fit in this crop. At test time there is more memory available as mini-batches are not used 

and gradients do not need to be stored for backpropagation. As a result, at test time much 

larger inputs can be used. In fact, the entire lung region, regardless of size, can be used as 

input and inference can be done in one forward pass per image. This is extremely efficient 

compared to patchwise approaches. In addition, Seg3DNet can accommodate different input 

image sizes, avoiding aggressive rescaling and interpolation that might degrade the fissure 

signal.

This is the first study to evaluate a fissure detection method on a dataset of this size and 

diversity: 3706 COPDGene subjects with TLC and FRC scans and 20 lung cancer subjects 

with 4DCT scans. The COPDGene data used for training and evaluation came from 21 

different institutions. Different scanner makes and models were used, as well as different 

reconstruction algorithms. The diversity of the evaluation set was further enriched with a 

lung cancer dataset of 4DCT scans. These scans were acquired at a lower dose during 

breathing, resulting in poorer image quality, motion blurring, and/or artifacts which were not 

present in the training dataset. Robustness to such diversity is generally a challenge when 

designing rule-based algorithms for image segmentation: it can be difficult to achieve similar 

performance across different scanning protocols and diseases.

Fissure detection performance was evaluated on four methods: Hessian-based, DoS, a deep 

learning approach using the U-Net architecture, and the proposed FissureNet. FissureNet 

and U-Net both greatly outperformed the Hessian and DoS methods on all datasets. Hessian 

and DoS methods were not able to detect weak fissures and produced many false positives at 
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blood vessels and diseased regions. FissureNet consistently outperformed U-Net; while both 

methods demonstrated high sensitivity for fissure detection, FissureNet predicted fewer false 

positives. This can be attributed to the larger input patches and coarse-to-fine cascade, 

allowing the network to use more global context to differentiate true fissures from disease 

that resembles fissures.

On the COPDGene evaluation dataset, all methods performed better on TLC scans compared 

to FRC scans in terms of PR-AUC. However, in the COPDGene trial the TLC scans were 

acquired at a higher dose and thus the image quality was better, so better performance was 

expected. In the future, comparing images of the lung at different inspiration levels acquired 

using the same dose would help determine which inspiration level is best for fissure 

detection. Although the performance on FRC images was worse, the FissureNet results are 

nonetheless impressive for lower dose scans. This demonstrates the ability of FissureNet to 

generalize across different scanning protocols. The COPDGene dataset consisted of subjects 

with a wide range of disease severity, encompassing all GOLD stages. It is more challenging 

to detect fissures in heavily diseased cases as alterations in the underlying tissue can 

resemble the fissure and/or result in abnormal tissue appearance. Performance of FissureNet 

was robust to these challenges.

Training a multi-class network for the right lung results in the ability to distinguish between 

oblique and horizontal fissures. This is the first fissure detection method to make this 

distinction. Since the ultimate goal is to divide the lungs into lobes, unique predictions for 

different fissures facilitates straightforward post-processing. A limitation of training 

FissureNet using a ground truth containing only oblique and horizontal fissures is an 

inability to detect accessory fissures. While accessory fissures have exhibit similar local 

appearance compared to the major fissures, the proposed FissureNet learns high level 

information encoded in the particular shapes and orientations of the oblique and horizontal 

fissures. However, introducing an accessory fissure class and providing additional annotation 

in the training data could extend the network’s capability.

Detection of the right horizontal fissure was consistently worse than the oblique fissures for 

the COPDGene dataset. The orientation of the horizontal fissure is often parallel with the 

axial imaging plane, potentially obscuring the fissure in CT images. It is not uncommon for 

horizontal fissures to be ra-diographically incomplete or missing, hindering identification 

even by human analysts. Interestingly, on the 4DCT dataset the ROF has a higher ASD 

compared to the RF.

The COPDGene ground truth fissures used for evaluation have several limitations. The 

fissures were automatically extracted from lobar segmentations resulting in complete fissure 

boundaries for all cases even those with radiographically incomplete or missing fissures. In 

such cases, the extrapolated or interpolated fissure location is highly subjective and 

evaluating the performance of any automated method using such a ground truth is limited in 

these regions. Furthermore, the ground truth fissures in the COPDGene evaluation dataset 

were generated using the same method as the training dataset (Apollo software followed by 

manual correction). This introduces a bias for learning-based methods to identify complete 

fissures in unseen subjects regardless of actual fissure integrity. An additional possible bias 
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may be attributed to the FissureNet and U-Net methods being trained on the COPDGene 

dataset, while the Hessian and DoS methods were developed on an independent dataset.

To address these limitations, evaluation was performed on a dataset of lung cancer subjects 

with 4DCT scans. The ground truth fissure segmentations for this dataset were generated 

manually. Additionally, both complete and visible-only fissures were annotated. All fissure 

detection methods performed worse on the 4DCT dataset compared to the COPDGene 

dataset. The 4DCT scans use a lower dose and commonly have motion artifacts and blurring, 

resulting in decreased fissure visibility. All methods performed better using the visible-only 

fissure ground truth.

A drawback of our method, and of deep learning in general, is the requirement of a large 

training dataset with ground truth segmentations. Manual segmentation is tedious, 

timeconsuming, and typically performed by a medical imaging expert analyst. Additionally, 

a high-end GPU card was required for training the network and such a card may not be 

available on a standard workstation. However, once the network is trained, it can be 

deployed on a low-end consumer GPU. Although there is a large overhead in training time 

(48 hours), processing time is only 20 seconds per image.

Tajbakhsh et al. [47] analyzed how well networks trained on natural images transferred to 

medical images and found pretraining resulted in improved or equal performance compared 

to random initialization. No transfer learning was used in this study due to limited 

availability of pretrained weights for 3D architectures. This is an area for potential further 

development.

The proposed method is designed exclusively for fissure detection and does not provide a 

complete lobar segmentation. However, the high specificity of our method facilitates lobar 

segmentation with simple post-processing (i.e. thresholding, morphological operations, and 

connected component analysis). For challenging cases with incomplete fissures, a more 

sophisticated surface-fitting technique might be used for postprocessing. For example, 

optimal surface finding graph search could be used to divide the lung into lobes, defining the 

graph costs by fissure probabilities.

VI. Conclusion

We have proposed a method for automatic detection of pulmonary fissures in CT images 

using a deep learning framework. We presented a novel coarse-to-fine cascade of ConvNets 

called FissureNet, and a novel 3D segmentation architecture called Seg3DNet. Fissure 

detection was evaluated with two rule-based methods (Hessian and DoS) and two learning-

based methods (FissureNet and U-Net). The learning-based methods outperformed the rule-

based methods. Furthermore, FissureNet outperformed U-Net as it was capable of learning 

larger-scale global features. FissureNet achieves high sensitivity for fissure detection while 

producing very few false positives, allowing for straightforward post-processing to obtain a 

final lobar segmentation. The results show that FissureNet is robust to different CT scanners, 

scanning protocols (low-dose and normal-dose), inspiration levels (TLC and FRC), imaging 

modalities (breath-hold vs. 4DCT), and severities of pulmonary disease.
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Fig. 1: 
FissureNet: coarse-to-fine network cascade. Black boxes represent four Seg3DNet 

classifiers, each trained for a differentclassification task as indicated in the box. For the right 

lung pipeline (top), the CT image is masked with the right lung mask and input to the right 

fissure ROI Seg3DNet. The output of the ROI Seg3DNet represents the probability that each 

voxel is right oblique ROI (PROR), right horizontal ROI (PRHR), and non-fissure ROI (PNR). 

The input to the right fissure Seg3DNet is the masked CT image and the probability maps 

PROR or PRHR. The output of the right fissure Seg3DNet gives the probability that each 

voxel is right oblique fissure (PROF ), right horizontal fissure (PRHF ), and non-fissure 

(PN F ). The left lung pipeline (bottom) is similar, except each classifier only predicts two 

classes corresponding to left oblique fissure and non-fissure.
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Fig. 2: 
Proposed Seg3DNet architecture. Each arrow represents an operation performed by a layer 

and each cube represents the intermediate feature representations produced by a layer. For 

visualization purposes, only the spatial dimensions of the feature representations are 

illustrated. The number of activation maps (size of channel dimension) is denoted in the 

lower left corner. For the encoder module, we define Ni = 2i+5 o that the number of 

activation maps increases by a factor of two at each level. The number of kernels used in 

each convolutional layer can be inferred by the number of activation maps in the layer’s 

output representation, e.g., the first convolutional layer has N0 = 20+5 = 32 kernels. The 

relative spatial size of the activation maps are drawn to scale. At each level the feature 

representation is spatially downsampled by a factor of two. Batch normalization and ReLU 

nonlinearity are performed after each convolution except the last.
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Fig. 3: 
Precision-Recall curves for FissureNet (—) U-Net(₋₋₋) evaluated on the testing dataset of 

3706 COPDGene subjects (TLC and FRC scans for each subject) and 20 lung cancer 

subjects (4DCT).
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Fig. 4: 
Histogram of differences in ASD between U-Net and FissureNet on a subject-by-subject 

basis.
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Fig. 5: 
Representative results for four COPDGene subjects in rows one to four. (a) CT sagittal slice, 

(b) ground truth, (c) Hessian, (d) DoS2, (e) U-Net, (f) FissureNet. Top to bottom: GOLD1 

FRC, GOLD3 TLC, GOLD3 FRC, GOLD4 TLC. DoS2 greatly reduces the number of false 

positives compared to Hessian, however, for these cases it fails to detect the horizontal 

fissure (rows 1 and 3). FissureNet and U-Net results are similar with high sensitivity and few 

false positives,however, FissureNet has fewer false positives.
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Fig. 6: 
Representative results for four lung cancer subjects in rows one to four. (a) CT sagittal slice, 

(b) ground truth, (c) Hessian, (d) U-Net, (e) FissureNet. Row 4 has a dense pathology 

superior to the horizontal fissure that is falsely detected by Hessian and U-Net, however, 

FissureNet correctly classifies this as non-fissure.
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Fig. 7: 
Surface renderings of FissureNet (a, c, e) and U-Net (b, d, f) results for six COPDGene 

subjects (rows 1 and 2) and six lung cancer subjects (rows 3 and 4). True positives and false 

positives are depicted in gray and red, respectively. Probability output was thresholded at 

optimal threshold for each method as determined by PR curve.
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TABLE I:

Disease stratification for the training and testing datasets. GOLD0-GOLD4 defined in [44]. No PFT: 

spirometry data not available; PRISm: Preserved Ratio Impaired Spirometry [45]

Training Testing

GOLD0 583 1625

GOLD1 133 309

GOLD2 350 617

GOLD3 235 360

GOLD4 135 186

No PFT 28 53

Non-Smoker 0 90

PRISm 137 466

Total 1601 3706
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TABLE II:

PR-AUC for 3706 subject (7412 scan) testing dataset from COPDGene

Phase Fissure
PR-AUC

Hessian U-Net FissureNet

TLC LOF 0.145 0.973 0.985

RF 0.216 0.959 0.982

ROF –– 0.967 0.987

RHF –– 0.891 0.939

FRC LOF 0.108 0.968 0.979

RF 0.165 0.952 0.975

ROF –– 0.964 0.983

RHF –– 0.878 0.919

Mean 0.158 0.963 0.980
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TABLE III:

PR-AUC for 20 lung cancer subjects with 4DCT scans. Non-visible fissures were interpolated and 

extrapolated to form complete boundaries between lobes

Fissure
PR-AUC

Hessian Unet FissureNet

LOF 0.171 0.950 0.972

RF 0.193 0.924 0.961

ROF –– 0.899 0.916

RHF –– 0.848 0.926

Mean 0.182 0.937 0.966
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TABLE IV:

PR-AUC for 20 lung cancer subjects with 4DCT scans. Only visible fissures were marked in the ground truth

Fissure
PR-AUC

Hessian Unet FissureNet

LOF 0.113 0.978 0.992

RF 0.137 0.985 0.988

ROF –– 0.965 0.953

RHF –– 0.917 0.946

Mean 0.125 0.982 0.990
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TABLE V:

PR-AUC for 15 subject (30 scan) testing subset from COPDGene

Phase Fissure
PR-AUC

DoS1 DoS2 FissureNet

TLC LOF 0.167 0.706 0.993

RF 0.155 0.652 0.992

ROF –– –– 0.995

RHF –– –– 0.968

FRC LOF 0.191 0.704 0.987

RF 0.196 0.610 0.990

ROF –– –– 0.994

RHF –– –– 0.967

Mean 0.177 0.668 0.991
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TABLE VI:

Average surface distance (ASD) and standard deviation of surface distances (SDSD) averaged over 3706 

subject COPDGene testing dataset (TLC and FRC) and lung cancer testing dataset (4DCT). Distances reported 

in mm

Dataset Fissure
ASD SDSD

U-Net FissureNet U-Net FissureNet

TLC LOF 3.75 0.65 10.56 2.14

ROF 4.83 0.57 12.78 2.06

RHF 7.23 2.39 13.64 5.49

FRC LOF 2.32 0.66 6.93 1.66

ROF 4.03 0.53 10.38 1.43

RHF 5.57 1.96 9.79 3.85

4DCT LOF 2.97 0.62 9.06 1.36

ROF 6.50 1.97 13.86 2.88

RHF 9.31 1.90 15.27 4.93
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