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Abstract

Hyper-graph techniques have been widely investigated in computer vision and medical imaging 

applications, showing superior performance for modeling complex subject-wise relationships and 

sufficient flexibility to deal with missing data from multi-modal neuroimaging data. Existing 

hyper-graph methods, however, are inadequate for two reasons. First, representations are generated 

only from the observed imaging data, a process that is completely independent of the subsequent 

data label inference/ classification step. Thus, hyper-graph results constructed in this way may not 

be consistent with phenotype data such as clinical labels or scores. More critically, it might 

generate sub-optimal predictions in relation to clinical labels/scores. Second, current hyper-graph 

inference methods rely on two sequential steps: 1) building the hyper-graph for each individual 

modality and then predicted latent labels for new subjects upon each constructed hyper-graph and 

2) a voting procedure to incorporate inference results across different hyper-graphs. This approach, 

however, is limited by failing to consider the complex and complementary relationships of multi-

modal imaging data with respect to hyper-graph inference procedure. To address these two issues, 

we propose a novel dynamic hyper-graph inference method supported by a semi-supervised 

framework. Our method iteratively estimates and adjusts the hyper-graph structures from multi-

modal imaging data until consistency between the learned hyper-graph and the observed clinical 

labels and scores is achieved. This hyper-graph inference framework also eases the integration 

process of classification (identifying individuals having neurodegenerative disease) and regression 
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(predicting the clinical scores) within the same framework. The experimental results on identifying 

mild cognition impairment (MCI) subjects and the fine grained recognition of MCI progression 

stages show improved performance using our proposed hyper-graph inference method compared 

with conventional methods.
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1. INTRODUCTION

THE morphological patterns from neuroimaging data, either structural (e.g., MRI) or 

functional image (e.g., PET/SPECT) are highly correlated with progression of the 

neurodegenerative disorder, such as Alzheimer’s disease (AD) [1]–[6]. Due to large inter-

subject variation and complex disease pathology, however, it is very challenging to design an 

imaging-based diagnosis system that can identify individual patient or high-risk subjects 

with high sensitivity and specificity. As different imaging modalities show complementary 

information, many state-of-the-art machine-learning approaches have been proposed to 

improve the diagnosis accuracy using multi-modal information [2], [6]–[9]. For example, 

multitask learning by ensemble SVM and SVR are used for AD and Mild Cognitive 

Impairment (MCI) classification and regression in [10]. A Deep Boltzmann machine is used 

to fuse multi-modal imaging data into a high-level representation for classification [11]. 

Although the above supervised learning approaches have shown promising results for 

integrating multi-modal imaging information for disease diagnosis, their accuracy and 

generalizability are restricted by the limited number of labelled training samples. To address 

this problem, semi-supervised learning approaches are explored as an alternative solution 

that uses both unlabeled and labeled data to train the diagnostic model [6], [12]–[14].

The second challenge is how to design a model to represent heterogeneous distributed data. 

A classic SVM and SVR based model (even with kernel) usually learns a general model on 

the whole dataset and assumes it can fit different testing subjects well. However, this 

assumption does not hold for heterogeneous distributed data. Personalized SVM and SVR 

model are proposed by Zhu et al., [37] in order to address the heterogeneity problem by 

reweighting training data to reveal the latent data distribution of different testing subject. 

However, this method requires multiple images from each testing person to learn the training 

data reweighting vector; its application is thus restricted by availability of longitudinal data. 

Graph-based models naturally model the relevance of training samples to testing sample by 

the edge structure. The weighted edges share similar idea of personalized diagnosis model. 

The training samples are weighted by edges such that the edges from training data to testing 

data represents their correlation (similarity).

Furthermore, clinical data shows complicated subject-to-subject relationships as, one subject 

might have connections to multiple subjects via different modalities. However, one-to-one 

edge setting in a simple graph is unable to model such complex relationships. Hyper-graph 

uses hyper-edge to represent multiple-to-multiple relationships and . thus, is more suitable 
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for modeling the complicated clinical data from multiple modalities [15]. Hyper-graph has 

been successfully applied to various medical imaging areas including image segmentation 

[16] and classification [9], [17]. Recent work uses hypergraph to combine multi-modal 

neuroimaging information for identifying MCI subjects [9]. However, current hypergraph 

inference methods have the following two limitations. First, current approaches are built 

upon the assumption of strong correlation between imaging data and clinical labels. Hyper-

graph is usually constructed using imaging data only, which is completely independent of 

the subsequent label inference. More critically, these hyper-graphs are not validated for label 

prediction on the training data (known labels). Due to the possible noisy and redundant 

patterns in the imaging features, the learned hyper-graph might be sub-optimal for the 

ultimate goal of label prediction. This, un-validated hyper-graph poses a high risk of 

misguiding the labels prediction on testing subject. Second, it is common to build multiple 

hyper-graphs, one for each modality independently, in multi-modal inference applications. 

For example, there are two hypergraphs constructed separately from morphological features 

extracted from MR and PET images in [9], as shown by blue and purple solid ellipses in the 

blue dash box of Fig. 1. The final classification result is a linear combination of label 

likelihood scores from different hyper-graphs. The multi-modal information is only used in 

fusing labels, which ignores the complex relationship between different modalities in the 

entire hyper-graph learning process.

To address these issues, we present a novel dynamic hyper-graph inference framework for 

multi-modal diagnosis of neurodegenerative disorders. Instead of constructing multiple 

hyper-graphs for different modal imaging data separately, we propose to generate a unified 

dynamic hyper-graph for all modalities regardless of the distinct imaging patterns across 

different modalities. Furthermore, both the imaging data and clinical labels on the training 

data are employed to learn the hyper graph, as shown in the red dash box of Fig. 1. Thus, the 

constructed hyper-graph is automatically validated on the training data for label predictions. 

Specifically, we alternatively estimate and refine the subject-wise relationship from multi-

modal neuroimaging data until the learned hyper-graph representation satisfies the following 

criteria: (1) largely consistent with the subject-wise relation-ship measured by the observed 

multi-modal imaging data, and (2) optimally aligned with the clinical labels on the training 

dataset by minimizing the difference between the estimated labels and observed clinical 

labels.

Clinical phenotype data such as the MMSE and CDR scores in AD diagnosis are widely 

used in current learning based diagnostic methods because they have a higher correlation 

with clinical labels than imaging data [10], [18]. To that end, we further extend our hyper-

graph inference framework to integrate both classification (identifying individuals with dis-

eases) and regression (predicting the clinical scores). We apply our proposed hyper-graph 

based diagnostic method to identify MCI subjects and classify MCI subjects at different 

stages of progression. The experimental results demonstrate that our method outperforms 

conventional hyper-graph methods, rendering a 1.8% increase in discriminating MCI 

subjects from NC and AD cohorts, and a 3.1% increase in fine grained recognition on MCI 

sub-types, respectively.
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II. METHOD

We will first briefly review the standard hyper-graph learning techniques and then introduce 

our dynamic hyper-graph learning framework, which integrates the classification and 

regression task.

A. Conventional Hyper-Graph Learning Model

1) Conventional Hyper-Graph Learning for Single Modality: Following the 

definition of hyper-graph in [15], a hyper-graph is denoted as 𝒢 = (V , E), where V = {v} is 

the vertex set and E = {e} is the hyper-edge set. Given N subjects with morphological 

features X = {x1, . . . , xN }, we first compute the N × N affinity matrix A, where each 

element aij measures the similarity between subject Ii and Ij (i, j = 1, . . . , N). Then, we 

construct the incidence matrix H H ∈ ℛ V × E  to encode the hyper-edge as follows. Each 

vertex v is allowed to establish multiple hyper-edges where each hyper-edge characterizes 

the similarity between underlying v and all other vertexes. For efficiency, the subject-to-

subject relationship is binarized into a bit array (‘0’ stands for non-connected and ‘1’ stands 

for connected in the underlying hyper-edge) and further becomes one column vector in H . 

Note, a threshold ξ is required in binarization. As we will explain later, we use cross 

validation to determine the value of ξ in our experiments. Two diagonal matrices 

Dv ∈ ℛ V × V  and De ∈ ℛ E × E  can be calculated to represent the vertex degrees and hyper-

edge degrees from the incidence matrix H as:

Dv v, v = ∑e ∈ E H v, e , De e, e = ∑v ∈ V H v, e . (1)

After that, the Laplacian matrix L of the hyper-graph can be computed as:

L = I − Dv
− 1

2 HDe
−1HTDv

− 1
2 (2)

where I is the |V|×|V| identity matrix. Note, we assume the hyper-edges have equal weight, 

for simplicity. Suppose N subjects consist of P training subjects with known clinical labels 

Yp =[y1,...,yP]and Q unseen testing subjects (N = P + Q). The goal of conventional 

hypergraph learning is to estimate the label probabilities for testing subjects by:

argmin
FQ

tr FTLF , (3)

where F =[ FP, FQ] is the probability vector for all N subjects with the first P elements 

forming the probability vector FP for P training subjects and the last Q elements forming the 

probability vector FQ for Q testing subjects. Eq. 3 can be solved efficiently using 

Augmented Lagrange Methods (ALMs) [19].

Zhu et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The intuition behind hyper-graph learning is illustrated in the left panel of Fig. 2. The hyper-

graph is fixed once built from the observed morphological features X, and then the latent 

labels on the testing subjects are determined, based on the encoded data representation in the 

hyper-graph, with respect to the neighboring training subjects with known labels. The prior 

knowledge of labels YP is not used to guide the learning of data representation.

2) Extend to Multi-Modal Scenario: In order to apply hypergraph to multi-modal 

imaging data, Gao et al. [9] proposed to combine multiple hyper-graph models using a linear 

model and estimate the unknown data labels on the combined multiple hyper-graphs. 

Suppose there are M set of morphological features {Xm|m = 1,...,M}, M hyper-graphs are 

constructed. A weighting vector α = [αm]m=1,...,M is learned to measure the contribution of 

each modality. Similarly, the labels are propagated on the combined hyper-graph by solving:

arg min
α, FQ

tr FT ∑m = 1
M αmLm F , s . t . ∑m = 1

M αm = 1 .

B. Dynamic Hyper-Graph Inference Framework

We propose an integrated method to solve the hyper-graph construction and label 

propagation/classification problems simultaneously. To do so, we estimate a hidden subject-

wise affinity matrix S behind the observed multi-modal data, where sij represent the learned 

similarity between subject Ii and Ij , regardless of training or testing subjects. We optimize S 

towards two criteria: (1) imaging feature similarity: each sij should reflect the similarity 

between observed features xi
m and x j

m across all modalities; (2) clinical label similarity: sij 

should also be consistent to the label correlation between subject Ii and Ij if clinical labels 

available.

To cast the optimization of S into a well-posed problem, we further introduce the three 

constraints: (1) graph regularization term: Given S, we can construct the hyper-graph as 

well as the Laplacian matrix L. We require the estimated probability vector F agree with the 

data representation encoded in hyper-graph Laplacian matrix L by minimizing the hyper-

graph regularization term [15] tr(FLT F). (2) cross-validation constraint. Since the clinical 

labels YP are known for the training subjects, we requite the estimated probability vector FP 

should have as less difference to YP as possible. (3) Frobenius norm: To avoid the trivial 

solution, we apply l2-norm to S and the weighting vector α to constrain the energy. After 

integrating above similarity terms, clinical label validation terms and regularization terms, 

the energy function of our dynamic hyper-graph is:

Zhu et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arg min
S, L, α, FQ

1
2 ∑

i, j = 1

N
∑

m = 1

M
αm xi

m − x j
m

2
2si j

+ β f i − f j 2
2si j + γ ⋅ tr FTLF + S 2

2 + α 2

2
,

s . t .
FP = YP

∑m = 1
M αm = 1, αm > 0, ∑ j = 1

N si j = 1, si j > 0

(5)

where β and γ are used to balance the strength of label similarity term and hyper-graph 

regularization term, respectively.

The improvement of our dynamic hyper-graph learning over the conventional methods is 

illustrated in the right panel of Fig. 2. First, we allow using phenotype data to guide the 

optimization of hyper-graph construction. As we will explain the optimization procedure in 

section II.D, we seek for the intrinsic affinity matrix S which produce less dissimilarity 

between the known clinical labels YP and estimated likelihood FP on the training subjects 

(indicated by the red dash arrows in Fig. 2). Since the hyper-graph 𝒢 is built upon S, the 

optimized hyper-graph is more related to the eventual goal of classification. Second, we 

gradually refine the optimization of S by alternatively validating the classification 

performance on the training subjects and updating S. Thus, our dynamic hyper-graph 

learning framework can correct possible sub-optimal estimations in an iterative manner. We 

further extend current hyper-graph model from classification to regression task. The 

regression model and related parameters are described in Section C.

C. Joint Classification and Regression in Dynamic Hyper-Graph Inference Framework

Since convergent evidence shows clinical scores such as ADAS-COG [20] (Alzheimer’s 

Disease Assessment Scale-Cognitive Subscale) and MMSE [21] (mini mental state 

examination) in AD diagnosis, are very informative to monitor the progression of the neuro-

disease in clinic routine practice, we further extend our dynamic hyper-graph inference 

framework to integrate both diagnosis labels the clinical scores, which eventually falls into a 

joint classification and regression scenario.

Specifically, let Π Π ∈ ℛN × D  denote the matrix of estimated clinical scores, where each 

row π i denotes a vector of D scores for each subject Ii . Without loss of generality, the first 

P subjects in Π are considered as training subjects with the known scores ΠP and the last Q 

subjects are testing subjects which need to estimate the scores ΠQ , i.e., Π = [ΠP , ΠQ ]. 

Using the same order of index, the N × D matrix C= [CP , CQ ] denotes the estimated 

clinical scores after hyper-graph learning. Following the concept of label propagation along 

the data representation via hyper-graph, we estimate the subject-specific weighing vector wi 

(a column vector with N elements) which can restore the scores by using the linear 

combination of scores on other subjects, i.e., ci = wi
TC. Meanwhile, we require the estimated 

scores CP on training subjects to be as close to the ground truth scores ΠP as possible.
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arg min
S, L, α, FQ, CQ, W

1
2 ∑i, j = 1

N ∑m = 1
M αm xi

m − x j
m

2
2si j

+β f i − f j 2
2si j + δ ci − c j 2

2si j

+ γ ⋅ tr FTLF + S 2
2 + α 2

2
,

s . t .
FP = YP, CP = ΠP, C = WTC

∑m = 1
M αm = 1, αm > 0, ∑ j = 1

N si j = 1, si j > 0

(6)

where W = [wi ]i=1,...,N is a N × N matrix and δ is a scalar to control the impact of regression 

error in Eq. 6. As shown in the right of Fig. 2, our dynamic hyper-graph will learn the data 

representation which considering both the image feature similarity on all subjects and label/

score similarity on training subjects.

D. Optimization

Since the energy function in Eq. 6 is convex, we can efficiently obtain F Q and C Q using 

ALMs [19]. Specifically, we introduce several Lagrange multipliers to remove the equality 

constraints as:

arg min
S, L, α, FQ, CQ, W

1
2 ∑i, j = 1

N ∑m = 1
M αm xi

m − x j
m

2
2si j

+β Fi − F j 2
2si j + δ ci − c j 2

2si j

+ γ ⋅ tr FTLF + S 2
2 + α 2

2

+
μF
2 FQ − YQ 2

2 + tr ΛF FQ − YQ

+
μc
2 CQ − ΠQ 2

2 + tr Λc CQ − ΠQ

+
μw
2 WTC − C 2

2 + tr Λw WTC − C ,

s . t . ∑m = 1
M αm = 1, αm > 0, ∑ j = 1

N si j = 1, si j > 0

(7)

Where Λf , Λc , and Λw are standard Lagrange multipliers and μf , μc, and μw are the penalty 

parameters in ALMs. After that, we can alternately estimate S, F Q , C Q , α, and W via the 
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following simple sub-tasks where we optimize one viable at a time by fixing the other 

variables:

• Sub-task 1: Estimate affinity matrix S based on latest F and C .

argmin
S

1
2 ∑i, j = 1

N ∑m = 1
M αm xi

m − x j
m

2
2si j

+β f i − f j 2
2si j + δ ci − c j 2

2si j + S 2
2

(8)

• Sub-task 2: Estimate latent labels F Q based on latest hyper-graph.

argmin
FQ

1
2 ∑i, j = 1

N β f i − f j 2
2si j + γ ⋅ tr FTLF

+ tr ΛF FQ − YQ +
μc
2 CQ − ΠQ 2

2

(9)

• Sub-task 3: Estimate latent scores C Q based on latest hyper-graph.

argmin
CQ

1
2 ∑i, j = 1

N δ ci − c j 2
2si j +

μc
2 CQ − ΠQ 2

2

+ tr Λc CQ − ΠQ +
μw
2 WTC − C 2

2

+ tr Λw WTC − C

(10)

• Sub-task 4: Estimate the weight αm for each modality.

argmin
α

1
2 ∑i, j = 1

N ∑m = 1
M αm xi

m − x j
m

2
2si j + α 2

2
(11)

• Sub-task 5: Estimate the regression matrix W based on latest scores C .

argmin
W

μw
2 WTC − C 2

2 + tr Λw WTC − C (12)

Note, Eq. 8 and Eq. 11 are quadratic problems with similar linear inequality constraints, 

which can be efficiently solved using Karush Kuhn Tunker (KKT) approach [22]. Eq. 9–10 

and 12 are standard unconstrained quadratic problems that can be efficiently solved by 

gradient search with respect to C Q , F Q , and W . All sub-problems are iteratively solved 
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until the overall objective function converges. The Lagrange multiplier parameters are 

updated using following equations:

Λ f = Λ f + μ f FQ − YQ μ f = ρ ⋅ μ f

Λc = Λc + μc CQ − ΠQ μc = ρ ⋅ μc

Λw = Λw + μw WTC − C μw = ρ ⋅ μw

(13)

where ρ is the learning step parameter to increase the equality constraint penalty during the 

iterations. We fix ρ = 1.1 in our experiments.

E. Discussion

1) Further Improvement: Integration With Metric Learning Technique: Our 

proposed dynamic hyper-graph learning framework and the widely used metric learning 

technique [23], [24] are similar in that both focus on latent subject-to-subject relationships, 

instead of the subject-wise similarity based on the observed data. Metric learning technique 

is compatible with many machine learning models, including our proposed dynamic hyper-

graph model. To do so, we use Θm denote the to-be-learned projection matrix which can 

map each data xi
m to a new space and then calculate the distance basded on the learned 

metric. Following the standard metric learning approach in [23], we can slightly modify our 

energy function in Eq. 6 as:

arg min
S, L, α, FQ, CQ, W

1
2 ∑i, j = 1

N ∑m = 1
M αm Θmxi

m − Θmx j
m

2
2si j

+β f i − f j 2
2si j + δ ci − c j 2

2si j + γ ⋅ tr FTLF

+ S 2
2 + α 2

2
+ ∑m = 1

M Θm
2
2,

(14)

where the projection matrix Θm for each modality is constrained by l2 norm.

2 ) Further Extension Handle the Missing Data Problem in Diagnosis: Due to 

poor data quality and subject dropout, the problem of missing data is a big obstacle to 

conquer in multi-modal studies. Rather than completing the missing data based on statistical 

correlations [25], [26] and train the learning model consequently, our hyper-graph based 

model is straight forward to deal with the missing data issue in the learning process (Eq. 5 

and Eq. 6). Following the suggestion in [27], we can replace thel2-normwith l1 norm on S, to 

make our model more robust to missing data.

III. EXPERIMENTS

We apply our method for computer-assisted diagnosis of AD, which is the most common 

neuro-degenerative dementia featuring memory loss, other cognitive deficits, and altered 
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behavior [4], [28], [29]. A high-risk stage of possible incipient AD is called MCI, which is 

characterized by measurable cognitive changes in the absence of clinically significant 

functional impairment [30]–[32]. Convergent evidence shows that many MCI subjects are in 

a prodromal stage of AD. Although some subjects can persist in the MCI stage for a long 

time, referred to as MCI Non-Converters (MCI-NC), other MCI subjects who eventually 

develop AD are referred to as MCI Converters (MCI-C). Thus, identifying the 

heterogeneous subtypes such as AD, MCI-C, MCI-NC and predicting the clinical score of 

potential AD patients is of high impact in clinical practice. In the following, we evaluate the 

performance of hyper-graph learning framework in identifying the heterogeneous subtypes 

of AD and predicting the clinical score using multiple modality imaging data.

A. Image Processing

In our experiments, we use the baseline MRI, PET images from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset (www.adni-info.org) including 93 AD subjects and 

101 NC (Normal Control). In addition, 118 MCI subjects are selected which include 55 

MCI-C and 63 MCI-NC subjects. The ADAS-COG and MMSE scores are available in all 

selected subjects. For each subject, we first register their MR and PET images using the 

linear registration tool in FSL package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Then, we apply 

skull removal [33], bias correction [34], and intensity normalization [35] and tissue 

segmentation using FAST in FSL package. After that, we obtain the parcellation of 90 

anatomical structures by warping the AAL template (with manually labeled regions) to the 

underlying subject. Finally, the volume percentile of gray matter and the average intensity of 

PET image in each ROI (region of interest) are used as the morphological features.

B. Experiment Settings

1) Experiment Setup: We have evaluated the performance of our dynamic hyper-graph 

learning framework on two binary classification problems (MCI/NC and MCI-C/MCI-NC 

classification) and two multiple class classification problems (3-class AD/MCI/NC 

classification and 4-class AD/MCI-C/ MCI-NC/NC classification). We use a 10-fold cross 

validation strategy in performance evaluation. Note, we do not use leave-one-out cross 

validation because it will produce unreliable and biased results as reported in [36]. 

Specifically, we randomly partition the subjects into 10 non-overlapping folds with 

approximately equal size subsets. Each time one fold is used for testing and all subsets in 

other folds are considered as training subjects. The optimal parameters are learned by grid 

search strategy in the training set using five-fold inner cross-validation. The search range for 

parametersβ, γ and δ is [10−3,103]. We repeat such cross validation procedure for 10 times 

and report the overall score of classification/regression performance. Three measures are 

used for classification performance evaluation: accuracy (ACC), sensitivity (SEN) and 

specificity (SPEC). The correlation coefficients (CC) and root mean square error (RMSE) 

are used to evaluate the regression accuracy.

2) Counterpart Methods: We choose the recent work of hyper-graph classification in 

[9] as the representative method of conventional hyper-graph learning approaches. Since the 

hyper-graph is fixed after construction, we call the method in [9] as static hyper-graph in the 

experiment. As SVM is popular in computer assisted diagnosis, we compare our hyper-
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graph based learning model with ensemble SVM [13], which is the state of art supervised 

method for multimodal classification. In order to show the advantage of using hyper-graph 

over simple graph in characterizing the multi-modal imaging data representation, we also 

replace hyper-graph with simple graph and show the classification/ regression accuracy 

using our degraded method, called dynamic simple-graph.

In the following, we first evaluate the convergence and computational time in our hyper-

graph learning model in section III.C. For clarity, we only report the result on the binary 

classification of NC/MCI subjects. Next, we specifically demonstrate the classification and 

regression performance in section III.D and III.E, respectively. The result of joint 

classification and regression is shown in section III.F. Furthermore, we show the enhanced 

classification and regression results by integrated with metric learning in section III.G and 

application in dealing with missing data in III.H, respectively.

C. Convergence and Computational Time

Our method converges quickly as shown in Fig. 3(a), which demonstrates that the efficiency 

of our proposed alter-native optimization based on gradient search in section III.D. In order 

to show the computation time w.r.t. different size data, we show the computation time of our 

dynamic hyper-graph learning method for 100, 150, 200, 250, and 300 subjects in Fig. 3(b), 

where we run all experiments on the desktop with 2.6G i-7 CPU and 20G memory. It is 

evident that the computational time only increases linearly as the number of subjects 

increases. It is worth noting that we can complete the learning procedure for 300 subjects in 

less than 11 minutes, which shows that the cost of learning a new model, due to the change 

of subject, can be considered not critical in routine clinic practice since a large portion of the 

diagnostic time lies in the image preprocessing, which takes an hour interrupted with manual 

inspection.

D. Evaluation of Classification Accuracy

Fig. 4. shows the classification performance in terms of ACC, SPEC, and SEN by ensemble 

SVM (blue), statistic hyper-graph (red), dynamic simple-graph (gray), and dynamic hyper-

graph (yellow), in MCI/NC classification (a), MCI-C/ MCI-NC classification (b), 

NC/MCI/AD classification (c), and NC/MCI-C/MCI-NC/AD classification (d). It is apparent 

that our method outperforms all other competing methods, where the largest improvement is 

8.9% increase of ACC over ensemble SVM in MCI/NC classification task. We further 

perform the t-test on the ACC value. Our method achieves statistically significant 

improvement in terms of accuracy compared to those methods (p < 0.05).

Unlike the supervised learning approaches like SVM, our hyper-graph model needs to 

update to reflect the new data representation for new testing subjects. Also, the classification 

performance could vary with different ratio of training and testing subjects in the hyper-

graph. Here, we specifically inspect the ACC value w.r.t. the ratio of training and testing 

subjects in NC/MCI/AD classification (Fig. 5(a)) and NC/MCI-C/MCI-NC/AD 

classification (Fig. 5(b)), where blue, red, gray, and yellow curves represent ensemble SVM, 

static hyper-graph, dynamic simple graph, and dynamic hyper-graph methods, respectively. 

Note, we fix the total number of subjects while changing the ratio. It is consistent that the 
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more training subjects (with clinical labels) included in the hyper-graph, the higher 

classification accuracy the learned model can achieve.

In order to evaluate whether the classification performance of our method is dominated by 

specific group (AD or NC), we show the accuracy, sensitivity and specificity by class label 

in Table I. The best performance is on AD group (ACC 0.671, SEN 0. 706 and SPEC 0.655) 

and the worst performance is on MCI-NC group (ACC 0.633, SEN 0.656 and SPEC 0.623). 

The performance difference between different groups is smaller than 0.4%. This indicates 

that the performance of our method is not dominated by AD or NC subjects. It is balanced 

well on all groups, especially on the MCI-C and MCI-NC groups.

E. Evaluation of Regression Accuracy

Similarly, we first show the regression accuracy of ADAD-COG and MMSE score based on 

CC in Fig. 6(a) and RMSE in Fig. 6(b), where we use the same legend for the methods under 

comparison as in Fig. 4. We also performed a t-test on the CC value, where our dynamic 

hyper-graph learning method achieves significant improvement over other ensemble SVR, 

static hyper graph, and dynamic simple graph (p-value < .0.05). The curve of CC value 

change in ADAS-COG and MMSE regression tasks w.r.t. the ratio of training and testing 

subjects are shown in Fig. 7(a) and (b), respectively. We observed the same pattern that more 

prior knowledge on clinical score brings higher regression accuracy.

F. Evaluation of Joint Classification and Regression

We applied our dynamic hyper-graph learning model to jointly identify the clinical labels 

(NC/MCI-C/MCI-NC/AD) and scores (ADAS-COG/MMSE) for all 312 subjects. Since it is 

not straightforward to extend the SVM approach to the joint classification and regression 

scenario, we only compare the static hyper-graph and dynamic simple-graph methods, as 

shown in Fig. 8. Since we have shown the classification only and regression only results in 

Fig. 4 and Fig. 6, we further dis-play the gain from joint classification and regression with 

red and blue arrows in Fig. 8, respectively. It is apparent that the diagnostic label and score 

are complementary information and integrating both can substantially improve the 

classification and regression accuracy. We performed a t-test on the ACC and CC value; the 

p-value of our method compared to static hyper-graph and dynamic simple graph are 0.033 

and 0.042 by ACC, and the p-value of our method compared to static hyper-graph and 

dynamic hyper-graph are 0.029 and 0.038 respectively on CC value.

G. Enhanced Dynamic Hyper-Graph With Metric Learning

As we discussed in section III.E, we can further improve the diagnostic accuracy by 

integrating a metric learning technique. For clarity, we only show the classification scores of 

ACC, SPEC and SEN and the regression scores of CC and RMSE on ADAS-COG before 

and after the integration with metric leaning in Table II. Based on the scores shown in Table 

II, we can see the gain by using metric learning in both classification and regression.

H. Dynamic Hyper-Graph Learning in Missing Data Scenario

In this application, we compare the classification performance with comparison to the recent 

work by Liu et al. [27] where conventional static hyper-graph learning is applied to the 
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incomplete multi-modal imaging dataset. Specifically, we randomly discard 5% to 25% 

imaging data while maintaining data from at least one imaging modality for each subject. 

Fig. 9 shows the ACC value in MCI/NC classification (a), MCI-NC/MCI-C classification 

(b), NC/MCI/AD classification (c), and NC/MCI-NC/MCI-C/AD classification (d), 

respectively. Our method consistently outperforms the conventional hyper-graph method 

with, on average, more than 9% improvement of classification accuracy in all classification 

tasks. As the percentile of missing data increases, the performance gain over the 

conventional method increases too, demonstrating the advantage of our dynamic hyper-

graph learning method in handing incomplete imaging datasets. In order to show the 

statistical significance of our method compared to conventional static hyper-graph, we 

performed t-test on the ACC. The p-value is 0.012, which indicates that our method achieves 

significant improvement compared to conventional hyper-graph method in missing data 

scenario.

I. Dynamic Hyper-Graph Learning vs. Generalized SVM/SVR and Personalized SVM/SVR

With LOO Setting

In order to extrapolate the performance of our method to clinical settings, we compare our 

method with generalized and personalized SVM/SVR model for clinical label/score 

prediction with Leave-One-Out (LOO) testing strategy. We show that the learned 

personalized SVM and SVR performs comparably to our dynamic hyper-graph methods in 

Table III. In fact, the dynamic hyper-graph performs slightly better since it is a semi-

supervised model that uses both the testing and training data to refine the model. LOO will 

slightly alter the performance of our method since .the labels of the testing data might 

change when different testing subjects are used. Overall, our model shows better 

performance than -supervised methods since our method uses the entire dataset to learn the 

hyper-graph and predict testing data labels. A t-test on the ACC value of our method 

compared to the generalized and personalized models yielded the following: our method vs. 

the generalized classifier (p = 0.037) and vs. the personalized classifier (p = 0.046); our 

method vs. the generalized and personalized regressor (p = 0.032 and p = 0.041 

respectively). These results indicate that our method shows statistically significant 

improvement compared to both the generalized and personalized models.

IV. CONCLUSION

We propose a dynamic hyper-graph learning framework for computer-assisted diagnosis 

using multi-modal imaging data. Specifically, we present a unified learning approach to 

jointly estimating the data representation using hyper-graph and performed classification and 

regression on the learned hyper-graph representation. Our novel approach yielded promising 

results in identifying the diagnostic labels and predicting clinical scores in subjects who lie 

along the MCI – AD clinical spectrum. In the future, we will investigate the potential 

application of our proposed dynamic hyper-graph learning method to other 

neurodegenerative diseases such as Parkinson’s disease and related Lewy body disorders.
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Fig. 1. 
Illustration of conventional hyper-graph learning and our dynamic hyper-graph learning 

framework in computer-assisted diagnosis using multi-modal imaging data. (a) Independent 

hyper-graph construction. (b) Dynamic hypergraph learning for classification and regression.
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Fig. 2. 
Comparison of conventional hyper-graph learning and our dynamic hyper-graph learning 

framework.
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Fig. 3. 
Convergence analysis and computational time w.r.t. subject number. (a) The decrease of 

energy function value in optimization. (b) Computation time vs subject number.
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Fig. 4. 
Evaluation of classification performance in terms of ACC, SEN, and SPEC by ensemble 

SVM (a), static hyper-graph learning (b), dynamic simple-graph learning (c), and dynamic 

hyper-graph learning (d).
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Fig. 5. 
ACC curve w.r.t. the ratio of training vs testing subjects in NC/MCI/AD classification (a) 

and NC/MCI-C/MCI-NC/AD classifica-tion (b).
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Fig. 6. 
Evaluation of regression performance in terms of CC (a) and RMSE (b) by ensemble SVR 

(blue), static hyper-graph learning (orange), dynamic simple-graph learning (gray), and 

dynamic hyper-graph learning (yellow).
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Fig. 7. 
CC curve w.r.t. the ratio of training vs testing subjects in ADAS-COG score regression (a) 

and MMSE score regression (b).
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Fig. 8. 
Evaluation of joint classification and regression performance by static hyper-graph learning, 

dynamic simple-graph learning, and dynamic hyper-graph learning methods. The 

improvement gained by joint classification and regression over using classification only and 

regression only are illustrated by red and blue arrows, respectively.
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Fig. 9. 
Evaluation of classification performance in missing data application by conventional hyper-

graph method and our dynamic hyper-graph learning methods. (a) MCI/NC. (b) MCI-NC/

MCI-C. (c) NC/MCI/AD. (d) NC/MCI-NC/MCI-C/AD.
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TABLE I

THE CLASSIFICATION (MCI-C/MCI-NC/AD/NC) RESULTS OF DYNAMIC HYPER-GRAPH MEASURED BY CLASS LABEL 

(ACC-ACCURACY, SEN-SENSITIVITY, SPEC-SPECIFICITY)

ACC SPEC SEN

MCI-C 0.633 0.656 0.623

MCI-NC 0.628 0.653 0.621

NC 0.646 0.682 0.640

AD 0.671 0.706 0.655
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TABLE II

THE CLASSIFICATION AND REGRESSION SCORE BEFORE AND AFTER THE INTEGRATION WITH METRIC LEARNING

ACC SPEC SEN CC RMSE

Before 0.687 0.705 0.665 0.792 3.34

After 0.694 0.717 0.675 0.806 3.17
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TABLE III

THE CLASSIFICATION (NC/MCI/AD 3 CLASS CLASSIFICATION PROBLEM) AND REGRESSION FOR ADAS-COG 

PREDICTION OF THE PROPOSED DYNAMIC HYPER-GRAPH WITH GENERALIZED SVM/SVR AND PERSONALIZED 

SVM/SVR

ACC SPEC SEN CC RMSE

Dynamic HG 0.759 0.782 0.748 0.779 3.42

Generalized 0.726 0.749 0.713 0.734 3.84

Personalized 0.744 0.768 0.725 0.758 3.58
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