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Abstract

PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited 

number of detected photons. Recently deep neural networks have been widely and successfully 

used in computer vision tasks and attracted growing interests in medical imaging. In this work, we 

trained a deep residual convolutional neural network to improve PET image quality by using the 

existing inter-patient information. An innovative feature of the proposed method is that we embed 

the neural network in the iterative reconstruction framework for image representation, rather than 

using it as a post-processing tool. We formulate the objective function as a constrained 
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optimization problem and solve it using the alternating direction method of multipliers (ADMM) 

algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. 

Quantification results show that our proposed iterative neural network method can outperform the 

neural network denoising and conventional penalized maximum likelihood methods.

Index Terms—

Positron emission tomography; Convolutional neural network; iterative reconstruction

I. Introduction

Positron Emission Tomography (PET) is an imaging modality widely used in oncology [1], 

neurology [2] and cardiology [3], with the ability to observe molecular-level activities inside 

the tissue through the injection of specific radioactive tracers. Though PET has high 

sensitivity compared with other imaging modalities, its image resolution and signal to noise 

ratio (SNR) are still low due to various physical degradation factors and low coincident-

photon counts detected. Improving PET image quality is essential, especially in applications 

like small lesion detection, brain imaging and longitudinal studies. Over the past decades, 

multiple advances have been made in PET system instrumentation, such as exploiting time 

of flight (TOF) information [4], enabling depth of interaction capability [5] and extending 

the solid angle coverage [6], [7].

With the wide adoption of iterative reconstruction in clinical scanners, more accurate point 

spread function (PSF) modeling can be used to take various degradation factors into 

consideration [8]. In addition, various post processing approaches and iterative 

reconstruction methods have been developed by making use of local patch statistics, prior 

anatomical or temporal information. Denoising methods, such as the HYPR processing [9], 

non-local mean denoising [10], [11] and guided image filtering [12] have been developed 

and show better performance in bias-variance tradeoff or partial volume correction than the 

conventional Gaussian filtering. In regularized image reconstruction, entropy or mutual 

information based methods [13]–[15], segmentation based methods [16], [17], and gradient 

based methods [18], [19] have been developed by penalizing the difference between the 

reconstructed image and the prior information in specific domains. The Bowsher’s method 

[20] adjusts the weight of the penalty based on similarity metrics calculated from prior 

images. Methods based on sparse representations [21]–[27], have also shown better image 

qualities in both static and dynamic reconstructions. Most of the aforementioned methods 

require prior information from the same patient which is not always available due to 

instrumentation limitation or long scanning time, which may hamper the practical 

application of these methods. Recently a new method is developed to use information in 

longitudinal scans [28], but can only be applied to specific studies.

In this paper, we explore the potential of using existing inter-patient information via deep 

neural network to improve PET image reconstruction. Over the past several years, deep 

neural networks have been widely and successfully applied to computer vision tasks, such as 

image segmentation [29], object detection [30] and image super resolution [31], due to the 
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availability of large data sets, advances in optimization algorithms and emerging of effective 

network structures. Recently, it has been applied to medical imaging, such as image 

denoising and artifact reduction, using convolutional neural network (CNN) [32]–[35] or 

generative adversarial network (GAN) [36]. It showed comparable or superior results to the 

iterative reconstruction but at a faster speed. In this paper, we propose a new framework to 

integrate deep CNN in PET image reconstruction. The network structure is a combination of 

U-net structure [29] and the residual network [37]. Different from existing CNN based 

image denoising methods, we use a CNN trained with iterative reconstructions of low-counts 

data as the input and high-counts reconstructions as the label to represent the unknown PET 

image to be reconstructed. Rather than feeding a noisy image into the CNN, we use the 

CNN to define the feasible set of valid PET images. To our knowledge, this is the first of its 

kind in the applications of neural network in medical imaging. The solution is formulated as 

the solution of a constrained optimization problem and sought by using the alternating 

direction method of multipliers (ADMM) algorithm [38]. The proposed method is validated 

using both simulation and hybrid real data.

The main contributions of this paper include (1) using dynamic data of prior patients to train 

a network for PET denoising and (2) proposing to incorporate the neural network into the 

iterative reconstruction framework and demonstrating better performance than the denoising 

approach. This paper is organized as follows. Section 2 introduces the theory and 

optimization algorithm. Section 3 describes the computer simulations and real data used in 

the evaluation. Experimental results are shown in Section 4, followed by discussions in 

Section 5. Finally conclusions are drawn in Section 6.

II. Theory

A. PET data model

In PET image reconstruction, the measured data y ∈ ℝM × 1 can be modeled as a collection 

of independent Poisson random variables and its mean y ∈ ℝM × 1 is related to the unknown 

image x ∈ ℝN × 1 through an affine transform

y = Px + s + r,

(1)

where P ∈ ℝM × N is the detection probability matrix, with Pij denoting the probability of 

photons originating from voxel j being detected by detector i [39]. s ∈ ℝM × 1 denotes the 

expectation of scattered events, and r ∈ ℝM × 1 denotes the expectation of random 

coincidences. M is the number of lines of response (LOR) and N is the number of pixels in 

image space. The log-likelihood function can be written as
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L(y | x) = ∑
i = 1

M
yilogyi − yi − logyi! .

(2)

The maximum likelihood estimate of the unknown image x can be found by

x = arg max
x ≥ 0

L(y | x) .

(3)

B. Representing PET images using neural network

Previously, the kernel method [24] used a kernel representation x = Kα to represent the 

image x, through which the prior temporal or anatomical information can be embedded into 

the kernel matrix K ∈ ℝN × N. The kernel representation can be treated as a linear 

representation by the kernel matrix and the kernel coefficients. Inspired by this idea, here we 

represent the unknown image x through a nonlinear representation

x = f (α),

(4)

where f :ℝ ℝ represents the neural network and α denotes the input to the neural network. 

Through this representation, inter-patient information and intra-patient information can be 

included into the iterative reconstruction framework through pre-training the neural network 

using existing data.

Our network implemented in this work is based on 3D version of the U-net structure [29] 

and also includes the batch normalization layer [40]. The overall network architecture is 

shown in Fig. 1. It consists of repetitive applications of 1) 3×3×3 convolutional layer, 2) 

batch normalization (BN) layer, 3) ReLU layer, 4) convolutional layer with stride 2 for 

down-sampling, 5) bilinear interpolation layer for upsampling, and 6) identity mapping layer 

that adds the left-side feature layer to the right-side. In our implementation, there are three 

major modifications compared to the original U-net:

1. using convolutional layer with stride 2 to down-sample the image instead of 

using max pooling layer, to construct a fully convolutional network;
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2. use bilinear interpolation instead of transpose convolution for upsampling to 

remove the potential checkboard artifact [41];

3. directly adding the left side feature to the right side instead of concatenating, to 

reduce the number of training parameters.

The left-hand side of the architecture aims to compress the input path layer by layer, an 

“encoder” part, while the right-hand side is to expand the path, a “decode” part. Unlike the 

original 2D U-net which has four down-sampling operations, here we only use three down-

sampling operations, to reduce the trainable parameters due to limited number of training 

pairs. After the last layer, ReLU activation function is added, which sets all the negative 

value to 0. Through ReLU activation, non-negative constraint is enforced on image x. This 

neural network has 15 convolutional layers in total and the largest feature size is 128. We 

have also tried a 2D Unet with input consisting of five axial slices, and found that the 3D 

structure can generate better image qualities. The network is trained with reconstructed 

images from low counts data as the input and the images reconstructed from high counts 

data as the label. The number of trainable parameters for this 3D CNN is around 1.4 million. 

The parameters mainly include the convolutional kernels, the bias terms and the parameters 

for each batch normalization.

When substituting the representation in (4) using the above mentioned network structure, the 

original PET system model shown in (1) can be rewritten as

y = P f (α) + s + r .

(5)

The maximum likelihood estimate of the unknown image x can be calculated as

x  = f (α),

(6)

α = arg max
α ≥ 0

L(y |α) .

(7)

The objective function in (7) is difficult to solve due to the nonlinearity of the neural 

network representation. Here we transfer it to the constrained format as below
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max L(y | x)
s.t. x = f (α) .

(8)

C. Optimization

We use the Augmented Lagrangian format for the constrained optimization problem in (8) as

Lρ = L(y | x) − ρ
2 ‖x − f (α) + μ‖2 + ρ

2 ‖μ‖2,

(9)

which can be solved by the ADMM algorithm iteratively in three steps

xn + 1 = argmax
x

L(y | x) − ρ
2 ‖x − f αn + μn‖2,

(10)

αn + 1 = argmin
α

‖ f (α) − xn + 1 + μn ‖2,

(11)

μn + 1 = μn + xn + 1 − f αn + 1 .

(12)

Subproblem (10) is a penalized PET reconstruction problem. We solve it using the 

optimization transfer method [42]. As x in L(y|x) is coupled together, we first construct a 

surrogate function QL(x|xn) for L(y|x) as follows
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QL x xn = ∑
j = 1

n j
p j x j, EM

n + 1 log x j − x j ,

(13)

Where p j = ∑i = 1
ni pi j and x j, EM

n + 1  is calculated by

x j, EM
n + 1 =

x j
n

p j
∑
i = 1

ni
pi j

yi

Pxn
i + si + ri

.

(14)

It can be verified that the constructed surrogate function QL(x|xn) fulfills the following two 

conditions:

QL x; xn − QL xn; xn ≤ L(y; x) − L y; xn ,

(15)

∇QL xn; xn = ∇L y; xn .

(16)

After getting this surrogate function, subproblem (10) can be optimized pixel by pixel. For 

pixel j, the surrogate objective function for subproblem (10) is

P x j xn = p j x j, EM
n + 1 logx j − x j − ρ

2 x j − f (α) j
n + μ j

n 2 .

(17)

The final update equation for pixel j after maximizing (17) is
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x j
n + 1 = 1

2 f αn
j − μ j

n − p j/ρ + f αn
j − μ j

n − p j/ρ 2 + 4x j, EM
n + 1 p j/ρ .

(18)

Subproblem (11) is a non-linear least square problem. In order to solve it, we need to 

compute the gradient of the objective function with respect to the input α. As it is difficult to 

calculate the Jacobian matrix or Hessian matrix of the objective function with respect to the 

input in current network platform, we use a first-order method as follows

α j
n + 1 = α j

n − β ∑
m = 1

N ∂ f αn
m

∂α j
f αn

m − xm
n + 1 − μm

n

+
,

(19)

where β is the step size and non-negative constraint is added on the network input α, as all 

network inputs are nonnegative during network training. In our implementation, β is a scalar 

and was chosen so that the objective function in subproblem (11) can be monotonic 

decreasing. As the intensity of network input is normalized to be within a certain range, once 

a proper β is found, it can be used for different data sets. In order to accelerate the 

convergence speed, Nesterov momentum method was used in subproblem (11) [43]. In our 

implementation, we run one iteration for subproblem (10) and then run five iterations for 

subproblem (11). As subproblem (11) is a non-linear problem, it is very easy to be trapped 

into a local minimum and it is thus essential to assign a good initial for α. In our 

implementation, we first ran MLEM for 30 iterations and used its CNN output as the initial 

for α. The overall algorithm flowchart is presented in Algorithm 1.

D. Implementation details and reference methods

All image reconstructions in this work were performed in fully 3D mode. The neural 

network was implemented using TensorFlow 1.4 on a NVIDIA GTX 1080Ti. During 

training, Adam algorithm [44] with default parameter settings was used as the optimizer and 

the cost function was calculated as the L2 norm between the network outputs and the label 

images. The first-order gradient used in subproblem (11) was implemented using the 

tf.gradient function in TensorFlow, which uses “automatic differentiation”, breaking 

complex gradient calculation into simpler gradient calculations through chain rules. The 

running time of Subproblem (11) in GPU mode is 16.7% of Subproblem (10) in CPU mode 

with 16 threads (Intel Xeon E5-2630 v3) measured using the brain data introduced in Sec. 

III–C. For the proposed optimization framework, the penalty parameter ρ has a large impact 

on the convergence speed. As the final algorithm output is f (α), we examined the log-

likelihood L(y f (α)) to determine the proper penalty parameter. As an example, Fig. 2 shows 
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the log-likelihood curve using different penalty parameters for the lung patient study 

mentioned in Section. III–B. Considering the convergence speed and stability of the 

likelihood, ρ = 5e6 was chosen. Example code for the proposed iterative CNN framework is 

available under the first author’s github.

We compared the proposed method with the post-reconstruction Gaussian filtering, CNN 

denoising method [34], fair penalty based penalized reconstruction, and dictionary learning 

based reconstruction [21]. The CNN denoising method is directly applying the trained 

network to ML EM reconstruction. For the penalized reconstruction, the fair penalty was 

used with the form

ϕ fair (t) = σ t
σ − log 1 + t

σ .

(20)

The fair penalty approaches the L-1 penalty when σ ≪ |t| and is similar to the quadratic 

penalty when σ ≫ |t|. In our implementation, σ was set to be 1e−5 of the mean image 

intensity in order to have the edge preserving capability. MAP EM algorithm was used in the 

penalized reconstruction [42]. In order to accelerate the convergence, 10 iterations of MLEM 

algorithm was used for “warming up” before running the MAP EM algorithm for 100 

iterations. For the dictionary learning based reconstruction, 3D patches were used with size 
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4×4×4 and the number of atoms was set to 300. The dictionary was pre-learnt using images 

reconstructed from high count data running K-SVD algorithm [45] for 20 iterations. During 

image reconstruction, the dictionary learning based penalized reconstruction was solved by 

alternating between the MAP EM reconstruction step and the orthogonal matching pursuit 

(OMP) algorithm based sparse coding step [21]. In our implementation, 30th iteration of 

MLEM algorithm was used as initialization. During each loop the MAP EM algorithm was 

run for 1 iteration.

III. Experimental setup

A. Simulation study

The computer simulation modeled the geometry of a GE 690 scanner [46]. The scanner 

consists of 13, 824 LYSO crystals forming a ring of diameter of 81 cm with an axial field of 

view (FOV) of 157 mm. The crystal size for this scanner is 4.2 × 6.3 × 25 mm3. Nineteen 

XCAT phantoms with different organ sizes and genders were employed in the simulation 

[47], seventeen were used for training, one for loss validation and the last one for testing. 

Apart from the major organs, thirty hot spheres of diameters ranging from 12.8 mm to 22.4 

mm were inserted into eighteen phantoms as lung lesions for the training and validation. For 

the test image, five lesions with diameter 12.8 mm were inserted. The time activity curves 

(TAC) of different tissues were generated mimicking an FDG scan using a two-tissue-

compartment model with an analytic blood input function [48]. In order to simulate the 

population difference, each kinetic parameter was modelled as a Gaussian variable with 

coefficient of variation equal to 0.1. The mean values of the kinetic parameters are presented 

in Table I [49], [50]. The TACs using the mean kinetic parameters are shown in Fig. 3. The 

system matrix P used in the data generation and image reconstruction was computed by 

using the multi-ray tracing method [51], which modelled the inter-crystal photon 

penetration. The image matrix size is 128 × 128 × 49 and the voxel size is 3.27 × 3.27 × 3.27 

mm3. Noise-free sinogram data were generated by forward-projecting the ground-truth 

images using the system matrix and the attenuation map. Poisson noise was then introduced 

to the noise-free data by setting the total count level to be equivalent to an 1-hour FDG scan 

with 5 mCi injection. Uniform random and scatter events were simulated and accounted for 

60% of the noise free prompt data in all time frames to match those observed in real data-

sets. During image reconstruction, all the correction factors were assumed to be known 

exactly.

To generate the training data, forty-minutes data from 20 min to 60 min post injection were 

combined into a high count sinogram and reconstructed as the label image for training. The 

high count data was down-sampled to 1/10th of the counts and reconstructed as the input 

image. In order to account for different noise levels, images reconstructed at iteration 20, 40, 

60 using ML EM algorithm were all used in the training phase. In total 51 (17 × 3) 3D 

training pairs were generated, each containing 49 axial slices. Three transaxial slices from 

different 3D training pairs are shown in Fig. 4(a). As our network needs 3D data as input, a 

whole patient phantom with 49 axial slices was used as network input for each batch, and 

correspondingly there were 51 batches in each epoch. Different rotations and translations 

were applied to each patient phantom to enable larger data capacity for the training. In order 
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to choose the proper epoch number, the training and validation loss for each epoch was 

saved and shown in Fig. 5. We can see that the training loss is decreasing while the 

validation starts to increase after 600 iterations. In our experiment the epoch number was 

chosen as 600 and it took 7 hours for training.

During the evaluation, 20 low-counts realizations of the testing phantom, generated by 

pooling the last 40 min data together and resampling with a 1/10 ratio, were reconstructed 

using different methods. For quantitative comparison, contrast recovery (CR) vs. the 

standard deviation (STD) curves were plotted. The CR was computed from the lung lesion 

regions as

CR = 1
R ∑

r = 1

R
ar /atrue ,

(21)

where R = 20 is the number of realizations, ar is the average uptake of all the lung lesions in 

the test phantom. The background STD was computed as

STD = 1
Kb

∑
k = 1

Kb 1
R − 1 ∑r = 1

R br, k − bk
2

bk
,

(22)

where bk = 1/R∑r = 1
R br, k is the average of the background ROI means over realizations, and 

Kb = 42 is the total number of background ROIs chosen.

B. Lung patient study

Six patient data sets of one hour FDG dynamic scan acquired on a GE 690 scanner with 5 

mCi dose injection were employed in this study. Training and validation data were generated 

in the same way as that in the simulation. The system matrix used in the reconstruction is the 

same as the one used in the simulation. Normalization, attenuation correction, randoms and 

scatters were generated using the manufacturer software and included in image 

reconstruction. Five patient data sets were used in the training and the last one was left for 

validation. As no ground truth exist in the real data-sets, 5 lesions were inserted in the 

testing data to generate the hybrid real data-sets for quantitative analysis. The diameters for 

the lesions inserted in the testing data is 12.8 mm. To increase the training samples for fine-

tuning, for each patient data set we have generated three low-dose realizations from the 

high-counts data. Training pairs of iteration 20, 40, 60 were also included to account for 

different noise levels. In total 45 3D training pairs composed of 5 (# of patients) × 3 (# of 
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different iterations)× 3 (# of realizations) were generated, each 3D training pair containing 

49 axial slices. Different rotations and translations were applied to each patient 3D image. 

Three transaxial slices from different 3D training pairs are shown are shown in Fig. 4(b). In 

the simulation set-up, though we tried to match the simulation with real data, there were still 

texture differences as the simulation is based on piecewise constant phantoms. Directly 

applying the network trained from simulated phantoms would not give the optimal results 

for real data sets. Fine-tuning the network trained from simulation is preferred as it can make 

use of the information from the simulation, while adapted to the real data sets. In our 

implementation, the network trained after 200 epochs using simulated phantoms described 

in section. III–A were employed as the initialization of the network used in the real data sets. 

Four hundred epochs were running during fine-tuning. The fine-tuning process took 4 hours.

Twenty realizations of the low dose data sets were resampled from the testing data and 

reconstructed to evaluate the noise performance. Forty-seven background ROIs were chosen 

in the liver region to calculate the STD as presented in (22). For lesion quantification, 

images with and without the inserted lesion were reconstructed and the difference was taken 

to obtain the lesion only image and compared with the ground truth. The lesion contrast 

recovery was calculated as in (21).

C. Brain patient study

Seventeen FDG brain scans acquired on a GE SIGNA PET/MR system were employed in 

this study [52]. The scan durations are 240 ± 56 s, and injected activity 305.2 ± 73.9 MBq. 

No pathology in the brain was reported for any of the subjects. Normalization, randoms and 

scatters were generated using the manufacturer software. Attenuation were generated using 

the CT information from separate PET/CT scans after co-registration. The brain image was 

reconstructed with an array size of 128×128×91 and voxel size of 2×2×2.78 mm3. In our 

implementation, fifteen data sets were used in training, one data set was used for loss 

validation, and the last one was used for testing. Images reconstructed at iteration 20, 40, 60 

using ML EM algorithm were all used in the training phase. In total 45 (15 × 3) 3D training 

pairs were generated, each containing 91 axial slices. Different rotations and translations 

were applied to each patient 3D image. Three transaxial slices from different 3D training 

pairs are shown in Fig. 4(c). Based on observing the validation loss, 800 epochs were run for 

the training and it took 12 hours. Twenty realizations of the low dose data sets were 

resampled from the testing data and reconstructed to evaluate the noise performance. Eleven 

background ROIs were chosen in the white matter region to calculate the STD as presented 

in (22). As no ground truth exist in the real data-sets, one lesion was inserted in the white 

matter region of the testing data. The diameters for the lesion inserted in the testing data is 

13.5 mm. For lesion quantification, images with and without the inserted lesion were 

reconstructed and the difference was taken to obtain the lesion only image and compared 

with the ground truth. The lesion contrast recovery was calculated as in (21).
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IV. Results

A. Simulation results

Fig. 6 shows three orthogonal slices of the reconstructed images using different methods. 

From the image appearance, we can see that the proposed iterative CNN method can 

generate images with a higher lung lesion uptake and reveal more vessel details in the lung 

region as compared with the CNN denoising method. Both CNN approaches are better than 

the traditional Gaussian post filtering method as the images have less noise but also keep all 

the detailed features, such as the thin myocardium regions. The fair penalty based method 

has a high lesion uptake, but also has some noise spots showing up in different regions. 

Dictionary learning method has a better noise reduction compared to the fair penalty based 

method. These observations are consistent with the quantitative results shown in Fig. 7. In 

terms of the CR-variance trade-off, the proposed iterative CNN method has the best 

performance among all methods.

B. Lung patient results

Fig. 8 shows three orthogonal slices of the reconstructed images using the lung data-set by 

different methods. We can see that the uptake of the inserted lesion in the iterative CNN 

method is higher than the CNN denoising method, same conclusion as in the simulation 

study. In addition, the iterative CNN method produced the clearest image details in the 

spinal regions compared with all other methods. The fair penalty based method can preserve 

lesion uptake and reduce image noise, but can also present cartoon-like patterns, especially 

in the high uptake regions. Results from dictionary learning method is better than the fair 

penalty based method. Compared with other methods, the result using the iterative CNN 

method has high lesion contrast with lower noise. . The quantitative results are presented in 

Fig. 9. From the figure, we can see that about two-fold STD reduction can be achieved by 

the iterative CNN method, compared with the fair-penalty penalized reconstruction.

C. Brain patient results

Fig. 10 presents three orthogonal slices of the reconstructed images using the test brain data 

set with different methods. For the CNN based methods, the white matter region is clearer 

and more cortices details can be observed compared with other methods. Compared to the 

CNN denoising method, the proposed iterative CNN method has a higher lesion uptake. The 

quantitative results are presented in Fig. 9. We can see that the proposed iterative CNN 

method has the best performance among all methods.

V. Discussion

For denoising methods like toal variation and non-local mean, embedding them into 

reconstruction frameworks can generate better results [53], [54]. It is shown in prior arts that 

CNN is an effective denoising method. Here we used CNN as the image representation and 

embedded it into PET iterative reconstruction framework, trying to outperform the denoisng 

approach. Previously the kernel method has been applied successfully in both static and 

dynamic PET image reconstructions. When using the kernel method, we need to explicitly 

specify the basis function when constructing the kernel matrix. This is not needed for CNN 
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and the whole network representation is more data-driven. The biggest advantage of the 

proposed method is that more generalized prior information, such as the inter-patient 

scanning information, can be included in the image representation. In addition, when the 

prior information is from multiple resources, such as both the temporal and anatomical 

information, it is hard to specify how to combine those information in the kernel method. 

For neural network, we can use multiple input channels to aggregate the information and let 

the network decide the optimum combination in the training phase.

One concern about applying neural network method is whether the bias will arise when the 

network come across new scenarios which it has never seen during training, which is often 

the case in practice. In the lung patient and the brain patient studies, there were no lesions in 

the training data. We can see that the lesion recovery is worse using the CNN denoising 

method compared with the fair penalty based method and the dictionary learning method, 

which demonstrates that the bias is introduced due to the imperfectness of the trained 

network. Compared with the CNN denoising approach, the proposed iterative CNN method 

has a constraint from the measured data, which can help recover some small features that are 

removed or annihilated by the image denoising methods. Higher contrast recovery of the 

lesions shown in the CR-STD plots demonstrated this benefit. We should also notice that the 

observation of better performance for the CNN approaches is relative to the chosen metric: 

CR-STD. Currently we are not sure about the performance of CNN approaches regarding 

other tasks, such as small lesion detection. We can notice some small fine features are lost in 

the brain images shown in Fig. 10 for the CNN and dictionary learning approaches. Further 

quantification based on other tasks are needed to test the robustness of CNN methods.

As for the optimization of the proposed iterative CNN method, the reason to use ADMM 

algorithm is to de-couple the image update step and the network input update step. The 

network input step needs more update steps than the iterative reconstruction step. If they are 

coupled together, every time the network input is updated, we need to compute the forward 

and backward projections. As the computation of forward and backward projections are very 

time-consuming for fully 3D PET, decoupling these two steps will save more computational 

time. Furthermore, after using ADMM algorithm, the image update step in subproblem (10) 

can re-use current PET image reconstruction packages, which makes the proposed method 

more adaptable to traditional iterative reconstruction framework. Apart from the MAP EM 

algorithm employed in this work, other algorithms, such as preconditioned conjugate 

gradient (PCG) algorithm [55], can also be used to solve subproblem (10). The most 

challenging part is subproblem (11) as it is a non-linear problem. As the computation of the 

Jacobian matrix is difficult due to the platform limitation, currently we choose a first-order 

method with Nesterov momentum to solve it. However, it is easy to get trapped in local 

minimums. In our experiment, we found that if the initial value of α is a uniform image, the 

result is very poor. In our proposed solution, we used the EM results after 30 iterations as the 

input, which can make the results more stable. Better optimization methods and more 

effective initial choosing strategies need further investigations. From Fig. 2 we can see that 

when a proper penalty parameter ρ is chosen, the likelihood function will increase steadily. 

We have compared the reconstruction results at 1000 iteration and 2000 iterations, the 

difference is very small. Based on these observations, we think that Algorithm 1 converges.
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During the experiments, we found that if the noise level of the testing data is similar to the 

training data, the performance of the neural network is the best. If there was a mismatch 

between the training and testing data noise levels, the performance would be degraded. 

Hence to have the best improvement using neural network methods, a new training session is 

suggested if the dose level of the test data is outside of the training dose level range. In this 

study, images reconstructed using different iteration numbers were employed during network 

training as they cover different noise levels. This is not the optimum approach as noise 

controlled by iteration number is not the same as noise generated by different count level. 

Better strategies for network pre-training still need further investigations. The network 

structure used in this study is the modified 3D U-net structure, which is a fully convolutional 

network. One drawback of CNN is that it will remove some of the small structures in the 

final output. Though our proposed iterative framework can overcome this issue, better 

network structures, which can preserve more features, can make our proposed iterative 

framework work better. For example, our proposed approach can be also fit for GAN. After 

the generator network is trained through GAN, it can be included into the iterative 

framework based on the proposed method. Besides, though the data model used here is PET, 

it can also be used in CT or MRI reconstruction framework.

Currently only FDG data sets were employed in this study. In addition, in this study 

evaluations of the real data sets are based on inserted lesions. Further evaluations regarding 

other radioactive tracers, real tumor uptakes, as well as more clinical tasks such as 

quantifying target density or measuring blood flow, are our future work.

VI. Conclusion

In this work, we proposed an iterative PET image reconstruction framework by using 

convolutional neural network representation. Both simulated XCAT data and real data sets 

were used in the evaluation. Quantitative results show that the proposed iterative CNN 

method performs better than the CNN denoising method as well as the Gaussian filter and 

penalized reconstruction methods regarding contrast recovery vs. noise trade-offs. Future 

work will focus on exploring better network training approaches as well as further 

evaluations using more clinical data sets regarding different tasks.
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Fig. 1: 
The schematic diagram of the neural network architecture. The feature size after the first 

convolution is 16. Once the image is downsampled through the convolution operation with 

stride 2, the feature size will be multiplied by 2. The spatial size is based on the XCAT and 

lung patient studies. For brain patient study, the third dimension of the spatial size is 91. 3D 

convolution is used and the total number of trainable parameters is around 1.4 million.
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Fig. 2: 
The effect of penalty parameter ρ on the log-likelihood L(y f (α)). Plot is based on the lung 

patient data described in section. III–B.
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Fig. 3: 
The simulated time activity curves based on the kinetic parameters shown in Table I.
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Fig. 4: 
(a) Three example training pairs used in simulation study described in section. III–A; (b) 

three example training pairs used in lung patient study described in section. III–B; (c) three 

example training pairs used in brain patient study described in section. III–C.
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Fig. 5: 
The training and validation loss for the simulation study.
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Fig. 6: 
Three views of the reconstructed images using different methods for the simulation data set. 

From left to right: ground truth, Gaussian denoising,fair penalty based penalized 

reconstruction, dictionary learning based reconstruction, CNN denoising, and the proposed 

iterative CNN reconstruction
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Fig. 7: 
The contrast recovery vs. STD curves using different methods for the simulated data sets. 

Markers are plotted every twenty iterations with the lowest point corresponding to the 20th 

iteration.
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Fig. 8: 
Three views of the reconstructed images using different methods for the lung patient set. 

From left to right: high count reference image, Gaussian denoising,fair penalty based 

penalized reconstruction, dictionary learning based reconstruction, CNN denoising, and the 

proposed iterative CNN reconstruction
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Fig. 9: 
The contrast recovery vs. STD curves using different methods for the real lung data sets. 

Markers are plotted every twenty iterations with the lowest point corresponding to the 20th 

iteration.
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Fig. 10: 
Three views of the reconstructed images using different methods for the brain patient data. 

From left to right: high count reference image, Gaussian denoising,fair penalty based 

penalized reconstruction, dictionary learning based reconstruction, CNN denoising, and the 

proposed iterative CNN reconstruction.
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Fig. 11: 
The contrast recovery vs. STD curves using different methods for the brain data sets. 

Markers are plotted every twenty iterations with the lowest point corresponding to the 20th 

iteration.
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TABLE I:

The mean values of the simulated kinetic parameters of FDG for different organs. V stands for blood volume 

ratio.

Tissue K1 k2 k3 k4 V

Myocardium 0.6 1.2 0.1 0.001 0

Liver 0.864 0.981 0.005 0.016 0

Lung 0.108 0.735 0.016 0.013 0.017

Kidney 0.263 0.299 0 0 0.438

Spleen 1.207 1.909 0.008 0.014 0

Pancreas 0.648 1.64 0.027 0.016 0.107

Muscle/Bone/Soft tissue 0.047 0.325 0.084 0 0.019

Marrow 0.425 1.055 0.023 0.013 0.04

Lung lesion 0.63 0.842 0.092 0.014 0.132
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