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HyperDense-Net: A hyper-densely connected
CNN for multi-modal image segmentation

Jose Dolz, Karthik Gopinath, Jing Yuan, Herve Lombaert, Christian Desrosiers, and Ismail Ben Ayed

Abstract—Recently, dense connections have attracted substantial attention in computer vision because they facilitate gradient flow
and implicit deep supervision during training. Particularly, DenseNet, which connects each layer to every other layer in a feed-forward
fashion, has shown impressive performances in natural image classification tasks. We propose HyperDenseNet, a 3D fully
convolutional neural network that extends the definition of dense connectivity to multi-modal segmentation problems. Each imaging
modality has a path, and dense connections occur not only between the pairs of layers within the same path, but also between those
across different paths. This contrasts with the existing multi-modal CNN approaches, in which modeling several modalities relies
entirely on a single joint layer (or level of abstraction) for fusion, typically either at the input or at the output of the network. Therefore,
the proposed network has total freedom to learn more complex combinations between the modalities, within and in-between all the
levels of abstraction, which increases significantly the learning representation. We report extensive evaluations over two different and
highly competitive multi-modal brain tissue segmentation challenges, iSEG 2017 and MRBrainS 2013, with the former focusing on
6-month infant data and the latter on adult images. HyperDenseNet yielded significant improvements over many state-of-the-art
segmentation networks, ranking at the top on both benchmarks. We further provide a comprehensive experimental analysis of features
re-use, which confirms the importance of hyper-dense connections in multi-modal representation learning. Our code is publicly
available.

Index Terms—Deep learning, brain MRI, segmentation, 3D CNN, multi-modal imaging
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1 INTRODUCTION

MULTI-MODAL imaging is of primary importance for
developing comprehensive models of pathologies

and increasing the statistical power of current imaging
biomarkers [1]. In neuroimaging studies, different magnetic
resonance imaging (MRI) modalities are often combined
to overcome the limitations of independent imaging tech-
niques. While T1-weighted images yield a good contrast
between gray matter (GM) and white matter (WM) tissues,
T2-weighted and proton density (PD) pulses help visualize
tissue abnormalities like lesions. Likewise, fluid attenuated
inversion recovery (FLAIR) images can enhance the image
contrast of white matter lesions resulting from multiple
sclerosis [2]. In brain segmentation, considering multiple
MRI modalities is essential to obtain accurate results. This
is particularly true for the segmentation of infant brains,
where tissue contrast is low (Fig. 1).

Advances in multi-modal imaging, however, come at the
price of an inherently large amount of data, imposing a
burden on disease assessments. Visual inspections of such
an enormous amount of medical images are prohibitively
time-consuming, prone to errors and unsuitable for large-
scale studies. Therefore, automatic and reliable multi-modal
segmentation algorithms are of high interest to the clinical
community.
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Fig. 1. Example of data from a training subject. Neonatal isointense
brain images from a mid-axial T1 slice (left), the corresponding T2 slice
(middle), and manual segmentation (right).

1.1 Prior work

Multi-modal image segmentation in brain-related applica-
tions has received a substantial research attention, for in-
stance, brain tumors [3]–[6], brain tissues of both infant [7]–
[17] and adult [18], [19], subcortical structures [20], among
other problems [21]–[23]. Atlas-propagation approaches are
commonly used in multi-modal scenarios [24], [25]. These
methods rely on registering one or multiple atlases to the
target image, followed by a propagation of manuals labels.
When several atlases are considered, labels from individual
atlases can be combined into a final segmentation via a
label fusion strategy [8], [10], [13]. When relying solely
on atlas fusion, the performance of such techniques might
be limited and prone to registration errors. Parametric or
deformable models [11] can be used to refine prior estimates
of tissue probability [14]. For example, the study in [14]
investigated a patch-driven method for neonatal brain tissue
segmentation, integrating the probability maps of a subject-
specific atlas into a level-set framework.
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More recently, our community has witnessed a wide
adoption of deep learning techniques, particularly, convolu-
tional neural networks (CNNs), as an effective alternative to
traditional segmentation approaches. CNN architectures are
supervised models, trained end-to-end, to learn a hierarchy
of image features representing different levels of abstraction.
In contrast to conventional classifiers based on hand-crafted
features, CNNs can learn both the features and classifier
simultaneously, in a data-driven manner. They achieved
state-of-the-art performances in a broad range of medical
image segmentation problems [26], [27], including multi-
modal tasks [4]–[6], [15]–[17], [19], [22], [23], [28], [29].

1.1.1 Fusion of multi-modal CNN feature representations
Most of the existing multi-modal CNN segmentation tech-
niques followed an early-fusion strategy, which integrates the
multi-modality information from the original space of low-
level features [5], [15], [19], [23], [28], [29]. For instance, in
[15], MRI T1, T2 and fractional anisotropy (FA) images are
simply merged at the input of the network. However, as
argued in [30] in the context of multi-modal learning, it
is difficult to discover highly non-linear relationships be-
tween the low-level features of different modalities, more so
when such modalities have significantly different statistical
properties. In fact, early-fusion methods implicitly assume
that the relationship between different modalities are simple
(e.g., linear). For instance, the early fusion in [15] learns
complementary information from T1, T2 and FA images.
However, the relationship between the original T1, T2 and
FA image data may be much more complex than comple-
mentarity, due to significantly different image acquisition
processes [16]. The work in [16] advocated late fusion of high-
level features as a way that accounts better for the complex
relationships between different modalities. They used an
independent convolutional network for each modality, and
fused the outputs of the different networks in higher-level
layers, showing better performance than early fusion in the
context infant brain segmentation. These results are in line
with a recent study in the machine learning community
[30], which investigated multimodal learning with deep
Boltzmann machines in the context of fusing data from color
images and text.

1.1.2 Dense connections in deep networks
Since the recent introduction of residual learning in [32],
shortcut connections from early to late layers have become
very popular in a breadth of computer vision problems
[33], [34]. Unlike traditional networks, these connections
back-propagate gradients directly, thereby mitigating the
gradient-vanishing problem and allowing deeper networks.
Furthermore, they transform a whole network into a large
ensemble of shallower networks, yielding competitive per-
formances in various applications [19], [35]–[37]. DenseNet
[38] extended the concept of shortcut connections, with
the input of each layer corresponding to the outputs from
all previous layers. Such a dense network facilitates the
gradient flow and the learning of more complex patterns,
which yielded significant improvements in accuracy and
efficiency for natural image classification tasks [38]. Inspired
by this success, recent works have included dense connec-
tions in deep networks for medical image segmentation

[39]–[41]. However, these works have either considered
a single modality [39], [40] or have simply concatenated
multiple modalities in a single stream [41]. So far, the impact
of dense connectivity across multiple network paths, and
its application to multi-modal image segmentation, remains
unexplored.

1.2 Contributions
We propose HyperDenseNet, a 3D fully convolutional neural
network that extends the definition of dense connectiv-
ity to multi-modal segmentation problems. Each imaging
modality has a path, and dense connections occur not only
between the pairs of layers within the same path, but also
between those across different paths; see the illustration in
Fig. 2. This contrasts with the existing multi-modal CNN
approaches, in which modeling several modalities relies
entirely on a single joint layer (or level of abstraction)
for fusion, typically either at the input (early fusion) or
at the output (late fusion) of the network. Therefore, the
proposed network has total freedom to learn more complex
combinations between the modalities, within and in-between
all the levels of abstractions, which increases significantly the
learning representation in comparison to early/late fusion.
Furthermore, hyper-dense connections facilitate the learn-
ing as they improve gradient flow and impose implicit
deep supervision. We report extensive evaluations over two
different1 and highly competitive multi-modal brain tissue
segmentation challenges, iSEG 2017 and MRBrainS 2013.
HyperDenseNet yielded significant improvements over many
state-of-the-art segmentation networks, ranking at the top
on both benchmarks. We further provide a comprehensive
experimental analysis of features re-use, which confirms
the importance of hyper-dense connections in multi-modal
representation learning. Our code is publicly available2.

A preliminary conference version of this work appeared
at ISBI 2018 [42]. This journal version is a substantial
extension, including (1) a much broader, more informa-
tive/rigorous treatment of the subject in the general context
of multi-modal segmentation; and (2) comprehensive ex-
periments with additional baselines and publicly available
benchmarks, as well as a thorough investigation of the
practical usefulness and impact of hyper-dense connections.

2 METHODS AND MATERIALS

Convolutional neural networks (CNNs) are deep models
that can learn feature representations automatically from
the training data. They consist of multiple layers, each
processing the imaging data at a different level of abstrac-
tion, enabling segmentation algorithms to learn from large
datasets and discover complex patterns that can be further
employed for predicting unseen samples. The first attempts
to use CNNs in segmentation problems followed a sliding-
window strategy, where the regions defined by the window
are processed independently, which impedes segmentation
accuracy and computational efficiency. To overcome these

1. iSEG 2017 focuses on 6-month infant data, whereas MRBrainS 2013
uses adult data. Therefore, there are significant differences between the
two benchmarks in term of image data characteristics, e.g, the voxel
spacing and number of available modalities.

2. https://www.github.com/josedolz/HyperDenseNet

https://www.github.com/josedolz/HyperDenseNet
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TABLE 1
Overview of representative works on multi-modal brain segmentation.

Work Modality Target Method

Prastawa et al., 2005 [7] T1,T2 Infant brain tissue Multi-atlas
Weisenfeld et al., 2006 [8] T1,T2 Infant brain tissue Multi-atlas
Deoni et al., 2007 [20] T1,T2 Thalamic nuclei K-means clustering
Anbeek et al., 2008 [9] T2,IR Infant brain tissue KNN
Weisenfeld and Warfield, 2009 [10] T1,T2 Infant brain tissue Multi-atlas
Wang et al., 2011 [11] T1,T2,FA Infant brain tissue Multi-atlas + Level sets
Srhoj et al., 2012 [12] T1,T2 Infant brain tissue Multi-atlas + KNN
Wang et al., 2012 [13] T1,T2 Infant brain tissue Multi-atlas
Wang et al., 2014 [31] T1,T2,FA Infant brain tissue Multi-atlas + Level sets
Kamnitsas et al., 2015 [28] Flair, DWI, T1, T2 Brain lesion 3D FCNN + CRF
Zhang et al., 2015 [15] T1,T2,FA Infant brain tissue 2D CNN

Havaei et al., 2016 [4] T1,T1c,T2,FLAIR Multiple Sclerosis/Brain
tumor 2D CNN

Nie et al., 2016 [16] T1,T2,FA Infant brain tissue 2D FCNN
Chen et al., 2017 [19] T1,T1-IR,FLAIR Brain tissue 3D FCNN
Dolz et al., 2017 [17] T1,T2 Infant brain tissue 3D FCNN
Fidon et al., 2017 [6] T1,T1c,T2,FLAIR Brain tumor CNN

Kamnitsas et al., 2017 [5]
T1,T1c,T2,FLAIR

MPRAGE,FLAIR,T2,PD
Brain tumour/lesions 3D FCNN + CRF

Kamnitsas et al., 2017 [22] MPRAGE,FLAIR,T2,PD Traumatic brain injuries 3D FCNN(Adversarial Training)
Valverde et al., 2017 [23] T1, T2,FLAIR Multiple-sclerosis 3D FCNN

limitations, the network can be viewed as a single non-
linear convolution, which is trained end-to-end, a process
known as fully CNN (FCNN) [43]. The latter brings several
advantages over standard CNNs. It can handle images of ar-
bitrary sizes and avoid redundant convolution and pooling
operations, enabling computationally efficient learning.

2.1 The proposed Hyper-Dense network
The concept of “the deeper the better” is considered as a key
principle in deep learning [32]. Nevertheless, one obstacle
when dealing with deep architectures is the problem of van-
ishing/exploding gradients, which hampers convergence
during training. To address these limitations in very deep ar-
chitectures, the study in [38] investigated densely connected
networks. DenseNets are built on the idea that adding direct
connections from any layer to all the subsequent layers
in a feed-forward manner makes training easier and more
accurate. This is motivated by three observations. First,
there is an implicit deep supervision thanks to the short
paths to all feature maps in the architecture. Second, direct
connections between all layers help improving the flow of
information and gradients throughout the entire network.
Third, dense connections have a regularizing effect, which
reduces the risk of over-fitting on tasks with smaller training
sets.

Inspired by the recent success of densely-connected net-
works in medical image segmentation works [39]–[41], we
propose a hyper-dense architecture for multi-modal image
segmentation that extends the concept of dense connectivity
to the multi-modal setting: each imaging modality has a
path, and dense connections occur not only between lay-
ers within the same path, but also between layers across
different paths (see Fig. 2 for an illustration).

Let xl be the output of the lth layer. In CNNs, this vector
is typically obtained from the output of the previous layer

Fig. 2. A section of the proposed HyperDenseNet in the case of two
image modalities. Each gray region represents a convolutional block.
Red arrows correspond to convolutions and black arrows indicate dense
connections between feature maps.

xl−1 by a mapping Hl composed of a convolution followed
by a non-linear activation function:

xl = Hl

(
xl−1

)
. (1)

A densely-connected network concatenates all feature out-
puts in a feed-forward manner,

xl = Hl

(
[xl−1,xl−2, . . . ,x0]

)
, (2)

where [. . .] denotes a concatenation operation.
Pushing this idea further, HyperDenseNet introduces a

more general connectivity definition, in which we link the
outputs from layers in different streams, each associated
with a different image modality. In the multi-modal setting,
our hyper-dense connectivity yields a much more powerful
feature representation than early/late fusion as the network
learns the complex relationships between the modalities
within and in-between all the levels of abstractions. For sim-
plicity, let us consider the scenario of two image modalities,
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although extension to N modalities is straightforward. Let
x1
l and x2

l denote the outputs of the lth layer in streams 1
and 2, respectively. In general, the output of the lth layer in
a stream s can then be defined as follows:

xs
l = Hs

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]
)
. (3)

Shuffling and interleaving feature map elements in a
CNN was recently found to enhance the efficiency and
performance, while serving as a strong regularizer [44]–
[46]. This is motivated by the fact that intermediate CNN
layers perform deterministic transformations to improve the
performance, however, relevant information might be lost
during these operations [47]. To overcome this issue, it is
therefore beneficial for intermediate layers to offer a variety
of information exchange while preserving the aforemen-
tioned deterministic functions. Motivated by this principle,
we thus concatenate feature maps in a different order for
each branch and layer:

xs
l = Hs

l

(
πs
l ([x

1
l−1,x

2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0])
)
, (4)

with πs
l being a function that permutes the feature maps

given as input. For instance, in the case of two image
modalities, we could have:

x1
l = H1

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]
)

x2
l = H2

l

(
[x2

l−1,x
1
l−1,x

2
l−2,x

1
l−2, . . . ,x

2
0,x

1
0])

Figure 2 shows a section of the proposed architecture,
where each gray region represents a convolutional block.
For simplicity, we assume that the red arrows indicate
convolution operations only, whereas the black arrows rep-
resent the direct connections between feature maps from dif-
ferent layers, within and in-between the different streams.
Thus, the input of each convolutional block (maps before
the red arrow) is the concatenation of the outputs (maps
after the red arrow) of all the preceding layers from both
paths.

2.2 Baselines
To investigate thoroughly the impact of hyper-dense con-
nections between different streams in multi-modal image
segmentation, several baselines were considered. First, we
extended the semi-dense architecture proposed in [17] to a
fully-dense one, by connecting the output of each convo-
lutional layer to all subsequent layers. In this network, we
follow an early-fusion strategy, in which MRI T1 and T2 are
integrated at the input of the CNN and processed jointly
along a single path (Fig. 3, left). The connectivity setting
of this model corresponds to Eq. (2). Second, instead of
merging both modalities at the input of the network, we
considered a late-fusion strategy, where each modality is
processed independently in different streams and learned
features are fused before the first fully connected layer (Fig.
3, middle). In this model, the dense connections are included
within each path, assuming the connectivity definition of
Eq. (2) for each stream.

As last baseline, we used an early fusion model which
combines features from different streams after the first convo-
lutional layer (Fig. 3, right). Since this non-linear combination
of features is re-used in all subsequent layers, the resulting
network is similar to our hyper-dense model of Eq. (3).

However, there are two important differences. First, each
stream in our model processes its input differently, as shown
by the stream-indexed function Hs

l in Eq. (3). Also, as
described above, each stream performs a different shuffling
of inputs, which can enhance robustness to the model and
mitigate the risk of overfitting. Our experiments in Section
3 demonstrate empirically the advantages of our model
compared to this baseline.

2.3 Network architecture
To have a large receptive field, FCNNs typically use full im-
ages as input. The number of parameters is then limited via
pooling/unpooling layers. A problem with this approach is
the loss of resolution from repeated down-sampling oper-
ations. In the proposed method, we follow the strategy in
[5], where sub-volumes are used as input, avoiding pooling
layers. While sub-volumes of size 27×27×27 are considered
for training, we used 35× 35× 35 non-overlapping sub-
volumes during inference, as in [5], [26]. This strategy offers
two considerable benefits. First, it reduces the memory
requirements of our network, thereby removing the need for
spatial pooling. More importantly, it substantially increases
the number of training examples and, therefore, does not
need data augmentation.

TABLE 2
The layers used in the baselines and the proposed architecture and the
corresponding values with an input of size 27×27×27. In the case of
multi-modal images, the convolutional layers (conv x) are present in

any network path. All the convolutional layers have a stride of one pixel.

Conv. kernel # kernels Output Size Dropout

conv 1 3×3×3 25 25×25×25 No
conv 2 3×3×3 25 23×23×23 No
conv 3 3×3×3 25 21×21×21 No
conv 4 3×3×3 50 19×19×19 No
conv 5 3×3×3 50 17×17×17 No
conv 6 3×3×3 50 15×15×15 No
conv 7 3×3×3 75 13×13×13 No
conv 8 3×3×3 75 11×11×11 No
conv 9 3×3×3 75 9×9×9 No
fully conv 1 1×1×1 400 9×9×9 Yes
fully conv 2 1×1×1 200 9×9×9 Yes
fully conv 3 1×1×1 150 9×9×9 Yes
Classification 1×1×1 4 9×9×9 No

Table 2 summarizes the parameters of the baselines and
the proposed HyperDenseNet. The network parameters are
optimized via the RMSprop optimizer, using cross-entropy
as cost function. Let θ denotes the network parameters
(i.e., convolution weights, biases and ai from the parametric
rectifier units), and yvs the label of voxel v in the s-th image
segment. We optimize the following:

J(θ) = − 1

S ·V

S∑
s=1

V∑
v=1

C∑
c=1

δ(yvs = c) · log pvc (xs), (5)

where pvc (xs) is the softmax output of the network for voxel
v and class c, when the input segment is xs.

To initialize the weights of the network, we adopted the
strategy proposed in [48], which yields fast convergence
for very deep architectures. In this strategy, a zero-mean
Gaussian distribution of standard deviation

√
2/nl is used

to initialize the weights in layer l, where nl denotes the
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Single Dense Path Dual Dense Path Disentangled modalities with early fusion

Fig. 3. Section of baseline architectures: single-path dense (left), dual-path dense (middle) with disentangled modalities and disentangled modalities
with early fusion in a single path (right). While both modalities are concatenated at the input of the network in the first case, each modality is analyzed
independently in the second architecture with the features being fused at the end of the streams. Each gray region represents a convolutional block.
Red arrows correspond to convolutions and black arrows indicate dense connections between feature maps. Dense connections are propagated
through the entire network.

number of connections to the units in that layer. Momentum
was set to 0.6 and the initial learning rate to 0.001, being
reduced by a factor of 2 after every 5 epochs (starting from
epoch 10). The network was trained for 30 epochs, each
composed of 20 subepochs. At each subepoch, a total of 1000
samples were randomly selected from the training images
and processed in batches of size 5.

3 EXPERIMENTS AND RESULTS

The proposed HyperDenseNet architecture is evaluated on
challenging multi-modal image segmentation tasks, using
publicly available data from two challenges: infant brain
tissue segmentation, iSEG [49], and adult brain tissue seg-
mentation, MRBrainS3. Quantitative evaluations and com-
parisons with state-of-the-art methods are reported for each
of these applications. First, to evaluate the impact of dense
connectivity on performance, we compared the proposed
HyperDenseNet to the baselines described in Section 2.2 on
infant brain tissue segmentation. Then, our results, com-
piled by the iSEG challenge organizers on testing data,
are compared to those from the other competing teams.
Second, to juxtapose the performance of HyperDenseNet
to other segmentation networks under the same conditions,
we provide a quantitative analysis of the results of current
state-of-the-art segmentation networks for adult brain tissue
segmentation. This includes comparison to the participants
the MRBrainS challenge. Finally, in Section 3.3, we report a
comprehensive analysis of feature re-use.

3.1 iSEG Challenge
The focus of this challenge was to compare (semi-) auto-
matic stat-of-the-art algorithms for the segmentation of 6-
month infant brain tissues in T1- and T2-weighted brain
MRI scans. This challenge was carried out in conjunction
with MICCAI 2017, with a total of 21 international teams
participating in the first round [49].

3.1.1 Evaluation
The iSEG-2017 organizers used three metrics to evaluate
the accuracy of the competing methods: Dice Similarity
Coefficient (DSC) [50], Modified Hausdorff distance (MHD),
where the 95-th percentile of all Euclidean distances is

3. http://mrbrains13.isi.uu.nl

employed, and Average Surface Distance (ASD). The first
measures the degree of overlap between the segmentation
region and ground truth, whereas the other two evaluate
boundary distances.

3.1.2 Results
Validation results: Table 3 reports the performance

achieved by HyperDenseNet and the baselines introduced
in Section 2.2, for CSF, GM and WM brain tissues. The
results were generated by splitting the 10 available iSEG-
2017 volumes into training, validation and testing sets
containing 6, 1 and 3 volumes, respectively. To show that
improvements do not come from the higher number of
learned parameters in HyperDenseNet, we also investigated
a widened version of all baselines, with a similar parameter
size as HyperDenseNet. The number of learned parameters
of all the tested models is given in Table 4. A more detailed
description of the tested architectures can be found in Table
8 of the Supplemental materials (’Supplementary materials
are available in the supplementary files /multimedia tab.’).

We observe that the late fusion of deeper-layer features
in independent paths provides a clear improvement over
the single-path version, with an increase on performance
of nearly 5%. Fusing the feature maps from independent
paths after the first convolutional layer (i.e., Dual-Single)
outperformed the other two baselines by 1-2%, particularly
for WM and GM, which are the most challenging structures
to segment. Also, the results indicate that processing multi-
modal data in separate paths, while allowing dense con-
nectivity between all the paths, increases performance over
early and late fusion, as well as over disentangled modal-
ities with fusion performed after the first convolutional
block. Another interesting finding is that increasing the
number of learned parameters does not bring an important
boost in performance. Indeed, in some tissues (e.g., CSF for
Single path and Dual-Single path architectures), the perfor-
mance slightly decreased when widening the architecture.

Figures 4 and 5 compare the training and validation
accuracy between the baselines and HyperDenseNet. In
these figures, the mean DSC for the three brain tissues
is evaluated during training (Top) and validation (Bottom).
One can see that HyperDenseNet outperforms baselines in
both cases, achieving better results than architectures with a
similar number of parameters. Performance improvements
seen in Table 3, Fig. 4 and Fig. 5 might be due to two factors:

http://mrbrains13.isi.uu.nl
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TABLE 3
Performance on the testing set, in terms of DSC, for the investigated
baselines and the proposed architecture. The best performance is

highlighted in bold.

Architectures CSF WM GM

No connectivity
between paths

Single Path 0.9014 0.8518 0.8370
Single Path∗ 0.9010 0.8532 0.8401
Dual Path 0.9482 0.9078 0.8875
Dual Path∗ 0.9503 0.9089 0.8872

Connectivity
between paths

Dual-Single Path 0.9552 0.9142 0.9008
Dual-Single Path∗ 0.9541 0.9159 0.9017
HyperDenseNet 0.9580 0.9183 0.9035

∗ Widened version.

the high number of direct connections between different
layers, which facilitates back-propagation of the gradient to
shallow layers, and the freedom of the network to explore
more complex patterns thanks to the combination of several
image modalities at any level of abstraction.

Fig. 4. Training accuracy plots for the proposed architecture and the
baselines on the iSeg-2017 challenge data. The first point of each curve
corresponds to the end of the first training epoch.

Fig. 5. Validation accuracy plots for the proposed architecture and the
baselines on the iSeg-2017 challenge data. The first point of each curve
corresponds to the end of the first training epoch.

The computational efficiency of HyperDenseNet and
baselines is compared in Table 4. As expected, inference
times are proportional to the number of model parameters.
While the lightest architecture needs around 45 seconds to

segment a whole 3D brain, HyperDenseNet performs the
same task in less than 2 minutes. This is acceptable from a
clinical point of view.

Figure 6 depicts visual results for the subject used in val-
idation. It can be seen that, in most cases, HyperDenseNet
typically recovers thin regions better than the baselines,
which can explain the improvements observed for distance-
based metrics. As confirmed in Table 3, this effect is most
prominent in the boundaries between the gray and white
matter. Furthermore, HyperDenseNet produces fewer false
positives for WM than the baselines, which tend to over-
estimate the segmentation in this region.

Challenge results: Table 5 compares the segmenta-
tion accuracy of HyperDenseNet to that of top-5 ranking
methods in the first round of the iSEG Challenge, as well as
to all the methods in the second round of submission. We
observe that our network ranked among the top-3 methods
in 6 out of 9 metrics, considering the results of the first and
second rounds of submissions.

A noteworthy point is the general performance decrease
of all the methods for the segmentation of GM and WM,
with lower DSC and larger ASD values. This confirms that
segmenting these tissues is more challenging due to the
unclear boundaries between them.

3.2 MRBrainS Challenge
The MRBrainS challenge was initially proposed in conjunc-
tion with MICCAI 2013. It focuses on adult brain tissue seg-
mentation in the context of aging, based on three modalities:
MRI T1, MRI T1 Inversion Recovery (IR) and MR-FLAIR. To
this day, a total of 47 international teams have participated
in this challenge.

3.2.1 Evaluation
The organizers used three types of evaluation measures: a
spatial overlap measure (DSC), a boundary distance mea-
sure (MHD) and a volumetric measure (the percentage of
absolute volume difference).

3.2.2 Architectures for comparison
We compare HyperDenseNet to three state-of-the-art net-
works for medical image segmentation. The first architec-
ture is a 3D fully convolutional neural network with resid-
ual connections [51], which we denote as FCN Res3D. The
second one, referred to as UNet3D, is a U-Net [52] model
with residual connections in the encoder and 3D volumes
as input. Finally, our comparison also includes DeepMedic
[5], which showed an outstanding performance in brain
lesion segmentation. The implementation details of these
architectures are described in Supplemental materials (Sup-
plementary materials are available in the supplementary
files /multimedia tab).

3.2.3 Results
Validation results: We performed a leave-one-out-

cross-validation (LOOCV) on the 5 available MRBrainS
datasets, using 4 subjects for training and one for validation.
We trained and tested models three times, each time using a
different subject for validation, and measured the average
accuracy over these three folds. For this experiment, we
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TABLE 4
Number of parameters (convolution, fully-connected and total) and inference times of the baselines and the proposed architecture. Widened

versions of the baselines, which we denoted using superscript ∗, are also included.

Architecture Nb. of parameters Time (sec)
Conv. Fully-conn. Total

Single Path 2,380,050 290,600 2,670,650 43.67 (±8.37)
Single Path∗ 9,518,850 470,600 9,989,450 101.63 (±12.65)
Dual Path 4,760,100 470,600 5,230,700 64.57 (±9.45)
Dual Path∗ 9,381,960 614,600 9,996,560 104.31 (±11.65)
Dual-Single Path 2,666,760 300,600 2,968,200 47.33 (±8.74)
Dual-Single Path∗ 9,518,850 470,600 9,989,450 103.64 (±13.61)
HyperDenseNet 9,518,850 830,600 10,349,450 105.67 (±14.74)
∗ Widened version.

Fig. 6. Qualitative results of segmentation achieved by the baselines and HyperDenseNet on two validation subjects (each row shows a different
subject). The green squares indicate some spots, where HyperDenseNet successfully reproduced the ground-truth whereas the baselines failed.
Some regions where HyperDenseNet yielded incorrect segmentations are outlined in red.

TABLE 5
Results on the iSEG-2017 data for HyperDenseNet and the methods ranked in the top-5 at the first round of submissions (in alphabetical order).
The bold fonts highlight the best performances. Note: The reported values were obtained from the challenge organizers at the time of submitting

this manuscript, in February 2018. For an updated ranking, see the iSEG-2017 Challenge website for first
(http://iseg2017.web.unc.edu/rules/results/) and second (http://iseg2017.web.unc.edu/evaluation-on-the-second-round-submission/) rounds of

submission. The method referred to as LIVIA is a previous work from our team [17].

Method CSF GM WM

DSC MHD ASD DSC MHD ASD DSC MHD ASD

First round (Top 5)

Bern IPMI 0.954 9.616 0.127 0.916 6.455 0.341 0.896 6.782 0.398
LIVIA (ensemble) 0.957 9.029 0.138 0.919 6.415 0.338 0.897 6.975 0.376
MSL SKKU 0.958 9.072 0.116 0.919 5.980 0.330 0.901 6.444 0.391
nic vicorob 0.951 9.178 0.137 0.910 7.647 0.367 0.885 7.154 0.430
TU/e IMAG/e 0.947 9.426 0.150 0.904 6.856 0.375 0.890 6.908 0.433

Second round (All methods)

CatholicU 0.916 10.970 0.241 0.842 7.283 0.546 0.819 8.239 0.675
MSL SKKU 0.958 9.112 0.116 0.923 5.999 0.321 0.904 6.618 0.375
BCH CRL IMAGINE 0.960 8.850 0.110 0.926 9.557 0.311 0.907 7.104 0.360
HyperDenseNet (Ours) 0.956 9.421 0.120 0.920 5.752 0.329 0.901 6.660 0.382

used all three modalities (i.e., T1, T1 IR and FLAIR) for all competing methods. In a second set of experiments,

http://iseg2017.web.unc.edu/rules/results/
http://iseg2017.web.unc.edu/evaluation-on-the-second-round-submission/
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we assessed the impact of integrating multiple imaging
modalities on the performance of HyperDenseNet using all
possible combinations of two modalities as input.

Table 6 reports the mean DSC and standard-deviation
values of tested models, with FCN Res3D exhibiting the
lowest mean DSC. This performance might be explained
by the transpose convolutions in FCN Res3D, which may
cause voxel misclassification within small regions. Further-
more, the downsampling and upsampling operations in
FCN Res3D could make the feature maps in hidden layers
sparser than the original inputs, causing a loss of image
details. A strategy to avoid this problem is having skip
connections as in UNet3D, which propagate information at
different levels of abstraction between the encoding and
decoding paths. This can be be observed in the results,
where UNet3D clearly outperforms FCN Res3D in all the
metrics.

Moreover, DeepMedic obtained better results than its
competitors, yielding a performance close to the different
two-modality configurations of HyperDenseNet. The dual
multiscale path is an important feature of DeepMedic which
gives the network a larger receptive field via two paths,
one for the input image and the other processing a low-
resolution version of the input. This, in addition to the
removal of pooling operations in DeepMedic, could explain
the increase in performance with respect to FCN Res3D and
UNet3D.

Comparing the different modality combinations, the
two-modality versions of HyperDenseNet yielded competi-
tive performances, although there is a significant variability
between the three configurations. Using only MRI T1 and
FLAIR places HyperDenseNet first for two DSC measures
(GM and WM), and second for the remaining measure
(CSF), even though competing methods used all three
modalities. However, HyperDenseNet with three modalities
yields significantly better segmentations, with the highest
mean DSC values for all three tissues.

Challenge results: The MRBrainS challenge organiz-
ers compiled the results and a ranking of 47 international
teams4. In Table 7, we report the results of the top-10
methods. We see that HyperDenseNet ranks first among
competing methods, obtaining the highest DSC and HD
for GM and WM. Interestingly, the BCH CRL IMAGINE
and MSL SKKU teams participated in both iSEG and
MRBrains2013 challenges. While these two networks out-
performed HyperDenseNet in the iSEG challenge, the
performance of our Model was noticeably superior in
the MRBrains challenge, with HyperDenseNet ranked 1st,
MSL SKKU ranked 4th and BCH CRL IMAGINE ranked
18th (Ranking of February 2018). Considering the fact that
three modalities are employed in MRBrains, unlike the two
modalities used in iSEG, these results suggest that Hyper-
DenseNet has stronger representation-learning power as the
number of modalities increases.

A typical example of segmentation results is depicted in
Fig. 7. In these images, red arrows indicate regions where
the two-modality versions of HyperDenseNet fail in com-
parison to the three-modality version. As expected, most
errors of these networks occur at the boundary between the

4. http://mrbrains13.isi.uu.nl/results.php

GM and WM (see images in Fig. 1, for example). Moreover,
we observe that HyperDenseNet using three modalities can
handle thin regions better than its two-modality versions.

Fig. 7. A typical example of the segmentations achieved by the proposed
HyperDenseNet in a validation subject (Subject 1 in the training set) for
2 and 3 modalities. The red arrows indicate some of the differences
between the segmentations. For instance, one can see here that Hyper-
DenseNet with three modalities can handle thin regions better than its
two-modality versions.

3.3 Analysis of features re-use
Dense connectivity enables each network layer to access
feature maps from all its preceding layers, strengthening
feature propagation and encouraging feature re-use. To in-
vestigate the degree at which features are used in the trained
network, we computed, for each convolutional layer, the
average L1-norm of connection weights to previous layers
in any stream. This serves as a surrogate for the dependency
of a given layer on its preceding layers. We normalized the
values between 0 and 1 to facilitate visualization.

Figure 8 depicts the weights of HyperDenseNet trained
with two modalities, for both iSEG and MRBrainS chal-
lenges. As the MRBrainS dataset contains three modalities,
we have three different two-modality configurations. The
average weights for the case of three modalities are shown
in Fig. 9. A dark square in these plots indicates that the
target layer (on x-axis) makes a strong use of the features
produced by the source layer (on y-axis). An important
observation that one can make from both figures is that,
in most cases, all layers spread the importance of the con-
nections over many previous layers, not only within the
same path, but also from the other streams. This indicates
that shallow layer features are directly used by deeper
layers from both paths, which confirms the usefulness of
hyper-dense connections for information flow and learning
complex relationships between modalities within different
levels of abstractions.

Considering challenge datasets separately, for Hyper-
DenseNet trained on iSEG (top row of Fig 8), immediate pre-
vious layers have typically higher impact on the connections
from both paths. Furthermore, the connections having ac-
cess to MRI T2 features typically have the strongest values,
which may indicate that T2 is more discriminative than T1 in
this particular situation. We can also observe some regions

http://mrbrains13.isi.uu.nl/results.php
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TABLE 6
Comparison to several state-of-the-art 3D networks on the MRBrainS challenge.

Method Mean DSC (std dev)

CSF GM WM

FCN Res3D [53] (3-Modalities) 0.7685 (0.0161) 0.8163 (0.0222) 0.8607 (0.0178)
UNet3D [52] (3-Modalities) 0.8218 (0.0159) 0.8432 (0.0241) 0.8841 (0.0123)
DeepMedic [5] (3-Modalities) 0.8292 (0.0094) 0.8522 (0.0193) 0.8884 (0.0137)

HyperDenseNet (T1-FLAIR) 0.8259 (0.0133) 0.8620 (0.0260) 0.8982 (0.0138)
HyperDenseNet (T1 IR-FLAIR) 0.7991 (0.0181) 0.8226 (0.0255) 0.8654 (0.0087)
HyperDenseNet (T1-T1 IR) 0.8191 (0.0297) 0.8498 (0.0173) 0.8913 (0.0082)
HyperDenseNet (3-Modalities) 0.8485 (0.0078) 0.8663 (0.0247) 0.9016 (0.0109)

TABLE 7
Results of the MRBrainS challenge of different methods (DSC, HD (mm) and AVD). Only the top-10 methods are included in this table. Note: The

reported values were obtained from the challenge organizers after submitting our results, in February 2018. For an updated ranking, see the
MRBrainS Challenge website (http://mrbrains13.isi.uu.nl/results.php).

Method GM WM CSF Sum
DSC HD AVD DSC HD AVD DSC HD AVD

HyperDenseNet (ours) 0.8633 1.34 6.19 0.8946 1.78 6.03 0.8342 2.26 7.31 48
VoxResNet [19] + Auto-context 0.8615 1.44 6.60 0.8946 1.93 6.05 0.8425 2.19 7.69 54
VoxResNet [19] 0.8612 1.47 6.42 0.8939 1.93 5.84 0.8396 2.28 7.44 56
MSL-SKKU 0.8606 1.52 6.60 0.8900 2.11 5.54 0.8376 2.32 6.77 61
LRDE 0.8603 1.44 6.05 0.8929 1.86 5.83 0.8244 2.28 9.03 61
MDGRU 0.8540 1.54 6.09 0.8898 2.02 7.69 0.8413 2.17 7.44 80
PyraMiD-LSTM2 0.8489 1.67 6.35 0.8853 2.07 5.93 0.8305 2.30 7.17 83
3D-UNet [52] 0.8544 1.58 6.60 0.8886 1.95 6.47 0.8347 2.22 8.63 84
IDSIA [54] 0.8482 1.70 6.77 0.8833 2.08 7.05 0.8372 2.14 7.09 100
STH [55] 0.8477 1.71 6.02 0.8845 2.34 7.67 0.8277 2.31 6.73 112

with high (> 0.5) feature re-use patterns from shallow to
deep layers. The same behaviour is seen for HyperDenseNet
trained on two modalities from the MRBrainS challenge,
where immediate previous layers have a high impact on
the connections within and in-between the paths. The re-
use of low-level features by deeper layers is more evident
than in the previous case. For example, in HyperDenseNet
trained with T1-IR and FLAIR, deep layers in the T1-IR path
make a strong use of features extracted in shallower layers
of the same path, as well as in the path corresponding to
FLAIR. This strong re-use of early features from both paths
occurred across all tested configurations. The same pattern
is observed when using three modalities (Fig 9), with a
strong re-use of shallow features from the network’s last
layers. This reflects the importance of giving deep layers
access to early-extracted features. Additionally, it suggests
that learning how and where to fuse information from
multiple sources is more effective than combining these
sources in early or late stages.

4 CONCLUSION

This study investigated a hyper-densely connected 3D fully
CNN, HyperDenseNet, with applications to brain tissue
segmentation in multi-modal MRI. Our model leverages
dense connectivity beyond recent works [39]–[41], exploit-
ing the concept in multi-path architectures. Unlike these
works, dense connections occur not only within the stream
of individual modalities, but also across differents streams.

This give the network total freedom to explore com-
plex combinations between features of different modalities,
within and in-between all levels of abstraction. We reported
a comprehensive evaluation using the benchmarks of two
highly competitive challenges, iSEG-2017 for 6-month in-
fant brain segmentation and MRBrainS for adult data, and
showed state-of-the-art performances of HyperDenseNet
on both datasets. Our experiments provided new insights
on the inclusion of short-cut connections in deep neural
networks for segmentating medical images, particularly
in multi-modal scenarios. In summary, this work demon-
strated the potential of HyperDenseNet to tackle challeng-
ing medical image segmentation problems involving multi-
modal volumetric data.
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Supplemental Materials

Datasets

iSEG
Images were acquired at the UNC-Chapel Hill on a Siemens
head-only 3T scanner with a circular polarized head coil,
and were randomly chosen from the pilot study of the
Baby Connectome Project (BCP)5. During scan, infants were
asleep, unsedated and fitted with ear protection, with the
head secured in a vacuum-fixation device. T1-weighted im-
ages were acquired with 144 sagittal slices using the follow-
ing parameters: TR/TE = 1900/4.38 ms, flip angle = 7◦ and
resolution = 1×1×1 mm3. Likewise, T2-weighted images
were obtained with 64 axial slices, TR/TE = 7380/119 ms,
flip angle = 150◦ and resolution =1.25×1.25×1.95 mm3. T2
images were linearly aligned onto their corresponding T1
images. All the images were resampled into an isotropic
1×1×1 mm3 resolution. Standard image pre-processing
steps were then applied using in-house tools, including
skull stripping, intensity inhomogeneity correction, and re-
moval of the cerebellum and brain stem. For this appli-
cation, 9 subjects were employed for training and 1 for
validation. To obtain manual annotations, the organizers
used 24-month follow-up scans to generate an initial au-
tomatic segmentation for 6-month subjects by employing
a publicly available software iBEAT 6. Then, based on the
initial automatic contours, an experienced neuroradiologist
corrected manually the segmentation errors (based on both
T1 and T2 images) and geometric defects via ITK-SNAP,
with surface rendering.

MRBrainS
20 subjects with a mean age of 71 ± 4 years (10 male, 10
female) were selected from an ongoing cohort study of older
(65 − 80 years of age), functionally-independent individu-
als without a history of invalidating stroke or other brain
diseases [56]. To test the robustness of the segmentation
algorithms in the context of aging-related pathology, the
subjects were selected to have varying degrees of atrophy
and white-matter lesions, and the scans with major artifacts
were excluded. The following sequences were acquired and
used for the evaluation framework: 3D T1 (TR: 7.9 ms, TE:
4.5 ms), T1-IR (TR: 4416 ms, TE: 15 ms, and TI: 400 ms)
and T2- FLAIR (TR: 11000 ms, TE: 125 ms, and TI: 2800
ms). The sequences were aligned by rigid registration using
Elastix [57], along with a bias correction performed using
SPM8 [58]. After the registration, the voxel size within all
the provided sequences (T1, T1 IR, and T2 FLAIR) was
0.96×0.96×3.00 mm3. Five subjects that were representa-
tive for the overall data (2 male, 3 female and varying
degrees of atrophy and white-matter lesions) were selected
for training. The remaining fifteen subjects were provided
as testing data. While ground truth was provided for the
5 training subjects, manual segmentations were unknown
for the testing data set. The following structures were seg-
mented and were available for training: (a) cortical gray
matter, (b) basal ganglia, (c) white matter, (d) white matter

5. http://babyconnectomeproject.org
6. http://www.nitrc.org/projects/ibeat/

lesions, (e) peripheral cerebrospinal fluid, (f) lateral ventri-
cles, (g) cerebellum and (h) brainstem. These structures can
be merged into gray matter (a-b), white matter (c-d), and
cerebrospinal fluid (e-f). The cerebellum and brainstem were
excluded from the evaluation. Manual segmentations were
drawn on the 3mm slice thickness scans by employing an
in-house manual segmentation tool based on the contour
segmentation objects tool in Mevislab7, starting with the
inner most structures. While the outer border of the CSF
was segmented using both T1 and T1 IR scans, the other
regions were segmented on the T1 scan.

Performance metrics

Dice similarity coefficient (DSC)

Let Vref and Vauto be, respectively, the reference and auto-
matic segmentations of a given tissue class and for a given
subject. The DSC for this subject is defined as

DSC
(
Vref , Vauto

)
=

2 | Vref ∩ Vauto |
| Vref | + | Vauto |

(6)

DSC values are within a [0, 1] range, 1 indicating perfect
overlap and 0 corresponding to a total mismatch.

Average volume distance (AVD)

Using the same definitions for Vauto and Vref , AVD corre-
sponds to

AVD
(
Vref , Vauto

)
=
| Vref − Vauto |

Vref
· 100 (7)

Modified Hausdorff distance (MHD)

Let Pref and Pauto denote the sets of voxels within the ref-
erence and automatic segmentation boundary, respectively.
MHD is given by

MHD
(
Pref , Pauto

)
= max

{
max
q∈Pref

d(q, Pauto), max
q∈Pauto

d(q, Pref)
}
,

(8)
where d(q, P ) is the point-to-set distance defined by:
d(q, P ) = minp∈P ‖q − p‖, with ‖.‖ denoting the Euclidean
distance. Low MHD values indicate high boundary similar-
ity.

Average surface distance (ASD)

Using the same notation as the Hausdorff distance above,
the ASD corresponds to

ASD
(
Pref , Pauto

)
=

1

|Pref |
∑

p∈Pref

d(p, Pauto), (9)

where |.| denotes the cardinality of a set. In distance-based
metrics, smaller values indicate higher proximity between
two point sets and, thus, a better segmentation.

7. https://www.mevislab.de/
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Implementation details
We extended our 3D FCNN architecture proposed in [26],
which is based on Theano. The source code of this ar-
chitecture is publicly available8. Training and testing was
performed on a server equipped with a NVIDIA Tesla P100
GPU with 16 GB of RAM memory. Training HyperDenseNet
took around 70 min per epoch, and around 35 hours in total
for the two-modality version. With three image modalities,
training each epoch took nearly 3 hours. Inference on a
whole 3D MR scan took on average from 70-80 to 250-270
seconds, for the two- and three-modality versions, respec-
tively.

The number of kernels per layer in each of the baselines
and the proposed network are detailed in Table 8.

TABLE 8
Number of kernels (in convolutional and fully-connected layers) of the

baselines and the proposed architecture. The architecture with two
paths have the same number of kernels in both paths for the same

convolutional block.

Architecture Conv. kernels Fully-conn. kernels

Single Path [25, 25, 25, 50, 50, 50, 75, 75, 75] [400, 200, 150]
Single Path∗ [50, 50, 50, 75, 75, 75, 150, 150, 150] [400, 200, 150]
Dual Path [25, 25, 25, 50, 50, 50, 75, 75, 75] [400, 200, 150]
Dual Path∗ [40, 40, 40, 70, 70, 70, 100, 100, 100] [400, 200, 150]
Dual-Single Path [25, 25, 25, 50, 50, 50, 75, 75, 75] [400, 200, 150]
Dual-Single Path∗ [25, 50, 50, 100, 100, 100, 150, 150, 150] [400, 200, 150]
HyperDenseNet [25, 25, 25, 50, 50, 50, 75, 75, 75] [400, 200, 150]
∗ Widened version.

FCN Res3D
The architecture of FCN Res3D consists on 5 convolutional
blocks with residual units on the encoder path, with 16, 64,
128, 256 and 512 kernels. The decoding path contains 4 con-
volutional upsampling blocks, each composed of 4 kernels,
one per class. At each residual block, batch normalization
and a Leaky ReLU with a leakage value of 0.1 are employed
before the convolution. Instead of including max-pooling
operations to re-size the images, stride values of 2 × 2 ×
2 are used in layers 2, 3 and 4. Volume size at the input of
the network is 64 × 64 × 24. The implementation of this
network is provided in [53] 9.

UNet3D
Although quite similar to FCN Res3D, UNet3D presents
some differences, particularly in the decoding path. It con-
tains 9 convolutional blocks in total, 4 in the encoding
and 5 in the decoding path. The number of kernels in the
encoding path are 32, 64, 128 and 256, with strides of 2
× 2 × 2 at layers 2, 3 and 4. In the decoding path, the
number of kernels are 256, 128, 64, 32 and 4, from the
first to the last layer. Furthermore, skip connections are
added at the convolutional blocks of the same scale between
the encoding and decoding paths. As in FCN Res3D, batch
normalization and a Leaky ReLU with a leakage value of 0.1
are employed before the convolution at each block. Volume
size at the input of the network is also 64 × 64 × 24. The
implementation is provided in [53].

8. https://github.com/josedolz/SemiDenseNet
9. https://github.com/DLTK/DLTK

DeepMedic
We used the default architecture of DeepMedic in our ex-
periments. This architecture includes two paths with 8 con-
volutional blocks: 30, 30, 40, 40, 40, 40, 50, 50 kernels of
size 3×3×3. At the end of both paths, two fully connected
convolutional layers with 150 1×1×1 filters each are added,
before the last classification layer. The second path is used
with a low-resolution version of the input at the first path,
for a larger receptive field. The input patch size is 27×27×27
and 35×35×35 for training and segmentation, respectively.
The official code 10 is employed to evaluate this architecture.

10. https://github.com/Kamnitsask/deepmedic
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