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Abstract

Quasi-static elasticity imaging techniques rely on model-based mathematical inverse methods to 

estimate mechanical parameters from force-displacement measurements. These techniques 

introduce simplifying assumptions that preclude exploration of unknown mechanical properties 

with potential diagnostic value. We previously reported a data-driven approach to elasticity 

imaging using artificial neural networks (NNs) that circumvents limitations associated with model-

based inverse methods. NN constitutive models can learn stress-strain behavior from force-

displacement measurements using the Autoprogressive method (AutoP) without prior assumptions 

of the underlying constitutive model. However, information about internal structure was required. 

We invented Cartesian neural network constitutive models (CaNNCMs) that learn the spatial 

variations of material properties. We are presenting the first implementation of CaNNCMs trained 

with AutoP to develop data-driven models of 2-D linear-elastic materials. Both simulated and 

experimental force-displacement data were used as input to AutoP to show that CaNNCMs are 

able to model both continuous and discrete material property distributions with no prior 

information of internal object structure. Furthermore, we demonstrate that CaNNCMs are robust to 

measurement noise and can reconstruct reasonably accurate Young’s modulus images from a 

sparse sampling of measurement data. CaNNCMs are an important step toward clinical use of 

data-driven elasticity imaging using AutoP.

I. INTRODUCTION

QUASI-STATIC ultrasonic elastography (QUSE) is generally an ill-posed inverse problem 

because we cannot normally acquire all of the data necessary to solve for material properties 
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exactly. Instead we impose assumptions by selecting, for example, a plane-strain linear-

elastic constitutive model that constrains the problem to closely match the data that can be 

acquired. The data typically are acquired by slowly pressing the US probe into the tissue 

surface while capturing RF echo frames. Speckle-tracking algorithms applied to RF data 

estimate internal axial displacements (along the direction of US beam propagation) resulting 

from the quasi-static loading. At most, each measured data set contains force applied by the 

US probe, motion of the probe, and internal deformation of a tissue volume sampled within 

a finite plane. Model-based inverse methods can be expressed as an objective function that is 

minimized by seeking a pre-defined set of model parameters at position x, θ(x),

θ(x) = argmin
θ x ∈ ℝ

∑
n = 1

Np
∑

k = 1

Nd
fu uk

n θ x , uk
n , (1)

where Np refers to the number of measured data sets, Nd is the number of measured 

displacements in each of the Np sets, uk
n are the measured displacement vectors, uk

n are 

displacements estimated via a forward problem (e.g., via finite element analysis (FEA)), and 

fu is often the L2 norm of their difference. If the total deformation is small and applied 

slowly, soft tissues are often assumed to be linear-elastic, isotropic, and incompressible, 

leaving the spatial distribution of the Young’s modulus to be estimated (θ(x) = E(x)). That 

is, if θ(x) is a vector composed of nonzero elements from the constitutive matrix, then this 

model assumes Young’s modulus E(x) is the only unknown. With larger deformations 

applied quickly, tissues exhibit non-linear [1], [2] and viscoelastic [3] material properties 

that require models with more parameters and force-displacement measurements acquired 

over time.

Accurately estimating material properties requires acquisition of more force-displacement 

data than can be obtained using pulse-echo US imaging. Barbone and Bamber proved that a 

single displacement measurement is insufficient to uniquely estimate Youngs modulus [4]. 

Barbone et al. later showed that the Young modulus distribution can be determined up to a 

multiplicative constant if multiple displacement measurements are available [5]. Instead of 

relying on multiple displacement measurements, other approaches to the inverse problem 

include a priori information [6] and/or regularization [7]–[9]. More recently, Tyagi et al. [10] 

demonstrated how measurements of the surface force applied by the US probe [11], [12] can 

provide the additional information necessary to estimate the magnitude of the Young’s 

modulus distribution, not just the relative values. Other investigators have proposed a 

method using only surface information to reconstruct the interior modulus distribution [13], 

[14]. QUSE has also been extended to the estimation of non-linear and viscoelastic 

properties of tissues [15]–[22], which provides more diagnostic information than the Young 

modulus [23], [24]. For a comprehensive review of model-based methods, see [25].

Model-based methods provide no means for discovering new diagnostically-relevant 

mechanical properties or for exploring ranges of known model parameters for relevance in a 

given situation. Consequently, we adopt a data-driven approach that first provides a 

nonparametric method for estimating stresses and strains from force and displacement 
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measurements. Then, from stresses and strains, any and all models can be tested to find 

those parameters with the most diagnostic potential.

We previously described the first steps in the development of our approach using neural 

network constitutive models (NNCMs) and the Autoprogressive Method (AutoP) [26]. 

AutoP combines FEA and artificial neural networks (NNs) to build data-driven constitutive 

models from force-displacement data [27]. AutoP has been used in many civil and 

geotechnical engineering applications to model linear, nonlinear, path-dependent, and time-

dependent material properties [28]–[35]. Force-displacement measurement data are 

iteratively applied in two separate FEAs operating on one mesh to estimate increasingly 

accurate distributions of stresses and strains. From these data, NNCMs gradually learn 

material properties. This is possible as the equilibrium and compatibility conditions imposed 

by the FEAs are able to consistently convert force and displacements into stresses and 

strains, which in turn are made consistent with the data through the NNCM. The goal of 

AutoP is to reconcile the stress-strain distributions estimated when force or displacement 

measurements are applied to a FE model by training the NNCM. Unlike model-based 

methods, NNCMs are theoretically flexible enough to approximate any physically realizable 

stress-strain relationship without a prior assumption of the underlying material behavior.

II. METHODS

All prior implementations of AutoP for mechanical modeling have used a form of material 

property networks (MPN, left side of Fig. 1) that accept a strain vector at the input and 

return a stress vector at the output (i.e., Rm : ε → σ). MPNs characterizing viscoelastic or 

non-linear material properties must also include stress and strain history points at the input 

(e.g., [33], [36]. Strain values applied to the input of the MPN were scaled by a vector Sε 

whereas the stresses at the output were scaled by the vector Sσ. However, MPNs are mapped 

to specific homogeneous regions of the FE mesh and thus are only effective when the 

internal geometry of the object is known. Without spatial information at the input of the 

network, a MPN is unable to learn spatially-varying material property distributions. 

Therefore, we invented Cartesian NNCMs (CaNNCMs) that simultaneously learn material 

property and geometric information.

The architecture of a CaNNCM is depicted in Fig. 1 and its core theory of operation is 

described in [37]. It is comprised of both a MPN and spatial network (SN). The structure 

and function of the MPN is unchanged, but the addition of the SN allows this pair of 

cooperating networks to learn spatially varying material properties. The MPN learns a 

“reference” stress-strain relationship whereas the SN learns how the object deviates from the 

reference as a function of position. Outputs from the SN are spatially varying strain scaling 

vectors, Sε Sx
ε, meaning the SN transforms the strain vectors input to the MPN. The SN 

can be represented by the function Rs : x Sx
ε.

While previous work with NNCMs and AutoP demonstrate the ability to learn complex 

material properties [31]—[34], [38], the initial network architecture introduced in this report 

is limited to 2-D, linear-elastic, isotropic materials. In this case, the MPN effectively learns a 

plane-stress relationship with a constant Young’s modulus whereas the SN learns relative 
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stiffness. Results of prior work with AutoP leads us to believe that CaNNCMs will be 

capable of capturing nonlinear and viscoelastic behaviors in 3-D as we further develop this 

method.

A CaNNCM replaces the constitutive model in (1) and the objective function is minimized 

when the network learns the spatially-varying stress-strain relationship described by the 

measured data:

Rm, Rs = argmin
Rθm, Rθs ∈ ℝ

∑
n = 1

Np
∑

k = 1

Nd
fu uk

n Rm, Rs , uk
n , (2)

where Rθm refers to the weights of the MPN and Rθs, are the weights of the SN. Here, fu(·) 

is the L1 norm of the difference between measured uk
n and computed displacements. We use 

an L1 norm in this case rather than an L2 norm to reduce the effects of extensive outliers. We 

describe in the next section how the computed displacements arise in AutoP.

Equation (2) is useful as a description of the inverse problem but misses the nuances of our 

data-driven approach. First, in model-based methods the error computed by fu(·) would 

directly affect the choice of parameter values. Gradient-descent based schemes are typically 

employed to gradually adjust parameters values based on error gradients. However, we will 

describe in Sec. II-A how (2) is used to determine if the CaNNCM has learned the material 

properties consistent with the data, but has no bearing on the weight update procedure. That 

is, the error computed by fu(·) only indirectly affects Rθm or Rθs. Second, weights of the 

MPN and SN do not map directly to material parameters. There is no weight in either 

network that represents Young’s modulus. The MPN and SN together define the function 

Rm, Rs : ε(x) → (x). Image reconstruction occurs by relating the mechanical behavior 

learned by CaNNCMs to a chosen constitutive model after training. Even though modeling 

errors are still possible, the benefit lies in the potential for using a CaNNCM to estimate the 

parameters that might apply to any constitutive model.

We will show in the following section how AutoP is used to minimize (2) by reconciling 

stresses and strains estimated by the CaNNCM being trained. Then, using force-

displacement measurements acquired through simulation and experimentally, we will 1) 

demonstrate the ability of CaNNCMs to learn stress and strain maps and ultimately 

reconstruct accurate Young’s modulus images and 2) explore how sampling affects the 

ability of CaNNCMs to learn these properties. This last objective is part of our ongoing 

investigation to determine how data should be sampled in time and space to accurately 

estimate all stresses and strains.

A. The Autoprogressive Method

Training CaNNCMs requires an adjustment to the AutoP procedure described in prior 

reports [26], [27]. AutoP uses FEA to compute stresses and strains in response to force and 

displacement load increments. Internal In and external Pn forces are balanced for boundary 

conditions (BCs) applied in the nth load increment in the solution of a FEA [39]:

Hoerig et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P n = In (3)

In = In − 1 + KnΔUn (4)

KnΔUn = P n − In − 1 (5)

Kn = ∑
e = 1

Ne ∫Ωe
Be

T Dn x
CaNNCM

BedΩe (6)

In − 1 = ∑
e = 1

Ne ∫Ωe
Be

T σn − 1 x
CaNNCM

dΩe (7)

where Kn is the tangent stiffness matrix computed in the nth load increment, ΔUn is the 

vector of displacement increments, Pn is the vector of applied surface forces, and In is the 

vector of internal resisting forces. In Eq. 5, In−1 is expressed as the sum over all Ne elements 

by multiplying the strain-displacement matrix Be with the stress vector σn−1(x) and 

integrating over the element domains Ωe. Force BCs reside in Pn and displacement BCs 

populate components of ΔUn.

A forward analysis consists of applying force and/or displacement BCs to the FE model and 

solving the system of equations (5) for the unknown displacement increments that that 

satisfy (3). During the analysis, the stiffness matrix Dn(x) and stress vector are computed 

using a constitutive model or, in our method, the CaNNCM. To be clear, both the stiffness 

matrix and stress vector in (6) and (7) are computed from the CaNNCM being trained, not a 

pre-selected constitutive model as would be done in model-based methods. The analytical 

expression for Dn(x) is provided in Appendix B. FEA techniques are thus used to solve the 

forward problem for uk
n Rm, Rs  in (2).

AutoP is organized in a hierarchy of training passes, steps, and iterations as shown in Fig. 

2a. A single training iteration comprises several stages utilizing force-displacement 

measurements from a single load increment. A set of iterations performed with the same 

input measurement data is one training step. Completing a series of training steps over all 

load increments constitutes a pass. The following paragraphs track the six stages of AutoP 

processing illustrated in Fig. 2b. Many AutoP iterations are performed throughout training, 

during which the MPN and SN are repeatedly retrained. We will consider the jth training 

iteration and introduce the superscripts j and j + 1 to Rm and Rs to clarify which version of 

each network is active during each stage.

[0] Pretraining: Before the first set of measurement data is input, the CaNNCM is 

initialized using linear-elastic equations (stage [0]). For the 2-D problems we describe, a 

Young’s modulus value and Poisson’s ratio are chosen, a set of strain vectors are generated 
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with randomly selected values over a small range. The corresponding stress vectors are 

computed using the plane-stress equation. Theoretically, any value of Young’s modulus and 

Poisson’s ratio can be selected for pretraining, although, as one might expect, accurate 

initializations result in faster convergence and avoids non-physical behavior in early FEA 

iterations. The stress scaling value and all spatial scaling vectors are set to one (Sσ = 1, 

Sx
∈ = 1).

[1] Estimation of stresses and strains: Stage [1] consists of estimating stresses and 

strains from measurement data. Forces for the nth load increment are applied to the FE 

model in FEAσ. Referring back to (5), force measurements are imposed as BCs in Pn and 

total mesh deformation is computed. Due to equilibrium conditions relating stresses to 

forces, all stresses σn(x) computed throughout the model in FEAσ are assumed to be 

physically consistent estimates of the true stress. Similarly, in FEAε US probe and internal 

displacement measurements from the nth load increment are input as components of ΔUn to 

compute displacements of the remaining nodes. Due to compatibility requirements relating 

node displacements to strains, the strains εn(x) computed in FEAε are assumed to be 

physically consistent estimates of the true strains. Recall that Rm
j  and Rs

j are invoked by (6)–

(7) to solve each FEA.

After estimating all stresses and strains, the stress scaling value Sσ is checked to ensure all 

scaled stresses fall within ±0.8. That is, we check for max(σn(x)/Sσ) > 0.8, where the 

division is performed element-wise. If any component of σn(x) falls outside this range, Sσ is 

increased so that max(σn(x)/Sσ) = 0.8.

[2] Training MPN: A total of Nx stresses σn(xi) and strains εn(xi) are computed in FEAσ 

and FEAε, respectively. Each strain can by scaled by the corresponding Sxi
ε  computed by Rs

j

and input to Rm
j  to compute a new stress σn(xi). The goal of stage [2] is to adjust the weights 

of the MPN to minimize the error between σn(x) and σn(x):

Rm
j + 1 = argmin

Rθm ∈ ℝ
∑
i = 1

Nx
∑

n = 1

Np
∑
l = 1

Nσ
fm(σl

n xi , Rm
j εl

n xi , Rs
j xi

σl
n xi

) . (8)

Rs(xi) is the output of the SN at xi and Nσ is the number of stress-strains pairs at xi in the nth 

load increment. This value is greater than one when frame-invariance is enforced or a 

training window is implemented, both of which are described in Appendix A. fm(·) is the L2 

norm of the difference between σn(x) and σn(x); i.e., the MPN is trained via 

backpropagation.

Eq. (8) can not be minimized to zero for a heterogeneous material given the current MPN 

architecture. As previously stated, the MPN accepts a single strain vector as input and 

responds with a single stress vector as output. There is a many-to-many mapping from εn(x) 

to σn(x) in heterogeneous materials. For example, in the case where εn(xi) = εn(xj), it is not 

necessarily true that σn(xi) = σn(xj) (i.e., Rm : ε → σ is not bijective). Thus, the SN must 
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supply additional information in the form of Sx
ε  so that the MPN can determine which stress 

should be returned for a given strain.

[3] Spatial scaling calculation: The spatial values Sx
ε  are computed in stage [3]. 

While the coordinates input to the SN are given by the FE mesh, the target spatial values 

must be determined based on Rm
j + 1, σn(x) and εn(x). The goal is to further minimize the 

error between σn(x) and σn(x) by altering the spatial values instead of the weights of the 

MPN:

Sxi
ε = argmin

Sxi
ε ∈ ℝ

∑
n = 1

Np
∑
l = 1

Nσ
fm σl

n xi , Rm
j + 1 εl

n xi , Sxi
ε , (9)

where Rm
j + 1 is the output of the MPN retrained in (8).

[4] Training SN: With a complete set of training data, the SN is trained in stage [4] via 

backpropagation:

Rs
j + 1 = argmin

Rθs ∈ ℝ
∑

n = 1

Np
∑
i = 1

Nx
fs Sxi

∈ , Rs
j xi . (10)

Details of solving (9) and (10) are covered in [37].

[5] Convergence check: Finally, a convergence check is performed in stage [5] to 

determine if training iterations for the current step should continue. Node displacements uk
n

computed in FEAσ are compared to the measured displacements uk
n using the L1 norm of 

their difference:

Δuk
n = uk

n − uk
n

= fu uk
n Rm, Rs , uk

n (11)

which is the objective function defined in (2). We only use axial displacements in this study, 

although lateral and/or elevational displacements can also be used if available.

Following previous implementations of AutoP to determine NNCM convergence, 

displacement errors are used to compute two new values:

cmaxn =
max Δuk

n

max uk
n (12)

cμn =
mean Δuk

n

max uk
n . (13)
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We define convergence criteria Cmax
n and Cμ

n for the nth training step. If both 

cmax < Cmax
n and cμ < Cμ

n, convergence has been achieved and AutoP training iterations stop 

for the current training step. Otherwise, iterations consisting of stages [1]–[5] continue until 

the convergence criteria are met or a maximum number of iterations are reached. Training 

steps continue for each increment of force-displacement data in the set to complete a pass. 

Multiple passes are typically needed to ensure the CaNNCM has fully learned the material 

properties. A CaNNCM is not expected to accurately model the material properties in the 

first few passes. We therefore begin AutoP with relaxed convergence criteria (larger values 

of Cmax
n and Cμ

n) that gradually become more restrictive.

B. Measurements from Linear-Elastic Phantoms

An imaging phantom was constructed from a mixture of deionized water, gelatin powder, 

and cornstarch acting as a scattering agent. The phantom was comprised of a 50 × 50 × 

50mm3 cube of a soft background gel (≈ 7.15 ± 0.18 kPa, 8% gelatin by mass) with three 

stiff, cylindrical inclusions. Each inclusion was 10 mm in diameter and 50 mm long. 

Mechanical contrast was controlled by the ratio of gelatin to water and each inclusion was a 

different stiffness (≈ 10.93 ± 0.57, 14.15 ± 0.71, or 20.51 ± 0.84 kPa, 10%, 12%, and 14% 

gelatin by mass, respectively). The phantom was manufactured in the same manner 

described in a previous report [26] and separate samples of each gelatin mixture were stored 

to independently estimate Young’s modulus values via macro-indentation methods [40].

We used the same experimental setup described in [26]. Compressive loads were applied to 

the phantom over four equal axial displacement increments of the US probe. Total probe 

motion was 1.44 mm, 3% of the pre-loaded phantom height. After applying each load 

increment, axial force and probe position were measured and an RF echo frame was 

acquired. The speckle-tracking algorithm GLUE [41] was applied to the echo data to 

estimate axial displacements in the field of view. Axial forces, probe displacements, and 

internal displacements over all four load increments constitute one set of force-displacement 

data. Fig. 3 shows six different data sets collected. Sets 1–3 were all acquired by 

compressing downward onto the top surface but with different lateral placements of the US 

probe. Sets 4–6 were acquired by keeping the probe centered laterally, but rotating the 

phantom 90°, 180°, and 270° around x3, respectively. Two additional data sets were acquired 

where the imaged regions was centered on the x2 axis like Data Set 1, but the probe moved 

in elevation, along x3, by ±4mm. We refer to these data sets as Data Set 1′ and 1″, 

respectively. Total forces applied by the US probe ranged from 17.95 to 21.22 mN.

C. Finite Element Model

A simple FE model was created for use in AutoP and to generate the noise-free data sets 

described in the next section. The FE model FEM-1 is a 2-D, rectilinear FE mesh with 50 

nodes per edge (Fig. 4) to represent the phantom. The ultrasound probe was modeled as a 

rigid body in frictionless contact with the top surface of the phantom model, approximating 

the condition created by the US gel. The bottom nodes of the phantom mesh were fixed to 

mimic contact between the gelatin phantom and rubber pad. The full mesh was composed of 

2516 nodes (5032 DOF) and 2401 plane-stress elements (CPS4 in Abaqus 6.13). Given that 
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4-node quadrilateral elements contain four integration points, a total of 9604 stress-strain 

pairs are computed in each of two FEAs, labeled FEAσ and FEAε, which are described in 

Sect. II-A. Force loads, when applied as boundary conditions (BCs) in FEAσ or in a forward 

problem, were defined as concentrated forces to the top of the probe model. Similarly, probe 

displacements in FEAε were defined as BCs for the entire probe model. Note that FEM-1 

refers to the mesh and method of applying BCs. All FEAs were solved with ABAQUS 6.13 

commercial finite element software.

D. Simulated Force-displacement Measurements

First, we tested AutoP employing CaNNCMs and noise-free force and displacement data. 

Three different material property distributions (Figs. 5a–c) were created to generate 

simulated measurements. Model 1 consists of a stiff Gaussian-shaped inclusion with a peak 

stiffness of 30 kPa embedded in the center of a 10 kPa background. Model 2 was a replicate 

of the gelatin phantom described in Sect. II-B. Young’s modulus values for the background 

and three inclusions were selected to be the same as those estimated via macro-indentation 

for each gelatin material. Model 3 corresponded to a rabbit kidney embedded in a block of 

gelatin with background Young’s modulus 5.61 kPa. Modulus values for the kidney were 

based on previous results using AutoP and linear-elastic MPNs [42]. Models 1 and 3 were 

chosen to enable comparison with results reported earlier where stress-strain data were 

known [37].

Force-displacement data were generated by solving a forward FEA using FEM-1 and the 

target Young’s modulus distributions of Models 1–3. The same forces and loading geometry 

of Data Set 1 were applied to the model and displacements were computed at all nodes. Each 

simulated data set contained noise-free data over four load increments.

E. Simulated RF Images

Simulated RF echo frames were generated to test the capabilities CaNNCMs in the presence 

of noise. A detailed description of the method used to generate these images is provided in 

the supplementary material. The two simulated sets were intended to emulate Data Set 1 

with different SNR in the RF echo data: one with 30dB SNR and one with 15dB SNR. We 

refer to the former as Data Set 1† and the latter as Set 1††.

F AutoP Analyses

CaNNCMs were trained in AutoP using force-displacement data obtained in three ways. 

First, forward FE modeling simulated noise-free displacements at each node in the FE mesh. 

Second, the same simulated displacements were entered into an RF echo simulator to 

simulate noisy experimental data. Both data sets have exactly-known displacements and 

material properties. Third, RF echo signals were recorded experimentally from phantoms. 

All tests used the same training parameters described in Appendix A. Any differences in 

how CaNNCMs were trained lie in how the force-displacement data were sampled. We will 

show in Sect. III that changes to the input data do not imply a need to alter training 

parameters.
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Several different training cases were used that differed in the number of axial displacements 

applied in FEAε. Table I summarizes these four cases. For case 1, displacements are given at 

every node in the mesh. Cases 2–4 only used displacements in the ROI. The ROI is the 

region corresponding to the size of the displacement image after speckle-tracking was 

applied to the RF frames. Case 2 (Fig. 4a) indicates all nodes in the ROI were assigned 

displacements. For Cases 3 and 4 (Figs. 4b and c, respectively), axial displacements were 

only given at nodes with a minimum separation of 1.5 mm and 3 mm, respectively. These 

are the variable sampling settings selected to explore the role of displacement sampling in 

AutoP convergence.

Upon completion of AutoP, each CaNNCM was used to reconstruct a map of the Young’s 

modulus distribution. Image reconstruction was performed by setting a constant strain vector 

ε = [0.003 0.005 0.0001] and computing the stiffness matrix Dij using (17) in Appendix B. 

The Young’s modulus distribution E(x) was then estimated by varying x in the domain of the 

mesh and evaluating the function

E x = Sσ

Sx
ε2

D22 1 − ν2 , (14)

where ν = 0.5 and Sx
∈2 is the axial component of the spatial scaling vector at xi. The choice 

of constant strain vector is not important so long as it resides within the range of training 

data. We chose small values for each component to ensure the strain was within range, and 

we emphasized the axial strain and used D22 in the modulus estimate because the models 

were axially compressed.

Young’s modulus distributions estimated by the CaNNCMs were compared to the target 

maps shown in the top row of Fig. 5. Errors were computed as

exE =
Ex

target − Ex
NN

Ex
target (15)

where Ex
target is the target Young’s modulus distribution and Ex

NN is the CaNNCM estimate. 

Because displacements are only provided in the field of view for Cases 2–3, we do not 

expect the CaNNCM to accurately estimate Young’s modulus values outside of the ROI 

where no displacement measurements are acquired. We therefore compute exE only within 

the ROI for all cases.

The following describes each of the CaNNCMs trained.

Simulated Force-Displacement Data: A total of six CaNNCMs were trained in AutoP 

using noise-free force-displacement data generated from the three simulated models. One 

network was trained for each model using Case 1 and Case 2 displacement sampling. The 

results from training these networks demonstrate the ability of CaNNCMs to learn material 

properties when the sampling space is reduced.
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Simulated RF Echo Data: Another six CaNNCMs were trained using force-displacement 

data gathered from the simulated RF echo frames with varying amounts of echo noise. Three 

CaNNCMs for Data Set 1† and three for Set 1†† using Cases 2–4 sampling distributions. 

Results from these analyses demonstrate how reducing the number of sampling points 

affects the ability of CaNNCMs to learn material properties and geometry in the presence of 

noise.

Gelatin Phantom: We trained 12 CaNNCMs with experimentally measurement force-

displacement data. The first three were trained with Data Set 1 and sampling Cases 2–4. 

Results obtained from these CaNNCMs and those trained with data acquired via the 

simulated RF data guided the choice of sampling for the remaining CaNNCMs. Using Case 

3 sampling, one CaNNCM was trained with each of Data Sets 26, 1′, and 1″, one with Sets 

1–3 simultaneously, and one with Sets 1, 1′, and 1″ simultaneously. Results from these 

CaNNCMs demonstrate the ability of CaNNCMs to learn material properties under different 

loading scenarios, how the inclusion of multiple independent data sets affects the Young’s 

modulus estimates, and how sparser sampling influences the learned material and geometric 

properties.

III. RESULTS

Young’s modulus images reconstructed by CaNNCMs trained with noise-free force-

displacement data are displayed in Fig. 5. Errors in the modulus estimates computed with 

(15) are compiled in Table II for all CaNNCMs. Also included in the table are the processing 

times and total number of AutoP training iterations performed. For all three Models, 

reconstruction error increased slightly when the displacement sampling was reduced to the 

ROI only (i.e., from Case 1 to Case 2). CaNNCMs trained for Model 1 required the most 

number of AutoP iterations and were unable to capture the peak stiffness of the inclusion. 

We observed this type of behavior in [37] for the same Model. It could be corrected by 

increasing the number of iterations performed when solving (9). For example, increasing the 

number of spatial scaling update iterations from 50 to 150 for Model 1, Case 2, the peak 

stiffness estimated by the CaNNCM is ≈ 25 kPa (actual is 30 kPa) and the modulus 

reconstruction error decreases to 0.1291 ± 0.0753. However, preliminary results showed that 

in the presence of noise, using a large number of iterations could result in overfitting thus 

magnifying the influence of noise in the Young’s modulus reconstruction. It is possible that 

the addition of a regularization term in (9) could reduce the sensitivity to the number of 

iterations and noise at the cost of increased computational complexity.

Fig. 6 displays the Young’s modulus images reconstructed by CaNNCMs trained with force-

displacement data from Data Sets 1, 1†, and 1††. Across the columns left to right, the images 

correspond to Cases 2, 3, and 4, respectively. We observe that the smallest error occurs for 

Set 1††, Case 3, albeit said CaNNCM required the largest number of AutoP training 

iterations. We also note that, for the CaNNCMs trained with Set 1, there is a trade-off 

between reconstruction error and artifacts in the images. For example, Fig. 6g displays the 

Young’s modulus image with the smallest error for the row, corresponding to Case 2. The 

error slightly increases for Case 3 (Fig. 6h), but fewer noise artifacts are present. Generally, 

the trend appears to be that the effect of noise increases as the displacement sampling 
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density increases. The influence of noise can be decreased by reducing sampling density at 

the cost of resolution and reconstruction accuracy. Note that this applies to the case where 

only a single data set is used during training. For these reasons, we chose Case 3 sampling 

for training the remainder of the CaNNCMs with the experimental measurement data.

Interestingly, a stiffening artifact appears between the top of the ROI and phantom surface in 

the images reconstructed by CaNNCMs trained with experimentally measured force-

displacement data (Figs.6g–i), but not when trained with simulated RF Data Sets 1† or 1†† 

(Figs. 6a–f). It is likely due to noise occurring in both the force and displacement 

measurements. Displacements estimated from the simulated RF frames contain noise, but 

the force measurements are exact. Furthermore, displacements imposed when generating the 

simulated RF data were obtained from a 2-D FEA whereas the experimental measurements 

are a 2-D approximation of a 3-D object.

Young’s modulus reconstructions by CaNNCMs trained with experimental measurement 

data are shown in Fig. 7. We indicate in the bottom-right of each image the Data Set(s) used 

for training in AutoP. As expected, the Young’s modulus estimates are most accurate within 

the ROI. Reducing the size of the ROI (Figs. 7d,e) did not inhibit the ability of the CaNNCM 

to learn the correct material properties. The exception is the inclusion at the bottom of the 

ROI in Fig. 7d, where said inclusion is only partially within view. Material properties 

estimated by each CaNNCM are consistent, barring Figs. 7g and 7i. These correspond to 

Data Sets 4 and 6, where the phantom was rotated by 90° and 270°, respectively, before data 

acquisition. Both CaNNCMs learned the correct locations of all three inclusions, but the 

estimated Young’s modulus of the two stiffest inclusions are inaccurate.

It is difficult to identify the source of the error. To determine if the issue was caused by the 

relative locations of the inclusions within the ROI, we created a simulated RF data set (using 

the same methods described previously) to mimic Data Set 4. A CaNNCM trained with 

these data (not shown) was able to accurately estimate modulus values for all three 

inclusions. Furthermore, if we compare displacement errors computed by (12) and (13) for 

CaNNCMs corresponding to Figs. 7a and 7g, there is no significant difference 

(cmaxn = 0.0796, cμn = 0.0694 compared to 0.0812 and 0.0692, respectively). Meaning, the 

CaNNCMs are estimating material properties consistent with the data.

From a qualitative standpoint, including multiple data sets during training (Figs. 7c, f) 

improves the appearance of the reconstructed image. Contrary to our expectation, the 

reconstruction error increases when multiple data sets are used. To explore why this 

occurred, we generated images of the Young’s modulus error by computing the difference 

between the target and reconstructed Young’s modulus images. Error maps are displayed in 

Fig. 8 and the CaNNCMs are indicated in Table II by a superscript. The largest errors occur 

at the boundaries of the inclusions; most notably, for the stiffest inclusion located at the 

bottom of the ROI. These maps suggest the largest errors are due to CaNNCMs learning the 

incorrect geometry. Specifically, the stiffest inclusion appears too small, particularly for 

CaNNCMs trained with experimental data. Neglecting geometric errors, we observe that 

when multiple experimentally measured data sets are used in training (Fig. 8d), the 

CaNNCM more accurately estimates the Young’s modulus of the inclusions. The increased 
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error reported in Table II is mostly attributed to over-estimating the Young’s modulus of the 

background gelatin, by up to 5 kPa in the most extreme cases and mostly toward the 

boundary of the ROI. It is unclear at this time if errors are larger near the boundary because 

of artifacts introduced through speckle-tracking, the distance between the ROI and phantom 

boundaries, or because we are limited to a 2-D approximation of a 3-D problem.

IV. DISCUSSION

We have implemented CaNNCMs in AutoP to build data-driven constitutive models that 

learn stress and strain profiles of linear-elastic materials from force-displacement data. 

Adjusting the NN architecture to learn both material property and geometric information 

expands the abilities of AutoP by removing any prior assumptions of material property 

distributions. Additionally, a single CaNNCM can model heterogeneous materials where 

previously multiple NNCMs would be necessary. Unlike networks used in prior work, 

CaNNCMs are able to model both discrete and continuous material property distributions 

regardless of the chosen mesh geometry. This is a critical step toward the use of AutoP in 

clinical imaging where accurately segmenting images is not always feasible nor possible.

QUSE acquisitions are well suited to data-driven modeling due to the enormous information 

content in each force-displacement data sample. Quasi-static loading gives the force 

stimulus time to propagate throughout the entire object before measurements are acquired. 

Each displacement therefore carries information of not only local material properties, but of 

the whole contiguous object. AutoP exploits this fact by using FEA to propagate a sparse 

sampling of force-displacement measurements throughout an entire object model for 

estimating stresses and strains. Several model-based inverse approaches also rely on FEA to 

compare computed and measured displacements while estimating the material parameter 

distribution that best fits the data (e.g., [19], [25], [43]). However, CaNNCMs trained with 

AutoP learn stress-strain behavior consistent with the measurement data without prior 

assumptions of material properties.

A trained CaNNCM can be related back to a known constitutive model to estimate material 

parameters after learning stress and strain profiles. We chose to estimate Young’s modulus 

distribution via the stiffness matrix to demonstrate a capability of CaNNCMs not possible 

with model-based methods. When computing D22 in (14), there is still no assumption of the 

constitutive model. We effectively recovered the stiffness matrix from the data. Further 

development of CaNNCMs for non-linear and viscoelasticity imaging can make use of this 

ability to uncover the fundamental mechanical behavior governing the data, which may 

allow for discovery of the most relevant material parameters.

The additional task of learning the geometric shape of the medium requires a higher 

displacement sampling density compared to our previous report [26]. Our choice of 

simulated and experimental measurement data combined with the four displacement 

sampling Cases was intended to provide insight on the trade-off between sampling density, 

resolution, and modulus estimation accuracy. Results from CaNNCMs trained with noise-

free force-displacement data suggest that restricting sampling to the ROI has a slight 

negative affect on the accuracy of reconstructed Young’s modulus images. Data acquired 
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from simulated RF frames and Data Set 1 of the experimental measurements better illustrate 

the trade-off in Fig. 6. In the presence of noise, dense sampling resulted in more accurate 

Young’s modulus estimates, but artifacts due to noise become more apparent. Conversely, as 

sampling becomes increasingly sparse, noise artifacts are reduced at the cost of decreased 

resolution and accuracy of material parameter estimates. We observed this same behavior in 

several cases, although we provide only one example of Case 2 sampling with experimental 

measurements (Fig. 6g). That said, a cubic phantom with three parallel cylindrical inclusions 

limits the conclusions that can be drawn. Comparing Figs. 6g–h, the noise artifacts do not 

obstruct any of the inclusions and are thus not detrimental to the final image. However, it is 

possible that fine structures could be hidden in more complex media. Further investigation 

into the best sampling strategy will require data acquisition on an object with more complex 

geometry.

We expected CaNNCMs trained with multiple data sets to provide more accurate Young’s 

modulus estimates. This was not the case. The argument can be made that qualitatively, Figs. 

7c and 7f are improvements over training with any one data set: the inclusions are better 

resolved and fluctuations due to noise are reduced. It is unlikely that increasing the number 

of passes in AutoP would improve the results considering displacement errors (cmaxn  and cμn) 

computed for the convergence check do not continue to decrease by the end of pass 10. 

Some of the error can be attributed to the 2D approximation of 3-D problem, which helps 

explain why Figs. 6a–f are much more accurate than Figs. 6g–i. Extending CaNNCMs to 

learn volumetric material properties will help us better understand how noise affects the 

material properties and geometry learned by the networks. We find the quality of Young’s 

modulus images depends on the coupled effects of spatial sampling and noise, which are not 

the same as those seen in other applications of QUSE.

Developing our approach into a clinically feasible imaging modality will require we 1) 

reduce the CaNNCM training time and 2) adapt the network architecture to account for 3-D 

materials exhibiting non-linear and viscoelastic mechanical behaviors. Given that other 

groups have increased FEA computation speed by several orders of magnitude using GPUs 

[44]–[46], we believe AutoP training time can be greatly reduced using a custom FEA solver 

utilizing GPU resources. Changes to the CaNNCM architecture are not likely to require 

adjustments to the general AutoP stages specified in Sec. II-A. Previous investigations using 

NNCMs for modeling complex material properties required adjustments to the FEA 

formulation and network architecture (e.g., [31]–[34], [38]), but no changes were made to 

the overall process of AutoP. Due to the significant structural difference of CaNNCMs 

compared to NNCMs, we provided a new description of AutoP as a method to minimize an 

objective function that will be applicable to the general CaNNCM architecture comprised of 

a MPN and SN. Regardless of network changes, the same problem is solved in each stage of 

AutoP. The differences resides in how to reformulate each problem based on the CaNNCM 

structure (e.g., how to change (9) to accommodate a SN with different inputs/outputs) . 

Future investigations can therefore describe these changes as necessary.
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V. CONCLUSION

Cartesian neural network constitutive models trained in the Autoprogressive method can 

learn spatially-varying linear-elastic material properties from force-displacement 

measurements. Young’s modulus images can be reconstructed by relating the stress-strain 

behavior learned by CaNNCMs to a chosen constitutive model after training. CaNNCMs are 

robust to measurement noise and can model the internal structure of both discrete and 

continuous material property distributions. Current limitations of the method as applied to 

linear-elastic media suggest a need for 3-D model building and more efficient FEA 

computation.
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Appendix A: AutoP Training Parameters

Each CaNNCM was trained over 10 passes for each data set based on experience. A Young’s 

modulus value of 5 kPa and a strain range of ±0.01 was selected for linear-elastic 

pretraining. FEAσ and FEAε were computed by applying loads to FEM-1 as described in 

Sect. II-C.

A four-load training “window” was also incorporated which includes stress-strain data from 

prior training steps in stages [2]–[4] of the current AutoP iteration. Fig. 2a illustrates the 

example where training step 3 of pass 3 would also include stresses and strains from training 

steps 1 and 2 of pass 3 and training steps 3 and 4 of pass 2.

Furthermore, frame invariance was enforced by rotating the stress-strain data 90° and 

appending the rotated pairs to the original set, effectively doubling the number of stress-

strain pairs. Any rotation angle could be used, but we chose 90° because it is easily 

implemented by swapping the normal components of the data, as we described in our initial 

report of AutoP [26]. Building frame invariance into the training data means the material 

properties learned by the CaNNCM are independent of the chosen coordinate system. with 

the given training window and enforcement of frame invariance, a total of 19208 stress-

strain pairs are used to train the MPN (Nx × Np × Nσ = 19208 in (6) starting in the second 

pass.

Spatial scaling values were computed using Algorithm 1 described in [37] (N = 50, Nσ = 8 

due to frame invariance and training window, spatial scaling update rate η = 0.5). The MPN 

had two hidden layers of six nodes each, whereas the SN had five hidden layers with ten 

nodes each. The MPN was trained using the resilient propagation (RPROP) algorithm [47] 

over 15 epochs. Conversely, the SN training was implemented in TensorFlow using the 

Adam optimizer [48] (with default parameter settings) and a learning rate of 0.03.
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Convergence criteria changed as training progressed. Convergence criteria were initialized 

as (0.65, 0.5), using the notation (Cmax
n , Cμ

n). These reduced to (0.4, 0.3), (0.3, 0.2), and (0.2, 

0.01) at the beginning of passes 2, 3, and 4, respectively. The last set of criteria were also 

used in passes 5–10. We chose to set a limit of two AutoP iterations per training step, 

regardless of whether convergence criteria were satisfied. An upper limit ensures that 

iterations do not continue indefinitely. We chose a maximum of two based on preliminary 

results.

Appendix B: Computing Stiffness Matrix from CaNNCM

Hashash et al. [49] derived an analytical function for computing the stiffness matrix Dij from 

the weights and activations of a MPN. Note that the “activation” of a node is the weighted 

sum of the inputs to said node before passing through the activation function. The same 

analytical function can be used to compute the stiffness matrix for a CaNNCM in response 

to an input strain with a minor adjustment:

Dij x = ∂σi x
∂εj x

Si
σ

Sx
εj

= Si
σ

Sx
εj

Dij x (16)

where

Dij = 1 − tanh fi
2 ∑

c = 1

Nℎ2
ωic 1 − tanh fc

2

× ∑
b = 1

Nℎ1
ωcb 1 − tanh fb

2 ∑
a = 1

Ni
ωba 1 − tanh εj

2 .

(17)

In (17), the values fi, fc, and fb are the activations of nodes in the output layer, second hidden 

layer, and first hidden layer, respectively. Nh2 is the number of nodes in the second hidden 

layer, Nh1 is the number of nodes in the first hidden layer, and Ni specifies the number of 

nodes in the input layer. Weights from node p in layer N − 1 to node q in layer N are denoted 

as ωqp.
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Fig. 1. 
Structure of the CaNNCM composed of a MPN and SN. The MPN learns a “reference” 

material property whereas the SN learns spatial variation of the reference.
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Fig. 2. 
(a) Hierarchy of training passes, steps, and iterations in AutoP. The training window 

determines the number of preceding training steps from which stress-strain data are included 

during stages 2–4 of the current step. (b) One AutoP training iteration using a CaNNCM is 

illustrated. Adding the spatial network necessitates two extra stages where Sx
ε are updated 

and the SN is trained. Training of the MPN and test for convergence follow the same 

procedure we describe in a previous report [26].
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Fig. 3. 
The cubic phantom was imaged from four sides. Data sets 1–3 were obtained with the US 

probe along the same surface but at different lateral positions. For sets 4, 5, and 6, the 

phantom was rotated 90°, 180° and 270° about x3, respectively, while keeping the probe 

laterally centered.
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Fig. 4. 
Rectilinear meshed used in FEM-1. Highlighted nodes indicate locations where 

displacement data was provided in FEAε. (a) Displacements are given at every node in the 

ROI, (b) at nodes separated by a minimum of 1.5mm, or (c) at nodes with a minimum 3mm 

separation.
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Fig. 5. 
(Top Row) Target Young’s modulus distributions for Models 1–3. Young’s modulus 

reconstructions from CaNNCMs trained with noise-free simulated displacements for Case 1 

(Middle row) and Case 2 (Bottom row). The white box indicates the boundaries of the ROI. 

Color scales at the top of the figure apply to all images within the column.
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Fig. 6. 
Comparisons of Young’s modulus image reconstructions from RF echo signals for three 

levels of noise and different displacement sampling densities. Force-displacement 

measurements from rows 1 and 2 are from simulated echo data at 30 and 15 dB SNR. Row 3 

is from experimental phantom measurements with echo SNR in the same range using Data 

Set 1. Columns from left to right correspond to sampling Cases 2–4.
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Fig. 7. 
Young’s modulus image reconstruction by CaNNCMs trained from experimental 

measurements. Bracketed numbers in the lower-right corner of each image indicates the 

Data Set(s) used to train the CaNNCM. The dotted frame indicates the region over which 

displacements were estimated.
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Fig. 8. 
Maps of Young’s modulus error for the four tests indicated by superscript letters in Table II. 

The error is the difference between the target distribution and that computed by the 

CaNNCM. Red/green indicates the CaNNCM-estimated Young’s modulus was too large/

small.
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TABLE I:

FOUR CASES FOR APPLYING AXIAL DISPLACEMENTS IN AUTOP. CASES 2–4 ARE ILLUSTRATED IN Fig. 4.

case 1 All nodes in mesh

case 2 All nodes in ROI < mesh size

case 3 Nodes in ROI, 1.5mm minimum separation

case 4 Nodes in ROI, 3mm minimum separation
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TABLE II:

YOUNG’S MODULUS RECONSTRUCTION ERRORS AND AUTOP RUN TIME. MODELS ARE ILLUSTRATED IN Figs. 5a–c. SETS ARE 

ILLUSTRATED IN Fig. 3. CASES ARE DESCRIBED IN Table I. SIMULATED RF DATA SETS WITH 30 DB AND 15 DB SNR ARE 

DENOTED † AND ††, RESPECTIVELY. A SUPERSCRIPT LETTER INDICATES SUBFIGURE IN Fig. 8. THE LAST COLUMN INDICATES 

THE FIGURE NUMBER OF THE CORRESPONDING YOUNG’S MODULUS IMAGE.

(Model #){Set}[case] Modulus Error Mean ± STD Time (min.) Iters. Fig.

Simulated Force-Displacement

(1){1}[1] 0.1055 ± 0.0545 151 74 5d

(1){1}[2] 0.1349 ± 0.0670 153 75 5g

(2){1}[1] 0.0621 ± 0.0730 88 42 5e

(2){1}[2] 0.0643 ± 0.0690 82 46 5h

(3){1}[1] 0.0306 ± 0.0188 83 40 5f

(3){1}[2] 0.0370 ± 0.0211 80 40 5i

Simulated RF

(2){1†}[2] 0.0961 ± 0.1240 80 40 6a

(2){1†}[3] 0.1325 ± 0.1294 79 40 6b

(2){1†}[4] 0.0970 ± 0.1126 82 42 6c

(2){1††}[2] 0.0914 ± 0.1336 80 40 6d

(2){1††}[3](a) 0.0899 ± 0.1111 110 56 6e

(2){1††}[4] 0.1386 ± 0.1313 90 46 6f

Gelatin Phantom

(2){1}[2] 0.2136 ± 0.1264 139 69 6g

(2){1}[3](b) 0.2736 ± 0.1563 136 69 6h

(2){1}[4] 0.3168 ± 0.1784 136 69 6i

(2){1′}[3] 0.2604 ± 0.1576 139 69 7a

(2){1″}[3] 0.2522 ± 0.1480 138 69 7b

(2){2}[3] 0.1828 ± 0.1175 138 69 7d

(2){3}[3] 0.3415 ± 0.1606 137 69 7e

(2){4}[3](d) 0.2549 ± 0.1645 138 69 7g

(2){5}[3] 0.3208 ± 0.1905 127 64 7h

(2){6}[3] 0.2887 ± 0.1767 137 69 7i

(2){1,1′,1″}[3] 0.4380 ± 0.2163 393 69 7c

(2){1,2,3}[3](c) 0.3228 ± 0.1713 393 69 7f
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