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Abstract

Hyperspectral imaging (HSI) of tissue samples in the mid-infrared (mid-IR) range provides 

spectro-chemical and tissue structure information at sub-cellular spatial resolution. Disease-states 

can be directly assessed by analyzing the mid-IR spectra of different cell-types (e.g. epithelial 

cells) and subcellular components (e.g. nuclei), provided we can accurately classify the pixels 

belonging to these components. The challenge is to extract information from hundreds of noisy 

mid-IR bands at each pixel, where each band is not very informative in itself, making annotations 

of unstained tissue HSI images particularly tricky. Because the tissue structure is not necessarily 

identical between the two sections, only a few regions in unstained HSI image can be annotated 

with high confidence, even when serial (or adjacent) H&E stained section is used as a visual guide. 

In order to completely use both labeled and unlabeled pixels in training images, we have 

developed an HSI pixel classification method that uses semi-supervised learning for both spectral 

dimension reduction and hierarchical pixel clustering. Compared to supervised classifiers, the 

proposed method was able to account for the vast differences in spectra of sub-cellular 

components of the same cell-type and achieve an F1-score of 71.18% on twofold cross-validation 

across 20 tissue images. To generate further interest in this promising modality we have released 

our source code and also showed that disease classification is straightforward after HSI image 

segmentation.

Index Terms—

Hyperspectral imaging; microspectroscopy; semi-supervised learning; non-negative matrix 
factorization; hierarchical clustering

I. Introduction

Microspectroscopy based on vibrational hyperspectral imaging (HSI) in the mid-infrared 

(mid-IR) band is a powerful imaging modality to assess the chemical composition of 

materials, which can be applied to tissue samples for understanding pathology. With sub-
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cellular resolution and information from hundreds of mid-IR bands at each pixel, modern 

HSI systems can be used for the identification of different cell-types and their sub-cellular 

components without the use of contrast-enhancing or protein-targeting stains commonly 

used in pathology [1]–[3]. Although the spatial resolution of IR microspectroscopic systems 

is still coarser by about an order of magnitude than that of brightfield microscopy (which is 

the mainstay of pathology), but it has the potential advantage to facilitate the identification 

of disease-states of tissue samples for diagnosis and prognosis. For instance, HSI has shown 

to accurately predict renal treatment failure or transplant rejection by uncovering rich 

biochemical information from tissue images [4]. Thus, HSI can function complementary to 

traditional histopathology by providing access to chemical information that is not otherwise 

available.

The main challenges in working with unstained tissue HSI images are the cost of the 

imaging equipment, lack of visibly discernible features in individual bands, and the lack of 

available software for visualization and analysis. The latter two aspects make annotating 

these images for supervised training of segmentation and pixel classification methods quite 

tedious. Typically, annotations have to be done by examining a serial (or adjacent) H&E-

stained tissue section in which different cell-types can be readily identified. Even then 

annotations can only be done confidently for a small subset of pixels due to the change in 

tissue structure across the two serial sections. These challenges are illustrated in Figure 1, 

where an H&E stained tissue microarray (TMA) core of a human colon tissue sample is 

shown along with raw spectra of two IR wavenumbers and those regions of absorptive, 

goblet, and stromal cells that could be confidently annotated. The visual differences in the 

three types of cells are somewhat evident to the naked eye in the H&E section but not in the 

IR bands.

We present a method to classify pixels of a test HSI image according to their cell-type for 

image segmentation. Our algorithm is unique in the following aspects. Firstly, our method 

generalizes well and it does not require any annotations of cell types on the test images 

unlike even some recent studies that use at least a few labeled pixels from test images [5]. 

Secondly, because annotation of even training HSI images is tedious and uncertain, we 

designed our technique to require only a subset of pixels from the training images to be 

labeled by using semi-supervised learning for both spectral dimension reduction as well as 

pixel classification. Semi-supervised learning allows more complete use of all the given data 

that includes rich spectral data for all pixels and labels for a subset of pixels in the training 

images. By contrast, supervised techniques neglect the subspace structure of the unlabeled 

data, while the unsupervised techniques neglect the labels. Thirdly, for pixel classification, 

we propose using a semi-supervised hierarchical clustering (SSHC [6]) method that can 

model each class of cells as a collection of a few clusters such that intra-class variation due 

to differences in spectra of sub-cellular components (e.g. nuclei and cytoplasm) can easily 

be modeled. Finally, we also reduced the number of data-points sent to the computationally 

expensive SSHC by using a unique pre-clustering approach.

We demonstrate the advantages of our method through extensive experiments and 

visualization. Our method was trained and cross-validated on a dataset that contains IR 

images of colon TMA of 20 patients divided evenly among normal and hyperplasia disease 
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classes. Each patient contributed one image, and the images were partially annotated for 

three types of constituent cells — absorptive, goblet, and stromal. We did not come across 

any prior work on semi-supervised segmentation of tissue HSI images to do a direct 

comparison. Therefore, we coded and compared with some alternatives ourselves. We show 

that image-level disease classification becomes very easy after accurate pixel cell-type 

classification. Although we are unable to release the data due to our agreement with the 

equipment manufacturer, we hope that our released code will be useful for benchmarking 

HSI image segmentation algorithms in the future.

In the rest of the paper, we introduce the reader to hyper-spectral imaging, its segmentation 

challenges, and previous techniques in Section II. The dataset and segmentation objectives 

are described in Section III. We give details of our proposed method in Section IV, followed 

by experimental results in Section V. We conclude in Section VI.

II. Background and Related Work

In this section, we review the current capabilities of IR microspectroscopy and its 

challenges. We also review HSI segmentation techniques from both biomedical and 

geospatial domains due to the similarities between the two and the abundance of research 

done on the latter.

A. Infrared microspectroscopy and its challenges

When light from a source such as an IR lamp or a laser is shone on a tissue sample, many of 

its constituent biomolecular functional groups that have resonant frequencies in the mid-IR 

range modify the signal sent to the photosensor to yield rich chemical information. Instead 

of just three channels captured by brightfield scanners, HSI captures hundreds of channels, 

although its SNR and spatial resolution are lower than those of the former.

Although vibrational spectroscopy, especially Fourier transform infrared spectroscopy 

(FTIR), became a well-recognized imaging modality by the 1950’s and 1960’s, its spatial 

resolution was too coarse to study tissue structure [7], [8]. FTIR optics, controls, and sensors 

have advanced significantly over the last two decades. Quantum cascade lasers (QCL) have 

also emerged as a light source. These advances have enabled the acquisition of 

microspectroscopic images with spatial resolution of a few microns (sub-nuclear) and a 

spectral resolution that divided the IR band into hundreds of sub-bands. It is now possible to 

study human tissues using this modality in multiple areas of medical research including 

cancers, osteoporosis and osteoarthritis, myopathies, dermopathies, liver fibrosis and 

degenerative diseases, without employing any contrast-enhancing stains [9]–[17]. Thus, 

compared to brightfield microscopy, HSI can give a rich chemical map of a tissue without 

requiring a large laboratory with specialized chemicals.

There are several reasons why FTIR and QCL based microspectroscopic equipment is not 

widely used in spite of its current physical capabilities. Firstly, it is still relatively expensive. 

Additionally, there is a dearth of computational tools required to extract meaningful 

information from tissue HSI images for visualization, segmentation, and classification. 

Traditional image processing pipelines cannot be applied directly to these images because IR 
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bands can appear as noisy greyscale images due to the inherent lack of energy used to 

illuminate the tissue without destroying it [10]. Such greyscale images of each band often 

lack contrast and discernible visual features to delineate tissue compartments such as nuclei, 

cytoplasm, epithelium, and stroma. Although modern QCL systems have a higher signal-to-

noise ratio and faster scan times [15]–[17], they also often introduce coherence artifacts 

wherein the captured microspectrcopic images have fringing patterns (see Figure 1).

Availability of public datasets, annotations, and codes can play an important role in the 

development of algorithms and software for microspectroscopy, as it has been done for other 

domains and medical imaging modalities. Annotating HSI images is not straightforward as 

already explained in Section I. Additionally, to our knowledge, there are no public 

microspectroscopic datasets of acceptable quality available due to agreements between 

researchers and private equipment manufacturers in a nascent competitive industry. The next 

best thing would be to publicly release codes that can be compared on private datasets till 

the time the datasets themselves can be made public.

B. Segmentation techniques for hyperspectral images

Most of the previous approaches for segmenting micro-spectroscopic images relied on 

domain knowledge such as the application of chemometric methods based on the knowledge 

of tissue biochemistry and exploited the chemical differences in tissue components indicated 

by spectral peaks and band shapes [8], [10], [18], [19]. For example, the ratio of absorbance 

of the phosphodiester with a peak at 1,080 cm−1 to that of amide II at 1,545 cm−1 can be 

used for segmenting various tissue components [10]. Thus, the performance of these 

approaches depended heavily on the ability of the user to define useful spectral features. 

Without advanced machine learning techniques, these methods fail to extract data-dependent 

features, and thus generalize poorly across multiple tissue samples of normal and diseased 

patients.

Subsequently, another set of approaches emerged that used unsupervised learning for both 

dimension reduction (e.g. principal component analysis) and clustering (e.g. k-means or 

hierarchical clustering) of spectral values at each pixel to improve the segmentation 

performance [14], [20]. However, such techniques often fail to generalize due to the lack of 

biological concordance and intra-class variance across samples. As a result, there is an 

increasing interest and need for developing supervised learning algorithms to improve the 

segmentation performance and subsequently establish the clinical utility of HSI images [14], 

[20], [21].

Unlike tissue HSI, satellite (remote sensing) HSI images have seen a lot more research 

primarily due to the wider availability of datasets such as AVIRIS [22], ROSIS [23], and 

HYDICE [24], [25]. Most early stage satellite HSI segmentation techniques used band 

selection algorithms (similar to chemometrics for biological samples) to first reduce the 

spectral dimensions of the data before using supervised machine learning approaches such 

as support vector machines, random forests, Bayesian classifiers, or multinomial logistic 

regression for segmentation [23], [26]–[30]. However, in addition to having high 

dimensionality, HSI pixels can also be mixtures of heterogeneous spectra when they cover 

the spatial boundaries of the underlying classes (for example, forest, road and water). Sub-
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space analysis techniques such as singular value decomposition, noise adjusted principal 

component analysis, non-negative matrix factorization, manifold learning and Bayesian 

inference based methods have significantly improved the segmentation performance by 

simultaneously reducing dimensionality and unmixing such mixed spectra [31]–[34].

The latest HSI segmentation techniques incorporate spatial context into segmentation 

algorithms by using graph regularization or statistical methods such as Markov or 

conditional random fields [35]–[37]. Recently, a few deep learning-based techniques using 

convolutional neural networks or stacked denoising autencoders have also been proposed 

[38]–[40]. Deep learning, however, requires lots of labeled data for effective generalization. 

Since the number of HSI samples available for training is generally limited, semi-supervised 

variants of the aforementioned segmentation techniques are becoming increasingly popular 

[29], [41]. More importantly, publicly available codes1 of satellite HSI segmentation 

algorithms continuously drive the technical innovations in this field.

Direct adaptation of HSI segmentation techniques from satellite images to 

microspectroscopic ones is not advisable. This is because microspectrscopic images have 

subtle intra- and inter-class spectral variations due to minute biochemical changes across 

tissue components unlike high spectral differences among land cover classes seen in remote 

sensing images.

III. Dataset and Segmentation Task

In this section, we describe the dataset, how it was prepared, its disease-class labels, its cell-

type annotations, and its analysis objectives for which algorithms can be developed.

A. Dataset preparation

Four formalin-fixed paraffin-embedded unstained colon biopsy TMAs were acquired from 

the University of Illinois at Chicago tissue bank. These samples were sectioned at 4μm 
thickness onto BaF2 slides (International Crystal Laboratories, Garfield, NJ) for infrared 

HSI imaging. These samples were dewaxed by rinsing in hexane as per established protocols 

[14]. Serial (adjacent) sections were cut onto standard glass slides for hematoxylin and eosin 

(H&E) staining.

The unstained IR samples were then imaged using the Daylight Solutions Spero QCL IR 

imaging system (San Diego, CA) in transmission mode, with the 12.5× objective (pixel size 

1.4μm × 1.4μm). The system’s spectral range of 900cm−1 to 1800cm−1 with 4cm−1 spectral 

step size was used to yield 226 spectral bands. The spatial dimensions of each TMA core 

varied between 480 × 450 to 779 × 652 pixels.

The H&E-stained serial sections were imaged on an Aperio ScanScope CS (Leica 

Biosystems, Nussloch, Germany) system. The cores were independently examined by three 

pathology residents and classified by consensus into two disease-states – normal or 

hyperplasia (pre-cancer). Twenty TMA core images divided evenly between the two disease-

1We provide codes at: github.com/neerajkumarvaid/HSI-segmentation
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states were selected, such that each image came from a different patient. Having two 

different disease classes and taking only one image per patient allowed us to test the 

generalization of our segmentation technique to unseen cases with unknown disease-state. 

For instance, goblet cells become very thin in hyperplasia, and we were able to verify that in 

the test images from which we did not use any pixel labels for training.

Based on these diagnoses and by visual comparison to the serial (adjacent) H&E sections, 

regions of interest were drawn on the unstained IR images corresponding to three cell-types 

– epithelial absorptive cells, epithelial goblet cells, and stroma – as shown in Figure 1. The 

high confidence annotations were performed by consensus among three pathology residents. 

Only those regions that could be confidently marked were annotated covering on an average 

only 12, 500 pixels per image. Any region for which the cell-type could not be confidently 

identified was left unannotated. If the patient was a part of the training set then its 

unannotated pixels were used as unlabeled data for semi-supervised learning.

B. Dataset analysis objectives

There are two objectives that can be defined on this dataset. The first one is semi-supervised 

image segmentation, and the second one is identification of the patient disease-state. We cast 

the first objective as a pixel classification problem, which is our main result. Furthermore, 

we demonstrate that disease classification at image level becomes much easier after the 

pixel-level image segmentation.

We divided the images (patients) into two folds to cross-validate both pixel-level tissue 

structure segmentation and image-level disease classification results. That is, no pixels (not 

even a subset of labeled or unlabeled pixels) from the test images (patients) were included in 

the training set for either objective. This allowed us to test whether our methods would 

generalize across patients. Eight images in each fold were used for training and the other 

two were used for validation (hyper-parameter tuning). Rest of the ten images in the other 

fold formed the test set. In each fold, there were ten images for testing disease classification 

and more than 100,000 labeled pixels for testing pixel classification (segmentation).

To measure and compare pixel-level classification performance we used F1-score on labeled 

pixels from test images. Since F1-score is a metric for binary classification, we used a one-

vs.-all F1-score for each of the three classes and took their average weighted by the number 

of labeled pixels in each class for a given test image. To measure the performance of image-

level disease classification, we computed the average (across 10 test images) accuracy 

through majority voting among the disease classification obtained from individual pixels in 

an image

IV. Proposed Technique

Our technique was designed to generalize from partially annotated training images to 

unannotated test images across two disease-states (normal and hyperplasia) in colon tissue. 

Insights about the tissue structure and the image formation process informed the choices of 

our pixel dimension reduction and classification methods. The challenges faced included 

unexpected negative pixel values (arising due to pre-processing methods such as baseline 
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corrections applied to raw spectra), a large number of background pixels with no tissue or 

annotations, imbalance in the number of pixels representing each cell-type, a large number 

of spectral bands, a large number of unlabeled pixels, and a large intra-class variation due to 

different sub-cellular components being part of the same class. In this section we describe 

the steps of our segmentation method that were designed to overcome these challenges.

A. Pre-processing

Although IR absorption values cannot be negative, the data had a significant proportion of 

negative values due to a log transformation of the type, f2(i, x, y, s) = ai log f1(i, x, y, s) + bi, 

applied to the raw absorbance f1, at location (x, y) for spectral band s in image i to get the 

pixel value f2 using image-specific constants ai and bi. To make all pixel values non-negative 

we subtracted a constant corresponding to the minimum value across all pixel locations and 

bands for a given image.

The background regions without any tissue have nearly zero spectral energy, which can 

make spectral unmixing ill-conditioned. Such points were in abundance in our data. To 

identify and exclude the background pixels we exploited the knowledge that these were not 

annotated and were more likely to have low spectral energy than the tissue foreground. To 

find a common threshold of spectral energy to identify background pixels, we examined two 

cumulative distribution functions (CDF) – one of all pixels and another of only the labeled 

pixels from the training images.

B. Dimension reduction using semi-supervised NMF

To model a generative process in which different groups of biomolecules additively 

contribute to the absorption spectra, we found non-negative matrix factorization (NMF) to 

be a natural choice for dimension reduction. We thought that a semi-supervised variant of 

NMF (SSNMF) [42] would be a better choice compared to vanilla (unsupervised) NMF, 

because SSNMF tries to select basis that are discriminative among different classes of 

labeled data samples, such as the partially annotated pixels. To do so, in addition to the 

Frobenius norm of the data reconstruction error, SSNMF also minimizes data label 

estimation error. The latter part of the loss function is based on the assumption that the labels 

can be computed using the same linear combination (mixing coefficients) but with a 

different basis matrix. This cost function is shown below [42]:

W ⊙ X − AS 2 + λ L ⊙ Y − BS 2 (1)

where ʘ is element-wise product, X ∈ ℝ+
m × n is the data matrix with n data points of m-

dimensions each, Y ∈ ℝ+
c × n is a label matrix for c classes that includes dummy labels for 

unlabeled points, S ∈ ℝ+
r × n is the mixing coefficient (or feature) matrix that is common to 

both data and label reconstruction, A ∈ ℝ+
m × r is the basis matrix for reconstructing the data, 

B ∈ ℝ+
c × r is the basis matrix for linear reconstruction of labels, r is the factorization rank, 
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W ∈ ℝ+
m × n is a weight matrix whose elements can be varied to put different emphases on 

fidelity of reconstruction of different data points, L ∈ ℝ+
c × n is the weight matrix whose 

elements can be varied to put different emphases on label reconstruction of different data 

points (and set to zero corresponding to unlabeled data with dummy labels in Y), and λ is a 

trade-off parameter which emphasizes label reconstruction accuracy over data reconstruction 

fidelity for larger values.

The original SSNMF technique was intended to be a standalone technique for both 

dimension reduction and classification [42]. The label matrix Y comprised one-hot-bit 

vectors to code a label for each data point (including dummy labels for unlabeled points 

whose corresponding weights in L were set to zero). So long as the element corresponding 

to the correct label was maximum in a column representing a data point in BS, the 

classification of that point was considered to be correct. This required that for columns 

corresponding to labeled points in BS, the other elements be driven close to zero using a 

relatively higher weight, while the element corresponding to the correct class be greater than 

0 under the constraint that all elements of BS are non-negative. Therefore, Lij was set to zero 

for all elements corresponding to columns of unlabeled data. For the columns corresponding 

to the labeled points, it was set to 1 for those elements where the datum was not from ith-th 

class (Yij = 0, background), and it was set to a small positive value (e.g. 0.001) when Yij = 1 

(i.e. datum was from ith class).

In our modified implementation, the classification error in SSNMF for each class was 

weighted by the inverse of the number of pixels from that class to account for class 

imbalance. From each of the training images, the set of all unlabeled samples was randomly 

subsampled to 100, 000 pixels and all labeled pixels of the three annotated classes from the 

eight training images were included in the training set.

We selected the hyper-parameters of SSNMF – rank r, classification weight λ, and labeled 

point weight Lij (for Yij = 1) – based on the classification accuracy of labeled pixels in the 

two validation images of the training fold. Features for pixels of the test images were 

computed afterwards by projecting the shifted pixel values to the SSNMF basis found using 

the training set.

C. Semi-supervised hierarchical clustering of pixels

We observed that there is a wide variation in pixel spectra within each cell-type due to 

differences in sub-cellular components such as nuclei and cytoplasm. In fact, similar 

subcellular components of different cell-types (e.g. stromal and epithelial nuclei) can be 

closer to each other than two different sub-cellular components of the same cell-type (e.g. 

epithelial nuclei and stroma), even in features spaces learned in a semi-supervised manner. 

Without using label information, features of similar sub-cellular components across cell-

types can turn out to be the same. We reasoned that pixels in each cell-type class must be 

modeled as collection of clusters that may be far away from each other as these may 

correspond to different sub-cellular components. To use the partially labeled data to guide 

this over-clustering process we used semi-supervised hierarchical clustering (SSHC) method 

[6] whose performance was compared with popular supervised classifiers.
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1) Pre-clustering to reduce the number of data points: The time complexity of SSHC scales 

quadratically with the number of data points (pixels) [6]. So, we reduced the data fed to it by 

pre-clustering the pixels represented in SSNMF space into a large number of clusters and 

used SSHC only on the resultant centroids. We selected the minimum number of clusters K 
for which the training data gave the highest weighted average cluster purity. We define 

purity pk of cluster number k as the proportion of the most representative class of labeled 

samples among all labeled samples in the cluster. We computed average cluster purity by 

weighing the purity of each cluster by the number of labeled pixels in that cluster as follows:

pk = maxc ∈ [C]
yi = c, xi ∈ k

∑ω ∈ [C] yi = ω, xi ∈ k
(2)

AK = ∑
k ∈ [K]

xi ∈ k pk (3)

where k is the cluster number ranging from 1 to K, pk is purity of cluster k, AK is the 

weighted average cluster purity of all K clusters, c and ω are class indices ranging from 1 to 

C, i is pixel index, yi is its label, xi is its spectral (or feature) value, and |.| is set cardinality 

operator. Cluster purity pk can range from 1/C (most impure) to 1 (most pure), or can be 

indeterminate (with a weight of 0). The maximum value for weighted average cluster purity 

is also 1, for which a trivial case is that of maximal over-clustering when the number of 

clusters is equal to the number of samples. We found the minimal K for which AK = 1. 

Henceforth, we refer to these K-clusters as pre-clusters.

2) Semi-supervised hierarchical clustering: We next performed hierarchical clustering of the 

pre-cluster centroids using SSHC [6]. SSHC algorithm allows specifying constraints on 

triplets of data samples [6]. These triplets can code class information of labeled pixels from 

training images. Two samples in the triplet are chosen from the same class, while the third 

one is from another class. The training algorithm tries to assign a smaller ultra-metric 

distance to the pair from the same class compared to a pair from different classes in each 

triplet. The ultra-metric distance matrix between all pairs of points has a one-to-one 

correspondence with the dendogram of hierarchical clustering [6].

Specifically, if two pre-cluster xi and xj belong to class c while another pre-cluster xk that 

belongs to a different class ω such that labels yi = yj = c ≠ ω = yk, where c, ω ∈ {1; 2; 3} 

and the class indices represent absorptive, goblet, and stroma cell-types, then we represent a 

triple-wise relative constraint Cijk as follows [6]:

Ci jk = xi, x j, xk d xi, x j < d xi, xk (4)

where, d(.; .) represents an appropriate pairwise dissimilarity metric such Euclidean distance 

used in the proposed algorithm. We created a set of constraints for SSHC algorithm by 
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considering all possible triplets of labeled pre-clusters while leaving the unlabeled pre-

clusters unconstrained.2 The pixels of the test image were simply assigned to the pre-

clusters by comparing their Euclidean distances to the pre-cluster centroids computed using 

the training data.

3) Finding the optimal number of clusters: We reasoned that as per Occam’s razor principle 

if the hierarchical clustering dendogram was cut higher up where it had fewer clusters, then 

it would lead to better generalization. On the other hand, reducing the number of clusters too 

much would lead to poor accuracy due to the intra-class variance as described above. To 

balance these two goals (generalization and accuracy), we decided on the number of clusters 

based on weighted average cluster purity once again as defined in Equations 2 and 3. This 

over-clustering assumes that it is easier to recognize clusters corresponding to a particular 

sub-cellular component (e.g.nucleus) of a cell-type rather than the cell-type itself. The task 

of cell-type classification is then to club together the disparate clusters belonging to different 

sub-cellular components of the same cell-type into the same class. We propose to do this by 

majority voting among the labeled pixels within the disparate clusters during training.

V. Experiments and Results

We conducted experiments to test the utility of the proposed steps in our pipeline. For 

example, we compared NMF-based dimension reduction, which is widely used in 

chemometrics, with the SSNMF-based dimension reduction. We assessed the importance of 

k-means pre-clustering in reducing the overall computational complexity of the proposed 

approach. Additionally, we compared our SSHC-based classification method with popular 

alternatives such as support vector machines and random forests to ascertain the efficacy of 

the proposed algorithm.

A. Background pixel identification

To select the spectral energy threshold for background pixels as described in Section IV-A, 

we examined the cumulative distribution function (CDF) of the spectral energy of all pixels 

along with the CDF of annotated pixels. As shown in Figure 2, the CDF of all pixels seems 

to have a large constant slope till about 0.35 value and there were no annotated pixels with 

spectral energy below this value. Values below this threshold led to inclusion of background 

pixels into the foreground and vice versa, as shown in Figure 3.

B. Spectral dimensionality reduction using SSNMF

We validated various values of the three hyper-parameters for SSNMF – r (rank of NMF), λ 
(relative emphasis on label reconstruction), and Lij (weight for label reconstruction for the 

correct class). Because our goal was to classify unseen pixels, we propose that a principled 

criterion to optimize the hyper-parameters is to maximize the classification accuracy on the 

labeled pixels in the validation set. If we had optimized data reconstruction error itself, then 

there was no need for λ > 0 and the rank r could have been increased to simply improve data 

reconstruction accuracy in Equation 1. Similarly, if we had optimized classification accuracy 

2While implementing SSHC we noticed a typing error in the original publication. The expression d13 ≤ max(d12; d13) in Section IV-
B in [6] should have been d12 ≤ max(d13;d23).
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on labeled pixels from the training images alone, then λ could have been increased in an 

unrestricted way. Instead, validation accuracy was calculated as one-vs.-all F1 score for each 

of the three classes of pixels weighted by class membership. Classification results from 

SSNMF were obtained by taking arg maxi(BS)ij of each column j of matrix BS obtained by 

optimizing the expression in Equation 1.

Figure 5 shows average F1 score for labeled pixels from the validation set averaged across 

the two folds for various combinations of hyper-parameters. It is clear that there is an 

optimal value for each of the hyper-parameters below or above which the validation 

accuracy suffered. These results confirm our understanding of the hyper-parameters 

explained above. We selected r = 10, λ = 1, and Lij = 0.01 when the jth data element was 

from the ith class as this combination gave the maximum classification accuracy of 64.46%.

We also noted that the use of raw spectral pixels without SSNMF-based spectral 

dimensionality reduction quadruples the training and testing time of the subsequent 

computation in the proposed algorithm.

We used visualization techniques to confirm that SSNMF leads to better separation of the 

target classes. As shown in Figure 4 using t-Distributed Stochastic Neighbor Embedding (t-

SNE) algorithm [43], the raw pixels of the three types of cells formed overlapping classes 

(see supplementary Figure S1 for raw pixel spectra). Unsupervised NMF was able to 

separate three classes to some extent. Using SSNMF, the three classes were further 

separated, although significant overlap remained. We attribute the remaining overlap to the 

confusion between similar sub-cellular components (e.g. nuclei) across different cell types, 

which we counter using SSHC [6].

C. Data reduction using pre-clustering

To select the right number of pre-clusters as a proxy for the data points (to speed up SSHC), 

we analyzed the average cluster purity of clusters found using k-means for different number 

of clusters. As shown in Figure 6, 120 was the smallest number of clusters with maximum 

purity. These cluster centroids were used for SSHC in the next step to represent about 

200,000 pixels present in the training set. Because SSHC’s time complexity scales as O(n2) 

with respect to the number of data points n, the reduced number of data points (120 k-means 

centroids in SSNMF feature space instead of 200,000 data points) allowed the proposed 

algorithm to train efficiently in just 4.5 hrs. Similarly, the testing time was reduced from 1.4 

hours to six minutes using pre-clusters.

D. Semi-supervised hierarchical clustering of pixels

The number of unique triplet constraints that could be formed using n training data points 

can be as high as 
n
3 . Even with 120 pre-cluster centers obtained after k-means, the number 

of triplets can be unmanageable. Therefore, we randomly selected only 10,000 triplet 

constraints to train the SSHC model. Increasing the number of constraints beyond 10,000 

only increased the training time of the algorithm without any significant gains in the 

classification performance, while reducing the number of constraints decreased the weighted 

average cluster purity. The dendogram of SSHC was then cut at a level where the clusters 
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were optimally pure in labeled samples of validation set. We expected that although we will 

end up with more clusters than the number of classes (three) due to intra-class variance 

arising out of differences in spectra of sub-cellular components, each class will span only a 

few clusters. Figure 7 shows that our intuition was confirmed. Validation F1-score was near 

optimal with just 18 clusters.

To verify that finding more clusters than the number of cell-types leads to separation of 

nuclei and cytoplasm of the same cell-type into different clusters, we visualized the cluster 

membership maps of the pixels of a few images. As shown in Figure 8, this indeed was the 

case. What is also satisfactory is the fact that the number of clusters can be reduced to a 

small multiple of number of classes without compromising classification accuracy by much 

as shown in Figure 7. For a small number of clusters (e.g. 9) individual nuclei and cytoplasm 

of a particular cell-type do not seem to be fragmented in Figure 8. To further illustrate that 

overclustering leads to separation of sub-cellular components into different clusters we 

plotted SSNMF features of pixels using SSHC assigned class labels by t-SNE algorithm [43] 

in Figure 9. This confirms the understanding that there is relative uniformity in spectral 

signatures within the main sub-cellular components,i.e. nuclei or cytoplasm. But, if we used 

any smaller number of clusters (e.g. 3 or 6), then the boundary between cytoplasm of 

different cell-types disappears, which is even more undesirable than mild over-

fragmentation.

E. Comparison between different pixel classification methods

SSNMF itself can be used for pixel classification by examining arg maxi(BS)ij after 

optimizing the expression in Equation 1. To improve the classification further, various 

classifiers such as support vector machines (SVM), Gaussian naive Bayes (GNB), random 

forests (RF), can be applied to the SSNMF and NMF features, including the SSHC-based 

classification described in this work. Classification metric (F1-score on labeled pixels of the 

ten test images) for the best hyper-parameter settings of these classifiers are shown in Table 

I, which gives the following insights. Firstly, SSNMF by itself does not give the best pixel 

classification results; other classifiers in combination with dimension reduction by SSNMF 

give better results by introducing nonlinear functions. Secondly, using SSNMF as opposed 

to NMF for dimension reduction gives better results for each tested classifier because the 

former uses the partial labels for learning appropriate basis. Finally, the use of SSHC gives 

better results than using popular classifiers based on both NMF and SSNMF. This is because 

other classifiers were unable to make use of the unlabeled data leading to poor 

generalization (across test cases spanning two disease-states) performance for micro-

spectroscopic image segmentation.

We also compared the segmentation results qualitatively by examining the resultant class 

maps for test images. Please note that the ground truth and estimated labels for only 

annotated pixels are shown for quantitative and qualitative assessment in Table I and Figure 

10, respectively. It is clear that the proposed SSNMF+SSHC based HSI segmentation gives 

smooth and natural looking gland shapes and layers of epithelial goblet cells even without 

using any spatial priors. In comparison, SSNMF+RF, whose quantitative accuracy is slightly 
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lower, shows some obvious pixel misclassification within various tissue regions. Other 

techniques performed even worse.

F. Disease classification

Using labeled pixels from training images, we trained and validated three single hidden layer 

neural networks - one for each type of cell - that took SSNMF features as input and 

computed the probability of the pixel being from normal or hyperplasia. For each test image, 

we routed each pixel to one of the neural networks based on its cell-type label computed by 

the proposed segmentation technique (SSNMF+SSHC)3. The pixel-level disease class 

accuracy thus calculated was 97.5% , 98.2% and 98.4% for pixels identified as absorptive, 

goblet and stroma, respectively when averaged over test images across 2-folds. Combining 

the individual pixel-level disease-state estimates through majority voting for each test image 

resulted in 100% image-level disease-state estimation across the two folds. We also 

evaluated the utility of raw pixel spectra in disease-state estimation by training a single 

neural network that took raw pixel spectra as input and computed the probability of the pixel 

being from normal or hyperplasia. The raw pixel-level disease class accuracy was 74.8%, 

which yielded 80% image-level disease-state identification after majority voting. This 

confirms that the spectral information available exclusively in micro-spectroscopic image is 

highly disease-specific and can be used directly for disease-state estimation, provided the 

pixels are first classified by cell-type.

G. Training and testing time

All our algorithms were implemented in python and executed on a computer with a six core 

processor running at 2.3GHz with a 32GB RAM. Our algorithm took 4.5 hours to train and 

produced segmentation results on a hyperspectral image in 6 minutes on average. The most 

computationally expensive step during training was pre-clustering with k-means that was 

used to reduce the spatial dimensions for further processing with SSHC. However, this step 

was crucial as it reduced the number of data points sent to SSHC (Section V-C).

VI. Conclusion and Discussion

Our main conclusion is that semi-supervised classification techniques such as SSHC [6] 

outperform supervised ones such as random forests and support vector machines when there 

is a large intra-class variation and the proportion of labeled samples is much smaller than 

that of unlabeled samples. We confirmed that when at least a few labeled samples are 

available, semi-supervised dimension reduction techniques such as SSNMF [42] better aid 

classification as compared to the unsupervised ones. And, although SSNMF itself can yield 

classification results with a built-in linear classifier, the results of non-linear classifiers were 

better. Our SSNMF+SSHC based method was able to achieve an F1-score of 71.18% on 

two-fold cross-validation across 20 tissue images.

We also demonstrated that the spectral information available exclusively in mid-IR micro-

spectroscopic images makes disease-state classification at the image or patient level fairly 

3Flowchart of proposed algorithm is in supplementary Figure S1.

Kumar et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



straightforward once the tissue components (cell-types) are accurately segmented at the 

pixel level.

Our work can be extended and improved in several ways. We think that HSI segmentation 

accuracy can be further improved by incorporating a spatial prior, for example by using a 

Markov or conditional random field [35]–[37]. It will be interesting to see how deep learning 

based techniques can be adapted and perform on HSI data with hundreds of channels and the 

paucity of labeled pixels such as the one used in this paper. To develop deep learning based 

algorithms we will annotate more HSI images of colon tumors by including disease-states 

such as dysplasia and carcinoma in addition to normal (benign) and hyperplasia samples in a 

separate study. Additionally, HSI datasets have the potential to solve important problems of 

histological HSI analysis, such as disease classification, genomic class identification, and 

treatment outcome prediction. For reaching its potential, we hope that additional HSI 

analysis studies will be done accompanied with release of corresponding software and 

datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Top row: An H&E stained section of a colon tissue TMA core (left) with annotations on its 

serial HSI image (right) represented by red for epithelial absorptive cells, yellow for 

epithelial goblet cells, green for stroma, and black for un-annotated regions that include the 

previous three categories as well as non-tissue background. Bottom row: IR bands at 1,080 

cm−1 (left) and 1,545 cm−1 (right) of its serial (adjacent) section. (Best viewed on a color 

monitor)
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Fig. 2: 
Cumulative distribution of spectral energy of all pixels (blue dotted) and labeled pixels (red 

solid) show that a threshold of 0.35 (green dashed) will exclude labeled (subset of 

foreground) pixels.
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Fig. 3: 
Background subtraction for various spectral energy thresholds: (a) 0.1, (b) 0.35, and (c) 0.7. 

A small threshold counts some background pixels as tissue (white), and a large threshold 

marks some tissue pixels as background (black). Compare to Figure 1.
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Fig. 4: 
t-SNE plots [43] of randomly selected spectral pixels from absorptive (red), goblet (yellow), 

and stromal (green) classes show high intra-class variance (large clusters for each class) and 

low inter-class variance (high inter-cluster overlap) in (a) the raw spectral pixel space and (b) 

the NMF feature space while (c) SSNMF features show some separation of classes. (Best 

viewed on a color monitor)
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Fig. 5: 
Label reconstruction accuracy for the validation set using combinations of three SSNMF 

hyper-parameters. Dotted line indicates the maximum accuracy (64:46%) obtained for r = 

10; Lij = 0.01; and λ = 1.
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Fig. 6: 
Cluster purity vs. number of pre-clusters
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Fig. 7: 
Accuracy vs. number of clusters using SSHC [6]
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Fig. 8: 
Using a serial H&E stained section as a visual reference it becomes apparent that sub-

cellular components such as cytoplasm of neighboring cells of different types (glandular and 

stromal) merge when the number of clusters is low (3 or 6). Glandular shapes start to stand 

out with an appropriately large number of clusters (9). (Best viewed on a color monitor)
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Fig. 9: 
t-SNE plots [43] of pixels in SSNMF feature space illustrates that using only a few clusters 

(e.g. 3) in SSHC leads to high inter-cluster overlap. Over-clustering improves class 

separation by assigning different regions of a class into different clusters. (Best viewed on a 

color monitor)
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Fig. 10: 
Examples of partially annotated ground truth (left), and corresponding pixel classifications 

by the best (SSNMF+SSHC, middle) and the second best (SSHC+RF, right) performing 

methods on two normal and two hyperplasia test images. Numbers under the images indicate 

F1-score (%) for the respective image. Red, yellow and green maps represent absorptive 

cells, goblet cells and stroma respectively. Black pixels were not annotated and their 

classification results are also not shown to facilitate comparison with the ground truth. (Best 

viewed on a color monitor). (a) Normal samples 1 (top) and 2 (bottom). (b) Hyperplaslia 

samples 1 (top) and 2 (bottom).
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