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A Recurrent CNN for Automatic Detection and
Classification of Coronary Artery Plaque and
Stenosis in Coronary CT Angiography
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Abstract—Various types of atherosclerotic plaque and varying
grades of stenosis could lead to different management of patients
with coronary artery disease. Therefore, it is crucial to detect
and classify the type of coronary artery plaque, as well as to
detect and determine the degree of coronary artery stenosis.
This study includes retrospectively collected clinically obtained
coronary CT angiography (CCTA) scans of 163 patients. In these,
the centerlines of the coronary arteries were extracted and used
to reconstruct multi-planar reformatted (MPR) images for the
coronary arteries. To define the reference standard, the presence
and the type of plaque in the coronary arteries (no plaque,
non-calcified, mixed, calcified), as well as the presence and the
anatomical significance of coronary stenosis (no stenosis, non-
significant i.e. < 50% luminal narrowing, significant i.e. > 50%
luminal narrowing) were manually annotated in the MPR images
by identifying the start- and end-points of the segment of the
artery affected by the plaque. To perform automatic analysis,
a multi-task recurrent convolutional neural network is applied
on coronary artery MPR images. First, a 3D convolutional
neural network is utilized to extract features along the coronary
artery. Subsequently, the extracted features are aggregated by a
recurrent neural network that performs two simultaneous multi-
class classification tasks. In the first task, the network detects
and characterizes the type of the coronary artery plaque. In the
second task, the network detects and determines the anatomical
significance of the coronary artery stenosis. The network was
trained and tested using CCTA images of 98 and 65 patients,
respectively. For detection and characterization of coronary
plaque, the method achieved an accuracy of 0.77. For detection
of stenosis and determination of its anatomical significance, the
method achieved an accuracy of 0.80. The results demonstrate
that automatic detection and classification of coronary artery
plaque and stenosis are feasible. This may enable automated
triage of patients to those without coronary plaque and those with
coronary plaque and stenosis in need for further cardiovascular
workup.

Index Terms—Coronary artery stenosis, Coronary artery
plaque, Recurrent convolutional neural network, Coronary CT
angiography, Deep learning, Automatic Classification
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I. INTRODUCTION

Coronary artery disease (CAD) is the most common type
of heart disease [1]. CAD occurs when atherosclerotic plaque
builds up in the wall of the coronary arteries. This may lead
to stenosis, i.e. narrowing or occlusion of the coronary artery
lumen, limiting blood supply to the myocardium and potentially
leading to myocardial ischemia. Atherosclerotic plaque can be
classified according to its composition into calcified plaque,
non-calcified plaque, and mixed plaque, i.e plaque containing
calcified and non-calcified components [2]. Calcified plaque is
considered stable and its amount in the coronary arteries is a
strong predictor of cardiovascular events [3]. Unlike calcified
plaque, non-calcified and mixed plaque are considered unstable
and more prone to rupture. Such rupture may lead to acute
coronary syndrome and could result in irreversible damage
to the myocardium, i.e. myocardial infarction [4], [5]. As
different types of plaque and varying grades of stenosis lead to
different patient management strategies, it is crucial to detect
and characterize coronary artery plaque and stenosis [6], [7].

Coronary CT angiography (CCTA) is a well-established
modality for identification, as well as for exclusion, of patients
with suspected CAD. It allows for noninvasive detection
and characterization of coronary artery plaque and grading
of coronary artery stenosis [8]. To day, these tasks are
typically performed in the clinic by visual assessment [7],
or semi-automatically by first utilizing lumen and arterial
wall segmentation and thereafter, defining the presence of
plaque or stenosis [9]. However, the former suffers from
substantial interobserver variability, even when performed by
experienced experts [10], while the latter is dependent on
coronary artery lumen and wall segmentation which is typically
time-consuming and cumbersome, especially in images with
extensive atherosclerotic plaque or imaging artefacts [9].

Given the importance of plaque detection, a number of
methods for coronary artery plaque detection and quantification
have been proposed. Thus far, (semi-)automatic methods have
been designed to detect either calcified or non-calcified plaque.
Several methods have been developed to automatically segment
and quantify calcifications in the coronary arteries in non-
contrast CT and CCTA scans (e.g. [3], [11], [12], [13]).
These methods employ machine learning to analyze axial
reconstruction of CT scans. Typically, an excellent performance
approaching the level of an expert is achieved [3]. On the
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contrary, automatic detection and quantification of non-calcified
coronary plaque using CCTA has been less investigated. While
the visual detection of calcified plaque is straightforward in
CT/CCTA due to its higher CT density, the detection of non-
calcified and especially mixed plaque is more challenging
because of low contrast with adjacent tissues. Therefore, unlike
methods detecting calcifications, standard visual evaluation as
well as (semi-)automatic approaches detecting non-calcified
plaque typically analyze straightened multi-planar reformatted
(MPR) images. MPR images allow better visualization of the
arterial lumen and identification of difficult to delineate non-
calcified plaque in the arterial wall. To detect and quantify non-
calcified plaque, previously proposed methods have performed
manual or semi-automatic thresholding on CT values in
predefined regions of interest [14], [15]. Typically, these
methods require substantial manual interactions by experts.
Even though the presence of mixed plaque is usually reported
in clinical visual assessment, to the best of our knowledge,
automatic methods detecting and quantifying such plaque have
not yet been presented.

As stenosis detection and grading is highly important, a num-
ber of methods have been developed to (semi-)automatically
detect and grade coronary artery stenosis in CCTA [9]. These
methods either utilize machine learning approaches to analyze
the vicinity of the coronary artery centerline (e.g. [16], [17],
[18]), or segment arterial lumen (e.g. [19], [20], [21], [22],
[23]). Algorithms that utilize lumen segmentation for stenosis
detection first delineate coronary artery lumen and subsequently
detect and quantify stenosis by analyzing local changes and
anomalies in the lumen of the delineated artery. Shahzad et al.
[21] first extracted the centerline of the artery and subsequently
employed a graph cut approach and robust kernel regression
to segment the arterial lumen. Thereafter, to detect and grade
coronary stenosis, the diameter of the segmented lumen was
compared with the expected diameter of a healthy lumen. The
expected diameter of the healthy lumen was estimated by
regression on the diameters of the lumina along the coronary
artery. Wang et al. [22] employed a level-set model to separately
segment the inner and the outer arterial walls. Thereafter, a
comparison between these arterial wall profiles enabled the
detection and grading of stenosis. Furthermore, algorithms that
exploit machine learning for stenosis detection first compute a
number of features along the centerline of an artery to describe
local image intensities and arterial geometry. Subsequently,
they use a supervised classifier to detect and quantify stenosis.
For example, Zuluaga et al. [17] formulated arterial stenosis as
anomalous vascular cross-sections along the artery centerline.
The shape of the vascular cross-sections and their intensity
profiles were described by hand-crafted features, and then the
abnormal vascular cross-sections were detected by a support
vector machine. Sankaran et al. [18] first estimated healthy
diameters of the coronary arteries using downstream and
upstream properties of coronary tree vasculature as features
for random forest regressors. Then, the degree of a stenosis
was estimated based on the ratio of the local artery diameter,
estimated using maximum inscribed spheres, to the estimated
healthy diameter.

Here, we present a method to automatically detect and

characterize the type of coronary artery plaque, as well as
to detect and determine the anatomical significance of coronary
artery stenosis in CCTA scans. To perform the automatic
comprehensive analysis, a multi-task recurrent convolutional
neural network (RCNN) is employed to analyze the vicinity
along the extracted centerline in an MPR image and to
simultaneously carry out two classification tasks. In the first
task, the network detects and characterizes the type of the
coronary artery plaque, i.e. no plaque, non-calcified, mixed
or calcified plaque. In the second task, the network detects
and determines the anatomical significance of the coronary
artery stenosis, i.e. no stenosis, non-significant or significant
stenosis. The RCNN analyzes the vicinity along the artery
centerline, which is defined as a sequence of small volumes
along the centerline. This definition enables the RCNN, built
from a 3D convolutional neural network (CNN) and a recurrent
neural network (RNN) connected in series [24], to extract
image features from smaller volumes regardless of plaque
length, and then to aggregate all features extracted along the
plaque. Our contributions are fourfold. Firstly, we propose to
jointly classify plaque and stenosis, while previously proposed
methods have detected either plaque or stenosis. Secondly,
unlike previous automatic methods, our method does not
require segmentation of the coronary artery lumen and/or wall
nor exploiting geometric information about the artery lumen.
Instead, it only requires the coronary artery centerline. Thirdly,
we are the first to use deep neural networks to approach the
task of coronary artery plaque and stenosis analysis, or more
specifically a 3D-CNN paired with an RNN to analyze medical
data. Finally, previous works for classifying coronary artery
plaque require detailed reference annotations for each voxel
affected by the plaque. This kind of manual annotations is
extremely challenging and time consuming. In the presented
work, we employ only weakly annotated reference (start- and
end-points of a lesion with a single label for all voxels in
that lesion) to detect and characterize the plaque and thereby
substantially simplify the manual annotation procedure.

The remainder of the manuscript is organized as follows.
Section II describes the data and reference standard. Section III
describes the method and Section IV describes the evaluation.
Section V reports our experimental results, which are then
discussed in Section VI.

II. DATA
A. Patient and image data

This study includes retrospectively collected clinically ob-
tained CCTA scans of 163 patients (age: 59.2 + 8.8 years,
126 males) acquired in our hospital between 2012 and 2016.
The Institutional Ethical Review Board waived the need for
informed consent. All CCTA scans were acquired using an
ECG-triggered step-and-shoot protocol on a 256-detector row
scanner (Philips Brilliance iCT, Philips Medical, Best, The
Netherlands). A tube voltage of 120 kVp and tube current
between 210 and 300 mAs were used. For patients < 80 kg
contrast medium was injected using a flow rate of 6 mL/s for
a total of 70 mL iopromide (Ultravist 300 mg I/mL, Bayer
Healthcare, Berlin, Germany), followed by a 50 mL mixed



contrast medium and saline (50:50) flush, and a 30 mL saline
flush. For patients > 80 kg the flow rate was 6.7 mL/s and the
volumes of the boluses were 80, 67 and 40 mL, respectively.
Images were reconstructed to an in-plane resolution ranging
from 0.38 to 0.56 mm, with 0.9 mm slice thickness and 0.45
mm slice increment.

In each CCTA image, centerlines of the coronary arteries
were extracted using the method previously described by
Wolterink et al. [25]. The method requires manual placement
of a single seed point in the artery of interest, after which
the arterial centerline is extracted between the ostium and the
most distal point as visualized in the CCTA image. Using the
extracted centerlines, a 0.3 mm isotropic straightened MPR
image was reconstructed for each artery and used for further
analysis.

B. Reference standard

To define a reference standard for atherosclerotic plaque and
coronary artery stenosis, MPR images of coronary arteries were
employed (Fig. 1). As only arteries with a diameter greater than
1.5 mm are clinically evaluated with CCTA [7], only those were
annotated in this study. Plaque type and anatomical significance
of the stenosis were manually annotated by an expert using
custom-built software and following the guidelines of the
Society of Cardiovascular Computed Tomography (SCCT)
for reporting coronary artery disease [7]. For each plaque,
the expert marked its start- and end-points, its type (non-
calcified, calcified, or mixed i.e. containing both non-calcified
and calcified components), and the anatomical significance of
the stenosis caused by the plaque (non-significant i.e. with
< 50% luminal narrowing, significant i.e. with > 50% luminal
narrowing). The significance of a stenosis was determined by
visual estimation of the maximal grade of luminal narrowing
caused by the plaque. Note that the plaque voxels were not
segmented, but only the part of the artery containing the plaque
was identified (Fig. 1b). The expert also annotated a number
of segments of arteries without plaque and stenosis in different
patients. We refer to the annotated and analyzed parts of the
arteries as segments. However, note that these are not the
anatomically defined coronary artery segments.

As patient management and treatment strategies depend on
diagnosis at the segment-, artery- and patient-level [6], [7],
we additionally evaluate the ability of the proposed method
to detect stenosis and to classify its anatomical significance
on an artery- and patient-level. Therefore, segment-level labels
provided by the expert were translated to the artery- and
patient-level as follows. Arteries were labeled according to the
most severe stenosis significance among their segments. If no
stenosis of any significance was found in any of the annotated
segments, the artery was considered non-stenotic. Likewise,
patients were labeled according to the most severe stenosis
significance among their arteries, or considered as having no
stenosis.

The dataset of 163 patients contained 1259 manually labeled
arterial segments in 534 arteries. The manually annotated
segments included 37 non-calcified, 161 mixed and 317 calci-
fied plaques that caused non-significant stenosis. Additionally,

there were segments with 29 non-calcified, 91 mixed and 41
calcified plaques that caused significant stenosis. Moreover, 583
segments without plaque and stenosis were annotated. Of the
annotated segments, 528 were in the left anterior descending
artery (LAD) or one of its branches, 305 were in the left
circumflex artery (LCX) or one of its branches, and 426 were
in the right coronary artery (RCA) or one of its branches.

To assess the interobserver agreement, a second trained
observer, blinded to the reference standard, annotated the same
set of arteries following the same guidelines.

(@ ) (©)

Figure 1. (a) Axial and (b) straightened MPR image with longitudinal view,
and (c) cross-sectional view showing coronary artery in CCTA. This artery
contains a lesion (spanning the green arrow) labeled as containing calcified
plaque with non-significant stenosis. Red arrows indicate the location of this
plaque in other views.

III. METHOD

To detect and characterize the type of coronary artery plaque,
as well as to detect and determine the anatomical significance of
coronary artery stenosis, an RCNN is designed. An illustration
of the proposed workflow is shown in Fig. 2. Recently,
RCNNs have been successfully used for video recognition
and description (e.g. [26], [27], [28]), object recognition (e.g.
[29]), speech modeling [30], and in medical image analysis
(e.g. [31], [32], [33], [34]). RCNNs connect a CNN with an
RNN in series to analyze a sequential input. The CNN extracts
image features for each element of the sequence independently
(e.g. frame in a video clip, word in a sentence, cardiac phase
in cardiac cycle), and these extracted features are then fed to
the RNN that analyzes the relevant sequential dependencies in
the whole sequence.

In this work, the reference was defined following clinical
practice where parts of the arteries are classified with respect to
plaque and stenosis. Hence, only arterial segments containing
plaque were identified, instead of e.g. annotating all cross-
sections of the arterial lumen or all voxels in the arterial
wall. Given that the appearance of the plaque along the whole
segment is important for characterization of its type and
for determination of stenosis presence and significance, the
artery along the entire segment needs to be analyzed. Instead
of extracting a single, possibly large, volume covering the
segment at hand, we represent the segment as a sequence
of small volumes along its centerline. This enables us to
employ a relatively shallow CNN to extract image features
from smaller volumes independently. A shallow CNN that
analyzes smaller volumes may have fewer parameters and is
therefore less prone to overfitting. To aggregate and analyze the
features extracted from all small volumes along the segment,
we employ an RNN. For the whole analyzed sequence, the
network 1) detects and characterizes coronary artery plaque
i.e. classifies the segment as either containing no plaque,
containing non-calcified, mixed or calcified plaque, and 2)
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Figure 2. Illustration of the proposed workflow. In a CCTA scan, the centerlines
of the coronary arteries are extracted and used to reconstruct stretched multi-
planar reformatted (MPR) images for the coronary arteries. To perform the
automatic analysis, a multi-task recurrent convolutional neural network (RCNN)
is applied to coronary artery MPR images to perform two simultaneous
multi-class classification tasks. In the first task, the network detects and
characterizes the type of the coronary artery plaque (no plaque, non-calcified,
mixed, calcified). In the second task, the network detects and determines
the anatomical significance of the coronary artery stenosis (no stenosis, non-
significant i.e. < 50% luminal narrowing, significant i.e. > 50% luminal
narrowing).

detects and determines the anatomical significance of coronary
artery stenosis, i.e. classifies the segment as either containing
no stenosis, or containing non-significant or significant stenosis.

An illustration of the proposed RCNN is shown in Fig. 3.
The input of the network is a sequence with a maximum
length of 25 cubes of 25 x 25 x 25 voxels with stride of
5 voxels extracted from the MPR along the coronary artery
centerline. The maximal length was chosen based on the longest
annotated plaque in the training set. The size of the cube was
chosen so that it contains the whole arterial lumen and the
vicinity of the artery that may be needed in case of positive
remodeling [7]. Each cube is analyzed by a 3D CNN. The
CNN consists of three convolutional layers with kernels of
3 x 3 x 3 elements, with 32, 64, 128 filters, respectively. Each
convolutional layer is followed by a 2 x 2 x 2 max-pooling
layer and batch normalization [35]. The features extracted by
the CNN are fed to the RNN. The RNN consists of 2 layers of
64 Gated Recurrent Units (GRUs) [36] each. Rectified linear
units (ReLU) [37] are used in both CNN and RNN layers as
activation functions, except for the output layer of the RNN.
To perform both classification tasks simultaneously, the output
of the last layer of the RNN is fed into two separate multi-class
softmax classifiers. The first classifier has four output units for
detection of plaque and characterization of its type (no-plaque,

non-calcified, mixed, calcified). The second classifier has three
output units for detection of stenosis and determination of its
anatomical significance (no-stenosis, non-significant stenosis,
significant stenosis). The RCNN has a total number of 340,295
parameters.
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Figure 3. Overview of the proposed network. An MPR is obtained using
the artery centerline points (blue dotted line). The input of the network is
a sequence of cubes extracted from the MPR, along the artery centerline.
A CNN extracts features out of 25 X 25 x 25 voxels cubes. Subsequently,
an RNN processes the entire sequence using gated recurrent units (GRUs).
The output of the RNN is fed into two softmax classifiers to simultaneously
characterize plaque and stenosis.

IV. EVALUATION

Performance of the network was evaluated on segment-,
artery- and patient-levels. For segment-level evaluation, only
the predicted labels along the centerlines that fall within the
manually annotated segment boundaries were considered. For
artery-level evaluation, all predicted labels along the complete
artery centerline were taken into account. For patient-level
evaluation, all predicted labels along the complete centerlines
of all arteries of a patient were taken into account.

An automatically labeled segment is considered to be a
true positive in the classification of plaque type or stenosis
significance when it has an overlap of at least 1 mm with a
manually annotated segment sharing its label. On the contrary,
a segment is considered to be true positive in the detection of
plaque absence (no plaque) or stenosis absence (no stenosis),
only when no point along the segment has any plaque or
stenosis, respectively.

As most patients have multiple arterial plaques of different
types, the evaluation of plaque detection and characterization
was performed on a segment-level only. The average accuracy
of the prediction over all segments and labels, i.e. the average
percentage of correctly labeled segments, was computed. To
assess the overall performance, the unweighted average of F1
score was computed. This was done for each label separately,
and then computing the unweighted mean across all labels,



averaged over all segments. Given the multiple categories of
the plaque labels, unweighted Cohens x metric was used to
measure the reliability between the predicted plaque labels and
the reference standard.

The evaluation of stenosis detection and characterization was
performed on segment-, artery- and patient-levels. Automati-
cally determined stenosis significance for an artery or a patient
is considered true positive if any of the automatically detected
labels along the artery centerline or patients arteries match the
reference label of that artery or patient, respectively. On the
contrary, an artery or patient is considered to be true positive
in the detection of stenosis absence (no stenosis) only when no
stenosis was detected at any point along the artery or in any
of the patient’s arteries, respectively. As for plaque evaluation,
the average accuracy and the unweighted average F1 score
were computed to assess the overall agreement for predicting
the stenosis labels. Given the grading of the stenosis, Cohens
linearly weighted ~ metric was used to measure the reliability
between the predicted stenosis labels and the reference standard.

Interobserver reliability for both plaque and stenosis analyses
was assessed using the same metrics by comparing the
annotations of the second observer to the reference standard.

V. EXPERIMENTS AND RESULTS

From the available dataset consisting of 163 patients, CCTA
scans of 81 (50%) and 17 (10%) patients were randomly
chosen for training and validation, respectively. The scans
of the remaining 65 (40%) patients were used for testing the
method. All CNN and RNN hyperparameters were determined
in preliminary experiments using the training and validation
scans only.

Prior to training, several data augmentation techniques were
utilized to increase the training set size. First, to make the
network invariant to rotations around the artery centerline,
random rotations between 0 and 360 degrees around the
coronary artery centerline were applied to all cubes of a
sequence. Second, to make the network invariant to slight
inaccuracies in manual annotations of the points defining the
segment, a sequence of a segment was varied by randomly
choosing centers of cubes with a stride of 5 voxels with a
uniform random shift between £3 voxels along the MPR
centerline. Third, to make the network robust to possible
inaccuracies in the extraction of the coronary artery centerline,
the center of each cube was randomly shifted around its origin
by up to 2 voxels, in any direction.

The network was trained with mini-batches containing only
the manually annotated segments. In the dataset, the distribution
of plaque types and stenosis grades is unbalanced (Section
II-B). To avoid a potential bias towards the most common type
of plaque and stenosis in the dataset (i.e. calcified plaque with
non-significant stenosis), a stratified random data sampling was
performed during the training. Each training iteration included
two distinct mini-batches. One mini-batch contained segments
balanced with respect to their plaque classes regardless of the
stenosis significance. A second mini-batch contained segments
balanced with respect to the stenosis classes regardless of
the plaque type. For each segment, a sequence of cubes,

spanning the entire length of the segment, was extracted from
the MPR volume along the artery centerline. The categorical
cross-entropy was employed as loss function of each softmax
classifier and the L2 regularization was used with v = 0.001
for all layers. The loss of the network was defined as the
average of the two individual losses (Eq. 1).

=3 ZylogpZ +Zyglog +%Zwi
k

where yP and y*® are one-hot encoded vectors for the labels of
plaque (z = 0,1, 2,3) and stenosis (j = 0, 1, 2), respectively,
and pP and p® are the softmax output probabilities for the
plaque and stenosis, respectively. wy, is a trainable weight in
the network (k = 0, ..., Npgram), where Npgram is the total
number of trainable parameters in the network.

During training, mini-batches of 36 sequences (i.e. segments)
were used to minimize the loss function with Adam optimizer
[38] with constant learning rate 0.001, and a random dropout
[39] of 50% was applied in each recurrent layer to prevent over-
fitting. Training was performed for 50,000 iterations (Fig. 4(a)).
To evaluate the effect of data augmentation during training, an
identical network was trained without any augmentation and the
accuracies during training with and without data augmentation
are illustrated in Fig. 4(b). In these figures, the stability and
the convergence of the training process with data augmentation
are shown, while training without data augmentation shows
signs of overfitting on the training set where accuracies on the
validation set decrease.

Unlike in the training phase, where the defined start- and end-
points of a segment were used, during testing, segments were
not defined, and labels were predicted along the whole analyzed
artery. Therefore, all points along the coronary centerline were
classified and labeled by the network. This was performed by
feeding the network a fixed-length sequence centered around
each centerline point. The fixed-length sequence consisted
of 5 cubes with a stride of 5 voxels extracted along the
coronary artery centerline. These parameters were optimized
in preliminary experiments on the training set. The output
probabilities for plaque and stenosis were then assigned to
the center of the evaluated sequence. Thereafter, a label for
plaque and a label for stenosis was defined for each centerline
point by the class having the highest probability in each task
separately.

A. Plaque detection and characterization

To assess the performance of the proposed RCNN for plaque
detection and characterization (no plaque, non-calcified, mixed,
calcified), we first evaluated the performance for each annotated
segment. Table I lists the confusion matrix showing the results.
Next, we evaluated the performance of the proposed method
for detection of plaque (plaque of any type vs. no plaque),
and compared it with plaque detection and characterization at
the segment level. These results are summarized in Table II.
To allow comparison of the automatic analysis with that of
an expert, Table II additionally provides results achieved by
the second observer. In brief, for detection of plaque (plaque
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Figure 4. (a) Training and validation losses during training with and without
data augmentation. (b) Validation accuracies for detection and characterization
of coronary artery plaque, as well as detection and determination of the
anatomical significance of coronary artery stenosis during training with and
without data augmentation.

of any type vs. no plaque), the proposed method achieved
a segment-level accuracy of 0.85 and the second observer
reached an accuracy of 0.90. For detection and characterization
of plaque (no plaque, non-calcified, mixed, calcified), the
proposed method and the second observer achieved segment-
level accuracies of 0.77 and 0.80 with unweighted « of 0.61 and
0.67, respectively. Finally, to evaluate whether the performance
of the method depends on the analyzed artery, Table III lists
the performance obtained for the detection and characterization
of plaque (no plaque, non-calcified, mixed, calcified) at the
segment-level in the different coronary arteries (LAD / LCX /
RCA). Plaque was most accurately detected in LCX (0.81) and
the least in RCA (0.72). Examples of automatically predicted
classification probabilities in different arteries are shown in
Fig. 5. An example of an artery with predicted labels for plaque
characterization is shown in Fig. 6(b).

B. Stenosis detection and characterization

To assess the performance of the proposed RCNN for
detection and determination of the anatomical significance
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Figure 5. (a) and (b) are examples of output probabilities for (1) plaque
and (2) stenosis classification of a plaque indicated by its manually annotated
boundaries and the reference labels (top). Output probabilities for plaque and
stenosis classification are shown for each class (bottom). Note that in (a)
calcified plaque and non-significant stenosis are correctly detected, while in
(b), a mixed plaque with significant stenosis was detected as a calcified plaque
with significant stenosis. Non-Sig. = Non-significant stenosis. Sig. = Significant
stenosis. Calc. = Calcified plaque. Non-calc. = Non-calcified plaque. (c) An
example of output probabilities for (1) plaque and (2) stenosis classification
over a bifurcation of an artery in MPR view (top) and a 90° rotated MPR
view (bottom). Output probabilities for plaque and stenosis classification are
shown for each class (middle). Note that as a sudden reduction in the coronary
artery lumen diameter occurs distal to bifurcations, in this case, a stenosis
was falsely detected.

of stenosis, we analyzed the results achieved on the segment-,
artery- and patient-levels. The obtained confusion matrices
are calculated and shown in Table IV. To get an insight
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were extended to a 25 X 25 voxels around the artery centerline, indicating the analyzed area.

Table 1
CONFUSION MATRIX SHOWING SEGMENT-LEVEL RESULTS OF DETECTION
AND CHARACTERIZATION OF PLAQUE BY CLASSIFICATION INTO
NO-PLAQUE, NON-CALCIFIED PLAQUE, MIXED PLAQUE, AND CALCIFIED
PLAQUE. THIS RESULTED WITH AN ACCURACY OF 0.77 AND AN
UNWEIGHTED Kk OF 0.61.

Segment-level Automatic
& No plaque Non-calcified Mixed Calcified
v No-plaque 211 8 4 15
Q
§ Non-calcified 19 7 2 0
< Mixed 6 4 27 27
& Calcified 11 2 3 83

into the ability of the method to classify stenosis, Table II
lists the performance obtained for detection and determination
of the anatomical significance of the stenosis (no stenosis,
non significant stenosis, significant stenosis) at the segment-
, artery- and patient-level. The automatic method achieved
accuracy of 0.80, 0.76 and 0,75, and the linearly weighted « of
0.68, 0.66 and 0.67 at the segment-, artery- and patient-level,
respectively. For the second observer the accuracies were 0.83,
0.80 and 0.75, and the linearly weighted x were 0.70, 0.72
and 0.70, respectively. Given the importance of the detection
of the anatomically significant stenosis, the performance of the
automatic method as well as the performance of the second
observer for the this task (significant stenosis vs. no stenosis or
non-significant stenosis) were evaluated. The automatic method
achieved accuracy of 0.94, 0.93 and 0.85 at the segment-,
artery- and patient-level, respectively. For the second observer

Table II
ACCURACY (AcC.), F1 SCORE AND COHENS Kk ACHIEVED BY THE
PROPOSED METHOD AND BY THE SECOND OBSERVER FOR PLAQUE AND
STENOSIS DETECTION AND CLASSIFICATION. RESULTS ACHIEVED BY THE
SECOND OBSERVER ARE PRESENTED BETWEEN BRACKETS. FOR ANALYSIS
OF PLAQUE, THE PERFORMANCE FOR DETECTION OF PLAQUE (D.) (PLAQUE
VS. NO PLAQUE), AND FOR DETECTION AND CHARACTERIZATION OF
PLAQUE (D.+C.) (NO PLAQUE, NON-CALCIFIED, MIXED, CALCIFIED) AT
THE SEGMENT-LEVEL ARE SHOWN. FOR ANALYSIS OF STENOSIS, THE
PERFORMANCE FOR DETECTION OF THE SIGNIFICANT STENOSIS (D.)
(SIGNIFICANT STENOSIS VS. NO STENOSIS OR NON-SIGNIFICANT
STENOSIS), AND FOR DETECTION AND CLASSIFICATION OF THE
ANATOMICAL SIGNIFICANCE OF THE STENOSIS (D.+S.) (NO STENOSIS,
NON-SIGNIFICANT STENOSIS, SIGNIFICANT STENOSIS), AT THE SEGMENT-,
ARTERY- AND PATIENTS-LEVELS ARE SHOWN. NOTE THAT, FOR PLAQUE
ANALYSIS, THE UNWEIGHTED kK WAS COMPUTED, WHILE FOR STENOSIS
ANALYSIS, THE LINEARLY WEIGHTED kK WAS DETERMINED.

Plaque D. D.+C.
Analysis Acc. F1 ‘ Acc. F1 K
Segment-level 0.85 0.85 0.77 0.61 0.61
¢ (0.90) (0.90) | (0.80) (0.67) (0.67)
Stenosis D. D.A4S.

Analysis Acc. F1 | Acc. Fl K
Segment-level 0.94 0.80 0.80 0.75 0.68
& ©91) (0.72) | (0.83) (0.72) (0.70)
Arterv-level | 093 088 | 076 077 0.66
ry (0.92) (0.84) | (0.80) (0.78) (0.72)
Patient-level 0.85 0.83 0.75 0.75 0.67
(0.83) (0.81) | (0.75) (0.77) (0.70)

these were 0.91, 0.92 and 0.83, respectively. Table II also



Table III
ACCURACY (ACC.), UNWEIGHTED F1 SCORE AND COHENS k AT THE

SEGMENT-LEVEL FOR PLAQUE AND STENOSIS CHARACTERIZATION FOR
THE THREE MAIN CORONARY ARTERIES (LAD, LCX, RCA). THE NUMBER
OF EVALUATED SEGMENTS PER ARTERY IS INDICATED (N). NOTE THAT, FOR
PLAQUE DETECTION AND CHARACTERIZATION, THE UNWEIGHTED Kk WAS
COMPUTED, WHILE FOR STENOSIS DETECTION AND DETERMINATION OF
THE SIGNIFICANCE OF THE DETECTED STENOSIS, LINEARLY WEIGHTED K

WAS DETERMINED.

Plaque Analysis
Acc. F1 K

Stenosis Analysis
| Acc. Fl K

LAD (n=184) | 0.78 0.69 0.65 | 0.81 0.79 0.72
LCX (n=96) 0.81 059 062 | 0.80 0.65 0.60
RCA (n=149) | 0.72 052 053 | 0.79 0.68 0.62

details these results. Finally, to compare the performance in
the different coronary arteries, the performance achieved for
the detection and determination of the anatomical significance
of the stenosis (no stenosis, non-significant stenosis, significant
stenosis) at the segment-level in the three main coronary arteries
(LAD / LCX / RCA) was evaluated. The analysis showed that
similar accuracies were achieved in all three arteries (0.81
for LAD, 0.80 for LCX and 0.79 for RCA). Detailed results
are listed in Table III. Examples of automatically predicted
classification probabilities in different arteries are shown in
Fig. 5. An example of an artery with predicted labels for
stenosis characterization is shown in Fig. 6(c).

C. Impact of the RCNN architecture

To establish the value of the recurrent nature of the proposed
network, an additional experiment was performed in which
a network with an identical CNN architecture was utilized,
while the RNN was replaced by fully connected (FC) layers
(Fig. 7). To analyze different sequence lengths and to aggregate
the features extracted by the CNN into one vector, a global
max pooling layer was employed after the CNN. This layer

Table IV
CONFUSION MATRICES SHOWING SEGMENT-, ARTERY-AND PATIENT-LEVEL
RESULTS FOR DETECTION AND CHARACTERIZATION OF THE STENOSIS BY
CLASSIFICATION INTO NO-STENOSIS, NON-SIGNIFICANT AND SIGNIFICANT
STENOSIS. ACCURACIES OF 0.80, 0.76 AND 0.75 WERE OBTAINED AT THE
SEGMENT-, ARTERY- AND PATIENT-LEVEL, RESPECTIVELY. THE LINEARLY
WEIGHTED Kk WERE 0.68, 0.66 AND 0.67 AT THE SEGMENT-, ARTERY- AND
PATIENT-LEVEL, RESPECTIVELY.

Automatic
Segment-level No stenosis ~ Non-significant ~ Significant
S No-stenosis 211 23 4
§ Non-significant 35 112 8
< Significant 1 13 22
&<
Artery-level . Autqmqttc -
No stenosis ~ Non-significant ~ Significant
¥ No-stenosis 58 21 3
$  Non-significant 13 64 5
<. Significant 0 5 25
&
. Automatic
Patient-level No stenosis  Non-significant ~ Significant
S No-stenosis 10 2 1
§ Non-significant 4 21 6
< Significant 0 3 18
54

was subsequently connected to two FC layers instead of the
GRUs. To match the total number of trainable parameters in
both architectures, the number of units in each of FC layers
was raised from 64 to 192. In total, the network had 341,191
parameters (vs. 340,295 parameters in the RCNN network). To
allow a comparison with the proposed RCNN network, this
network was trained, validated and tested using the same sets
of training, validation and test images. The obtained results
are listed in Table V (second row).

D. Single vs. multi-task classification

Given that plaque and stenoses analyses are related, the
classification could be posed as a single multi-class task with
seven unique output classes (no plaque, calcified, mixed or
non-calcified plaque with non-significant stenosis, calcified,
mixed or non-calcified plaque with significant stenosis).

To evaluate the performance of single task classification, two
additional networks were examined. The first network utilized
an identical RCNN architecture with a single softmax classifier
with 7 output units. The second used a CNN-only architecture
(as in Section V-C) also with a single softmax classifier with 7
output units. To allow a comparison with the proposed network,
these networks were trained, validated and tested using the
same sets of training, validation and test images. The obtained
results are listed in Table V (first and third rows).

Table V
ACCURACY (ACC.), UNWEIGHTED F1 SCORE AND COHENS Kk AT THE
SEGMENT-LEVEL FOR PLAQUE AND STENOSIS CHARACTERIZATION USING
FOUR DIFFERENT NETWORK ARCHITECTURES. CNN INDICATES THE
NETWORK WHERE THE RECURRENT LAYERS WERE REPLACED BY FULLY
CONNECTED LAYERS. Single-task DENOTES THE NETWORK WITH SINGLE
SOFTMAX CLASSIFIER, WHILE multi-task DENOTES THE NETWORK WITH
TWO SOFTMAX CLASSIFIERS. NOTE THAT, FOR PLAQUE DETECTION AND
CHARACTERIZATION, THE UNWEIGHTED K WAS COMPUTED, WHILE FOR
STENOSIS DETECTION AND DETERMINATION OF THE SIGNIFICANCE OF THE
DETECTED STENOSIS, LINEARLY WEIGHTED K WAS DETERMINED.

Plaque Analysis
Acc. Fl K

Stenosis Analysis
| Acc. Fl K

CNN single-task 053 041 039 | 062 0.60 0.46
CNN multi-task 063 058 048 | 0.71 0.70 0.58
RCNN single-task | 0.63 057 049 | 069 0.68 0.51
RCNN multi-task | 0.77 0.61 0.61 | 0.80 0.75 0.68

E. Comparison with previous work

Most published methods reported segment-level sensitivity
and positive predictive value (PPV) for the detection of
the anatomically significant stenosis [9]. Shahzad et al. [21]
reported a segment-level sensitivity of 0.50 and a PPV of 0.27
for the detection of the anatomically significant stenosis, while
Wang et al. [22] reported a sensitivity of 0.28 and a PPV of
0.23. The proposed network achieved a sensitivity of 0.61 and
a PPV of 0.65 for detecting significant stenosis. Nonetheless,
comparison with these methods is not trivial as these methods
required the artery lumen to be first segmented and then the
stenosis was detected. Additionally, different studies reported
performance using a different evaluation procedure and different
sets of patients than the current work. Therefore, a direct
comparison of the results should be used only as an indication.
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Figure 7. The input of the network is a sequence of cubes extracted from the
MPR along artery centerline. A CNN extracts features out of each 25 x 25 x 25
voxels cube, then a global max pooling and two dense (FC - fully connected)
layers process the entire sequence. The output of the dense layers is fed into
two softmax classifiers to simultaneously characterize plaque and stenosis. To
match the total number of parameters compared to the proposed network, 196
units in each of dense layers were used. In total, the network had 341,191
parameters, vs. 340,295 parameters in the proposed network.

Moreover, most methods for the automated detection of the
calcified coronary artery plaque perform quantification of the
plaque [3]. Such methods usually perform voxel-level analysis
which our method does not offer. Methods for detection of non-
calcified plaque [14], [15] perform manual or semi-automatic
quantification that requires substantial manual interaction by
experts. Therefore, a direct comparison with such methods is
not feasible.

VI. DISCUSSION AND CONCLUSION

A method for automatic detection and characterization of
the coronary artery plaque type, as well as detection and
characterization of the anatomical significance of the coronary
artery stenosis was presented. The method employs an RCNN
that analyzes an MPR view of a coronary artery extracted
from a CCTA scan using the coronary artery centerline. The
RCNN utilizes a 3D CNN that computes image features from
3D volumes extracted along the coronary artery centerline.
Subsequently, an RNN analyzes the computed image features to
perform both classification tasks. Unlike most previous methods
that detect and characterize coronary artery plaque and stenosis
relying on the coronary artery lumen segmentation [9], the
proposed method requires only the coronary artery centerline
as an input along with the CCTA image.

The presented results reveal that detection and characteriza-
tion of coronary artery plaque can be performed accurately, but
with moderate reliability (Table I and Table II). For both plaque
detection and plaque characterization, the second observer only
achieved slightly better performance than the proposed method
(Table 1I) indicating the complexity of the task. Nevertheless,

the method was accurate in discriminating segments with plaque
from those without any plaque. This is clinically important as
absence of plaque does not lead to treatment. Moreover, further
analysis of plaque characterization revealed that differentiation
of the mixed plaque from the calcified and non-calcified plaque
remains challenging. This is not surprising given that the mixed
plaque contains both calcified and non-calcified components
and that the distinction between mixed and calcified plaque,
as well as between mixed and non-calcified plaque, is not
clearly defined as illustrated in Fig. V. To address this, the
automatic method could perform detection of calcified and
non-calcified components only, and the obtained results could
be merged into calcified, non-calcified and mixed plaque based
on their spatial distribution. In addition, it would be interesting
to segment plaque on a voxel-level, but obtaining voxel-wise
reference is extremely labor intensive and requires a very
experienced expert. Furthermore, analysis of the results per
coronary artery (Table III) reveals that plaque characterization
achieves a slightly lower performance in segments located in
the RCA than in LAD or LCX. This might be caused by the
more prominent cardiac motion artifacts in the RCA compared
to the other two arteries [40].

Anatomically significant stenosis could potentially lead to
myocardial ischemia (i.e. functionally significant stenosis), and
clinical guidelines suggest that different grades of stenosis
in the coronary artery should be managed differently [7].
Our experiments demonstrate that the proposed method is
able to detect and determine the anatomical significance of
coronary artery stenosis accurately with excellent reliability
(Table IT and Table IV). For detection and characterization of
the anatomical significance of a stenosis, the proposed method
achieved a performance approaching the level of the second
observer (Table II). Moreover, we investigated whether the
method is able to identify patients with anatomically significant
stenosis. This is especially important as patients having such
stenosis are usually referred to further functional testing and
to invasive coronary angiography to measure fractional flow
reserve (FFR). FFR determines the functional significance of
the stenoses, and hence, establishes the patient’s treatment
strategy. Our results reveal that patients with anatomically
significant stenosis on CCTA are detected with high accuracy
(Table 1I). However, one patient without stenosis was identified
as having a significant stenosis (Table IV). An examination
of the CCTA image of this patient revealed that although
no artifacts were present, a coronary artery bifurcation was
mistakenly detected as significant stenosis in one of the patients’
arteries. Moreover, in this work, only two distinct degrees of
stenosis were differentiated; below and above 50% of luminal
narrowing. Future work may investigate automatic classification
of additional clinically relevant stenotic grades, e.g. <25%
or >70%, or automatic estimation of stenosis degree, i.e.
percentage of luminal narrowing. Nevertheless, for both tasks,
a larger training set of patients with manual annotations would
be required.

The contribution of the recurrent nature of the proposed
network was evaluated. The results show clear advantage of
the proposed recurrent architecture over the network containing
no recurrent units (Table V). This is in agreement with our



assumption that a sequential analysis of several small volumes
along the coronary artery is needed to aggregate the knowledge
of the entire analyzed region rather than just locally (e.g. a
single volume). A similar concept was reported by Ng et
al. [28], where incorporating information across video frames
enabled better video classification. Possibly, given a sufficiently
large and diverse data set, a deeper CNN-only (e.g. 3D U-
Net [41]), analyzing a large single volume along the artery,
could be employed to perform the presented analyses. However,
obtaining such a large data set remains highly challenging, and
employing deep networks, typically used for analysis of natural
images (e.g. ResNet [42]), is likely not beneficial due to scarcity
of the manually labeled training data.

Unlike most methods for coronary artery plaque and stenosis
classification that depend on the extracted artery centerline
followed by arterial lumen segmentation [9], the proposed
method relies only on the extracted artery centerline. Arterial
lumen segmentation is far from trivial task, which occasionally
requires substantial manual interaction, especially in diseased
population with heavily calcified arteries. We have here
prevented potential error propagation by omitting this step.
To extract coronary artery centerlines, we have employed our
previously designed method for artery centerline extraction
[25]. However, any other manual, semi-automatic or automatic
method could be employed instead. Although employing the
extracted centerlines and the subsequent analysis of the MPR
images simplify plaque and stenosis classification, small errors
in centerline extraction might lead to errors and therefore
negatively affect the overall performance. To mitigate impact of
such errors, we trained the RCNN with augmented centerlines,
simulating small inaccuracies (Fig.4b). Future work might
investigate direct classification of plaque and stenosis from
acquired CCTA images, omitting the intermediate centerline
extraction.

In this work, we have treated plaque and stenosis character-
ization as two different tasks, that were performed jointly.
Although this halved the time of inference (1.8 seconds
per artery on average), it has a limitation. Given that the
parameters of the two softmax classifiers in the network differ,
a physiologically impossible scenario, where a plaque is not
detected while a stenosis is detected, can occur. Although in
our experiments this was the case only in less than 1.5% of the
cases, future work could address this either by modifying the
network architecture preventing such scenario, or by applying
a high penalty for such cases in the loss function of the
network. A single task network would prevent such a scenario.
Nevertheless, experiments, comparing the proposed multi-task
approach against networks with single softmax classifier each,
demonstrate superior performance of the multi-task approach
(Table V, first and third rows vs. second and fourth rows).
The limited number of training samples may have prevented
the single-task networks from generalizing well even with a
relatively small network. Moreover, although the architecture
of the RCNN was determined in preliminary experiments using
the training set, a systematic extensive grid-search or other
hyper-parameter optimization methods were not performed.
Addressing this might further improve the results.

In the manual annotations defining the reference standard, a

single label was assigned to a whole segment of the coronary
artery containing plaque. Separating these segments to their
local components might lead to different labels. Consequently,
the identified start- and end-points of the automatically detected
plaque and stenosis are not in full agreement with the reference
annotations (see Fig. 6 and Fig. V). Furthermore, coronary
artery bifurcations were not manually annotated and the
network was not trained to detect these as a separate class.
As a sudden reduction in the coronary artery lumen diameter
occurs distal to bifurcations [43], a stenosis might be mistakenly
detected (see example illustrated in Fig. V). Future work might
address these limitations by modifying the reference standard so
that each voxel in the arterial wall or each cross-section of the
arterial lumen is annotated and the coronary artery bifurcations
are indicated. Besides bifurcations, imaging artefacts caused by
routinely used step-and-shoot protocol could affect performance
of the method. Nonetheless, a qualitative evaluation of the
results revealed that arterial segments containing such image
artifacts were not incorrectly detected as having plaque or
stenosis. Note that these regions were not included in the
manual annotations either. Finally, the current study employed
clinically obtained CCTA scans from a single vendor. Modern
scanners applying new techniques (e.g. high-pitch spiral, 320-
detector row) may improve image quality and potentially enable
further increase in the performance of the here proposed method.
Moreover, further studies are needed to evaluate the proposed
method using a larger set of scans from different vendors and
medical centers.

To conclude, this study presented an algorithm, based on a
recurrent convolutional neural network, for automatic detection
and characterization of coronary artery plaque, as well as
detection and characterization of the anatomical significance of
coronary artery stenosis. To the best of our knowledge, we are
the first to propose an automatic method for both plaque and
stenosis characterizations. This may enable automated triage
of patients to those without coronary plaque, and those with
coronary plaque and stenosis in need for further cardiovascular
investigation.
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