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Abstract

Recently deep neural networks have been widely and successfully applied in computer vision tasks 

and attracted growing interests in medical imaging. One barrier for the application of deep neural 

networks to medical imaging is the need of large amounts of prior training pairs, which is not 

always feasible in clinical practice. This is especially true for medical image reconstruction 

problems, where raw data are needed. Inspired by the deep image prior framework, in this work 

we proposed a personalized network training method where no prior training pairs are needed, but 

only the patient’ own prior information. The network is updated during the iterative reconstruction 

process using the patient specific prior information and measured data. We formulated the 

maximum likelihood estimation as a constrained optimization problem and solved it using the 

alternating direction method of multipliers (ADMM) algorithm. Magnetic resonance imaging 

(MRI) guided Positron emission tomography (PET) reconstruction was employed as an example to 

demonstrate the effectiveness of the proposed framework. Quantification results based on 

simulation and real data show that the proposed reconstruction framework can outperform 

Gaussian post-smoothing and anatomically-guided reconstructions using the kernel method or the 

neural network penalty.
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I. Introduction

Over the past several years, deep neural networks have been widely and successfully applied 

to various imaging tasks such as segmentation [1], object detection [2] and image synethesis 

[3], by demonstrating better performance than state-of-the-art methods when large amounts 

of data sets are available. For medical imaging tasks such as lesion detection and region-of-

interest (ROI) quantification, obtaining high quality diagnostic images is essential. Recently 

the neural network method has been applied to transform low-quality images into the images 

with improved signal-to-noise ratio (SNR).

During network training, images reconstructed from high dose or long-scanned duration are 

required to be used as the training labels. In some cases collecting large amounts of training 

labels is easy, such as static magnetic resonance (MR) reconstruction. However, this is not 

an easy task for some other cases: high-dose computed tomography (CT) has potential safety 

concerns; long-scanned dynamic positron emission tomography (PET) is not employed in 

routine clinical practice; in cardiac MR applications, it is impossible to acquire breath-hold 

fully sampled 3D images. With limited amounts of high-quality patient data sets available, 

overfitting can be a potential pitfall: if new patient data does not lie in the training space due 

to population difference, the trained network cannot accurately recover unseen structures. In 

addition, low-quality images are often simulated by artificially downsampling the full-dose/

high-count data, which may not reflect the real physical condition of low-dose imaging. This 

mismatch between training and the real clinical environment can reduce the network 

performance.

Apart from using training pairs to perform supervised learning, a lot of prior arts focus on 

exploiting prior images acquired from the same patient to improve the image quality. The 

priors can come from temporal information [4], [5], different physics settings [6], or even 

other imaging modalities [7]. They are included into the maximum posterior estimation or 

sparse representation framework using pre-defined analytical expressions or pre-learning 

steps. The pre-defined expressions might not be able to extract all the useful information, 

and the pre-learnt model might not be optimal for the later reconstruction as no data 

consistency constraint is enforced during pre-learning. Ideally the learning process should be 

included inside the reconstruction framework.

Recently, the deep image prior (DIP) framework proposed in [8] shows that convolutional 

neural networks (CNNs) have the intrinsic ability to regularize a variety of ill-posed inverse 

problems without pre-training. No prior training pairs are needed and random noise can be 

employed as the network input to generate denoised images. The ability of CNN to learn the 

structure information is also revealed in the deep convolutional generative adversarial 

network (GAN) [9] where the generator is fully convolutional, and the network can generate 

various distributions based on random noise input. Furthermore, it has been presented in 

conditional GAN works [10]–[12] that when the input is not random noise, but the 

associated prior information, the prediction results can be improved. This shows that for the 

DIP framework, its conditional version using prior information as input, instead of random 

noise, may generate better results.
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Inspired by the prior arts, we proposed a personalized image reconstruction framework 

based on the conditional DIP method, called DIPRecon. The input is not random noise, but 

prior images of the same patient. Instead of calculating the mean squared error (MSE) 

between the network output and the original corrupted image, we formulated the training 

objective function based on maximum likelihood estimation derived from imaging physics. 

Modified 3D U-net [13] was employed as the neural network structure. To stabilize the 

network training, the limited memory BFGS (L-BFGS) algorithm [14] was used instead of 

adaptive stochastic gradient descent (SGD) methods.

PET is a molecular imaging modality widely used in neurology studies. The image 

resolution of current PET scanners is still limited by various physical degradation factors 

[15]. Improving PET image resolution is essential for a lot of applications, such as dopamine 

neurotransmitter imaging, brain tumor staging and early diagnosis of Alzheimer’s disease. 

For the past decades, various efforts are focusing on using MR or CT to improve PET image 

quality [16]–[23]. In this work, the anatomically-aided PET image reconstruction problem 

was presented as an example to demonstrate the effectiveness of the proposed DIPRecon 

framework. Compared with the state-of-the-art kernel-based method and the penalized 

reconstruction based on a neural network penalty, DIPRecon shows superior performance 

both visually and quantitatively in simulation and real data experiments.

This paper is organized as follows. Section 2 describes the related works. Section 3 

introduces the DIPRecon framework and implementation details. Section 4 describes the 

simulations and real data used in the evaluation. Experimental results are shown in section 5, 

followed by discussions in section 6. Finally, conclusions are drawn in Section 7.

II. Related Works

A. Deep neural network with training pairs

When large amounts of training pairs are available, a neural network can be trained by

θ = arg min
θ

∑
i

xlabel
i − f θ | zi , (1)

where f :ℝ ℝ represents the neural network, θ ∈ ℝL indicates the trainable variables, 

zi ∈ ℝN is the network input for the ith training pair, and xlabel
i ∈ ℝN denotes the ith training 

label. For CNN, θ contains the convolutional filters and the bias items from all layers. The 

trained network can be directly applied to image denoising [24]–[27]. Apart from image 

denoising, some efforts focus on including the trained neural network into an iterative 

reconstruction framework, using penalty design or variable reparameterization methods [24], 

[28]–[30]. Unrolled neural network methods have also been proposed, which unfold the 

iterative update steps and use neural networks to implicitly represent some modules [31]–

[36]. Compared to denoising approaches, combining the neural network with iterative 

reconstruction framework takes the data consistency into consideration and can recover 

more image details. All of the above approaches require a large number of training pairs to 
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learn the network parameters θ. Even for GAN, high-quality reference images are still 

needed in the discriminative network.

B. Train-data-free approaches

In this category, the high-quality training labels are not needed. The model is learned from 

the measurement data or prior images from other resources.

1) Adaptive dictionary learning—Dictionary learning is an effective method in image 

denoising [37]. It constructs an overcomplete dictionary and uses the estimated dictionary to 

approximate the distorted image. Similar to the pre-mentioned neural network method, high-

quality reference images can be used to train a global dictionary. When high-quality 

reference images do not exist, adaptive dictionary learning can be applied where the training 

and denoising are implemented in an alternating iterative process. Apart from denoising, 

adaptive dictionary learning has also been applied to image reconstruction by combining the 

data fidelity item with the constraint from sparse representations [38]–[40].

2) Deep image prior—In [8], the authors proposed the DIP method, where no prior-

learning was performed before applied to image restoration/denoising. The general idea is 

similar to the adaptive dictionary learning approach. Supposing x0 ∈ ℝN is the distorted 

image, the training process is characterized as

θ = arg min
θ

x0 − f (θ | z) , x = f (θ | z), (2)

where x ∈ ℝN is the final corrected image output, and the network input z ∈ ℝN is random 

noise. No training pairs are needed and f(θ|z) is updated from scratch. Results from this 

work indicate that the network structure of a CNN can function as a regularizer and the 

network weights are the parameters representing x.

3) Kernel method—The kernel method is a method developed for PET image 

reconstruction using temporal or anatomical priors [5]. It is based on the assumption that the 

unknown image x ∈ ℝN can be represented as

x = Kzθ, (3)

where Kz ∈ ℝN × N is the kernel matrix calculated from the prior image z ∈ ℝN with a pre-

defined kernel basis function. θ ∈ ℝN is the kernel coefficients. The kernel representation 

shown in (3) is included in the iterative reconstruction framework to estimate the kernel 

coefficients θ. From the network point of view, the kernel method can be considered as a 

twolayer network: the prior image z is the network input, Kz is a non-local feature extraction 

layer, θ is the convolutional filter with spatial size 1 × 1 and N feature channels, and x is the 

network output. The concept of non-local feature extraction layer is similar to the recently 
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proposed non-local neural networks [41]. Thus, the kernel based iterative reconstruction can 

be treated as a two-layer neural network training process.

III. Methodology

A. Background

In inverse problems, such as image deblurring and image reconstruction, the measured data 

y ∈ ℝM can be assumed as a collection of independent random variables and its mean 

y ∈ ℝM is assumed to be related to the original image x ∈ ℝN through an affine transform

y = Ax + s, (4)

where A ∈ ℝM × N is the transformation matrix and s ∈ ℝM is a known additive term. 

Supposing the measured random variable yi follows a distribution of p(yi|x), the log 

likelihood for the measured data y can be written as

L(y | x) = ∑
i = 1

M
logp yi | x . (5)

B. Proposed framework

In this proposed DIPRecon framework, the unknown image x is represented as

x = f (θ | z), (6)

where f represents the neural network, θ are the unknown parameters of the neural network, 

z denotes the prior image and is the input to the neural network. When substituting x with 

the neural network representation in (6), the original data model shown in (4) can be 

rewritten as

y = A f (θ | z) + s . (7)

Replacing x by (6), we can express the log likelihood using θ as

L(y |θ) = ∑
i = 1

M
logp yi | f (θ | z)) . (8)

The maximum likelihood estimate of the unknown image x can be calculated in two steps as

θ = arg max L(y |θ), (9)
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x = f (θ | z) . (10)

C. Optimization

The objective function in (9) is difficult to solve due to the coupling between the likelihood 

function and the neural network. Here we transfer it to the constrained format as below

max L(y | x)
s.t. x = f (θ | z) .

(11)

We use the augmented Lagrangian format for the constrained optimization problem in (11) 

as

Lρ = L(y | x) − ρ
2 x − f (θ | z) + μ

2
+ ρ

2 μ
2
, (12)

which can be solved by the ADMM algorithm iteratively in three steps

xn + 1 = arg max
x

L(y | x) − ρ
2 x − f θn | z + μn 2, (13)

θn + 1 = arg min
θ

f (θ | z) − xn + 1 + μn 2, (14)

μn + 1 = μn + xn + 1 − f θn + 1 | z . (15)

1) Solving subproblem (13)—In this work, we use PET image reconstruction as an 

example. In PET image reconstruction, A is the detection probability matrix, with Aij 

denoting the probability of photons originating from voxel j being detected by detector i 

[42]. s ∈ ℝM denotes the expectation of scattered and random events. M is the number of 

lines of response (LOR). Assuming the measured photon coincidences follow Poisson 

distribution, the log-likelihood function L(y|x) can be explicitly written as

L(y | x) = ∑
i = 1

M
logp yi | x = ∑

i = 1

M
yilogyi − yi − logyi! . (16)
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Though the measurement data may follow different distributions for other inverse problems, 

only subproblem (13) needs to be reformulated and the whole DIPRecon framework keeps 

unchanged. Here subproblem (13) is a penalized image reconstruction problem, and the 

optimization transfer method [43] was chosen to solve it. As x in L(y|x) is coupled together, 

we first construct a surrogate function QL(x|xn) for L(y|x) to decouple the image pixels so 

that each pixel can be optimized independently. QL(x|xn) is constructed as follows

QL x | xn = ∑
j = 1

n j
A . j(x j, EM

n + 1 logx j − x j), (17)

where A . j = ∑i = 1
M Ai j and x j, EM

n + 1  is calculated by

x j, EM
n + 1 =

x j
n

A . j
∑
i = 1

M
Ai j

yi

Axn
i + si

. (18)

It can be verified that the constructed surrogate function QL(x|xn) fulfills the following two 

conditions:

QL x | xn − QL xn | xn ≤ L(y | x) − L y | xn , (19)

∇QL xn | xn = ∇L y | xn . (20)

After getting this surrogate function, subproblem (13) can be optimized pixel by pixel. For 

pixel j, the surrogate objective function for subproblem (13) is

P x j | x
n = A . j x j, EM

n + 1 logx j − x j

− ρ
2 x j − f (θ | z) j

n + μ j
n 2 .

(21)

The final update equation for pixel j after maximizing (21) is

x j
n + 1 = 1

2 f θn | z j − μ j
n − A . j/ρ

+ 1
2 f θn | z j − μ j

n − A . j/ρ 2 + 4x j, EM
n + 1 A . j/ρ .

(22)

2) Solving subproblem (14)—Subproblem (14) is a nonlinear least square problem and 

it has the same format as the network training problem shown in (1), with xlabel replaced by 
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xn+1 + μn. Currently network training is mostly based on first order methods, such as the 

Adam algorithm [44] and the Nesterov’s accelerated gradient (NAG) algorithm [45]. The L-

BFGS algorithm is a quasi-newton method, combining a history of updates to approximate 

the Hessian matrix. It is not widely used in network training as it requires large batch size to 

accurately calculate the descent direction, which is less effective than first order methods for 

large-scale applications. In this proposed framework, as only the patient’s own prior images 

are employed as the network input, the data size is much smaller than the traditional network 

training. In our case, the L-BFGS method is preferred to solve subproblem (14) due to its 

stability and better performance observed

Algorithm 1

Algorithm for the proposed DIPRecon method.

Input: Maximum iteration number MaxIt, sub-iteration number SubIt1, sub-iteration number SubIt2, network 
initialization θ0, Prior image z

 1: x0,SubIt1 = f(θ0|z)

 2: μ0 = 0

 3: for n = 1 to MaxIt do

 4:  xn,0 = xn−1,SubIt1

 5:  for m = 1 to SubIt1 do

 6:   x j, EM
n, m = x j

n, m − 1/A . j ∑i = 1
M Ai j

yi

Axn, m − 1
i
+ si

, where A . j = ∑i = 1
M Ai j

 7:   x j
n, m = 1

2 f θn − 1 | z j − μ j
n − 1 − A . j/ρ

+ 1
2 f θn − 1 | z j − μ j

n − A . j/ρ
2

+ 4x j, EM
n, m A . j/ρ

 8:  end for

 9:  xlabel
n = xn, SubIt1 + μn − 1

 10:  Running L-BFGS algorithm SubIt2 iterations to train the network, get θn = arg minθ f (θ | z) − xlabel
n 2

 11:  μn = μn−1 + xn,SubIt1 − f(θn|z)

 12: end for

 13: return x = f θMaxIt | z

in the experiments. The comparing results are presented in Section. V-A.

In the iterative framework, we run two iterations to solve subproblem (13) and ten iterations 

to solve subproblem (14). The overall algorithm flowchart is presented in Algorithm 1.

D. Network structure

The network structure employed in this work is based on the modified 3D U-net [13]. The 

overall network architecture is summarized in Fig. 1. It consists of repetitive applications of 

1) 3×3×3 3D convolutional layer, 2) batch normalization (BN) layer, 3) Leaky rectified 

linear unit (LReLU) layer, 4) 3 × 3 × 3 3D convolutional layer with stride 2 × 2 × 2 for 

down-sampling, 5) 2 × 2 × 2 bilinear interpolation layer for up-sampling, and 6) identity 
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mapping layer that adds features from left-side encoder path to the right-side decoder path. 

In our implementation, there are several modifications compared to the original 3D U-net:

1. using convolutional layer with stride 2 to down-sample the image instead of 

using max pooling, to construct a fully convolutional network;

2. using skip connections to link the encoder path and decoder path instead of 

concatenating, to reduce the number of training parameters;

3. using the bi-linear interpolation instead of the deconvolution upsampling, to 

reduce the checkboard artifact;

4. using leaky ReLU instead of ReLU.

Through the experiments it was found that using 3D convolution for 3D image 

reconstruction is better than using 2D convolution with multiple axial slices in the input 

channels. To enable the non-negative constraint on the reconstructed image, a ReLU layer 

was added before the output. In addition, we found that compared to the network without 

encoder and decoder path, the U-net structure could save more GPU memory because the 

spatial size is reduced due to the encoder path.

E. Implementation details and reference methods

To stabilize the network training, before we run the networking training, the intensity of PET 

images were scaled to the range [0,1]. Due to the non-convexity of neural network training, 

it is better to assign good initials to the network parameters before trained inside the iterative 

reconstruction loop. Comparisons between the results with and without pretraining are 

shown in the supplemental materials. In our implementation, we first ran ML EM algorithm 

for 60 iterations, and then used it as xlabel to train the network based on (1) with MR images 

as network input. This pre-training was run 300 epochs using the L-BFGS algorithm based 

on minimizing (1). As the penalty parameter has a large impact on the convergence speed, 

we examined the convergence of the log-likelihood L(y | f (θ | z)) to determine the penalty 

parameter used in practice. As an example, Fig. 2 shows the log-likelihood curve for 

different penalty parameter ρ for the simulation study mentioned in Section. IV-A. 

Considering the convergence speed and stability of the likelihood, ρ = 3×10−3 was chosen.

We compared the DIPRecon method with the Gaussian postfiltering method, the penalized 

reconstruction method based on including a pre-trained neural network in the penalty [24], 

and the kernel method [5]. One popular and intuitive way of incorporating the trained 

network into iterative reconstruction framework is include it in the penalty item as first 

shown in [24]. The objective function is

x = arg max
x

L(y | x) − β x − f θ0 | z 2 . (23)

Here f(θ0|z) is the pre-trained network using noisy PET images as labels and the pre-trained 

network parameters θ0 keeps fixed during the reconstruction process. This method is 

denoted as CNNPenalty method. Interestingly, the objective function shown in (23) becomes 
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the same as subproblem (13) by replacing f(θ0|z) with f(θn|z)+μn. In our implementation, the 

difference between the CNNPenalty method and the proposed DIPRecon method is that μ 
was fixed to 0 and the network updating step (14) was skipped. By this setting, we can 

understand the effects of updating the network parameters inside the reconstruction loop. For 

the kernel method, the (i, j)th element of the kernel matrix Kz is

ki j = exp −
f i − f j

2

2N f σ
2 , (24)

where f i ∈ ℝ
N f  and f j ∈ ℝ

N f  represents the feature vectors of voxel i and voxel j from the 

MR prior image z, σ2 is the variance of the prior image and Nf is the number of voxels in a 

feature vector. For efficient computation, the kernel matrix was constructed using a K-

Nearest-Neighbor (KNN) search in a 7×7×7 search window with K = 50. A 3×3×3 local 

patch was extracted for each voxel to form the feature vector. During image reconstruction, 

the linear coefficients θ were computed using iterative update as [46]

θn + 1 = θn

AKz
T1M

AKz
T y

AKz θn + s
, (25)

and the final output image is x = Kzθ . The kernel method is denoted as KMRI in later 

comparisons.

Currently the code is not optimized and the network training was done in GPU (NVIDIA 

GTX 1080 Ti) and the image reconstruction was implemented in CPU with 16 threads (Intel 

Xeon E5–2630 v3). The neural network was implemented using TensorFlow 1.4. The 

LBFGS algorithm was implemented using the TensorFlow “ScipyOptimizerInterface” to call 

“L-BFGS-B” method from scipy libary running in CPU mode. 10 previous iterations were 

used in L-BFGS-B to approximate the Hessian matrix. For the simulation setting, the CPU 

memory usage for L-BFGS is 2GB and for the real data setting, the CPU memory usage is 7 

GB. For the simulation study described in Section. IV-A, the running time is 20 seconds per 

iteration for the EM method, 23 seconds per iteration for the CNNPenalty method, 30 

seconds per iteration for the KMRI method (averaging the kernel matrix calculation time), 

and 78 seconds per iteration for the DIPRecon method. If the L-BFGS is implemented in 

GPU mode, the computation time for DIPRecon can be further reduced.

IV. Experimental setup

A. Brain phantom simulation

A 3D brain phantom from BrainWeb [47] was used in the simulation. Corresponding T1 

weighted MR image was used as the prior image. The voxel size is 2×2×2 mm3 and the 

phantom image size is 128×128×105. The input to the network was cropped to 128×128×96 

to reduce GPU memory usage. To simulate mismatches between the MR and PET images, 
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twelve hot spheres of diameter 16 mm were inserted into the PET image as tumor regions, 

which are not visible in the MR image. The time activity curves of blood, gray matter, white 

matter and tumor were simulated based on a two-tissue compartment model, with kinetic 

parameters the same as those used in [48]. The computer simulation modeled the geometry 

of a Siemens mCT scanner [49], and the system matrix was generated using the multi-ray 

tracing method [50]. In this experiment, the last 5 min frame of a one-hour FDG scan was 

used as the ground-truth image. Noise-free sinogram data were generated by forward-

projecting the ground-truth image using the system matrix and the attenuation map. Poisson 

noise was then introduced to the noise-free data by setting the total count level to be 

equivalent to last 5 min scan with 5 mCi injection. Uniform random events were simulated 

and accounted for 30 percent of the noise-free data. Scatters were not included. For 

quantitative comparison, contrast recovery coefficient (CRC) vs. the standard deviation 

(STD) curves were plotted based on reconstructions of twenty independent and identically 

distributed (i.i.d) realizations. The CRC was computed between selected gray matter regions 

and white matter regions as

CRC = 1
R ∑

r = 1

R ar
br

− 1 / atrue

btrue − 1 . (26)

Here R is the number of realizations and is set to 20, ar = 1/Ka∑k = 1
Ka ar, k is the average 

uptake of the gray matter over Ka ROIs in realization r. The ROIs were drawn in both 

matched gray matter regions and the tumor regions. For the case of matched gray matter, Ka 

= 10. For the tumor regions, Ka = 12. When choosing the matched gray matter regions, only 

those pixels inside the predefined 20mm-diameter spheres and containing 80% of gray 

matter were included. br = 1/Kb∑k = 1
Kb br, k is the average value of the background ROIs in 

realization r, and Kb = 37 is the total number of background ROIs. The background ROIs 

were drawn in the white matter. The background STD was computed as

STD = 1
Kb

∑
k = 1

Kb 1
R − 1 ∑r = 1

R br, k − bk
2

bk
, (27)

where bk = 1/R∑r = 1
R br, k is the average of the background ROI means over realizations.

The network structure for the simulated data set is the same as the network structure shown 

in Fig. 1, except input and output size are 128 × 128 × 96.

B. Real brain data sets

A 70-minutes dynamic PET scan of a human subject acquired on a Siemens Brain MR-PET 

scanner after 5 mCi FDG injection was employed in the real data evaluation. The data were 

reconstructed with an image array of 256×256×153 and a voxel size of 1.25 × 1.25 × 1.25 

mm3. The input to the network was cropped to 192×192×128 to reduce GPU memory usage. 
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A simultaneous acquired T1-weighted MR image having the same image array and voxel 

size as the PET image was used as the prior image. Correction factors for randoms, scatters 

were estimated using the standard software provided by the manufacturer and included 

during reconstruction. The motion correction was performed in the line-of-response (LOR) 

space based on the simultaneously acquired MR navigator signal [51]. Attenuation was 

derived from T1-weighted MR image using the SPM based atlas method [52]. To generate 

multiple realizations for quantitative analysis, the last 40 minutes PET data were binned 

together and resampled with a 1/8 ratio to obtain 20 i.i.d. datasets that mimic 5-minutes 

frames. As the ground truth of the regional uptake is unknown, a hot sphere with diameter 

12.5 mm, mimicking a tumor, was added to the PET data (invisible in the MRI image). It 

simulates the case where MRI and PET information does not match. The TAC of the hot 

sphere was set to the TAC of the gray matter, so the final TAC of the simulated tumor region 

is higher than that of the gray matter because of the superposition. The simulated tumor 

image of the last 40 minutes was forward-projected to generate a set of noise-free 

sinograms, including detector normalization and patient attenuation. Randoms and scatters 

from the inserted tumor were not simulated as they would be negligible compared with the 

scattered and random events from the patient background. Poisson noise was then introduced 

and finally the tumor sinograms were added to the original patient sinograms to generate the 

hybrid real data sets. For tumor quantification, images with and without the inserted tumor 

were reconstructed and the difference was taken to obtain the tumor only image and 

compared with the ground truth. The tumor contrast recovery (CR) was calculated as

CR = 1
R ∑

r = 1

R
l r /ltrue, (28)

where l r is the mean tumor uptake inside the tumor ROI, ltrue is the ground truth of the 

tumor uptake, and R is the number of the realizations. For the background, 11 circular ROIs 

with a diameter of 12.5 mm were drawn in the white matter and the standard deviation was 

calculated according to (27). The network structure for the real data set is shown in Fig. 1.

V. Results

A. Effect of network settings

To test the effectiveness of the conditional DIP framework, an experiment was performed by 

using either the uniform random noise or the patient’s MR prior image as the network input. 

ML EM reconstruction of the real brain data at 60th iteration was treated as the label image. 

300 epochs were run for network training using the L-BFGS algorithm. Fig. 3(a,b) shows 

one coronal view of the network output. When the input is random noise, the image is 

smooth, but some cortex structures cannot be recovered. When the input is MR image, more 

cortex structures show up. This comparison demonstrates the benefits of including the 

patient’s prior image as the network input. To show the benefit of including the neural 

network into reconstruction framework, compared to image denoising as shown in the 

original DIP paper [8], we have also presented the reconstructed image using the proposed 

DIPRecon framework in Fig. 3(c). Clearly, DIPRecon can recover more cortex details and 
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generate higher contrast between the white matter and gray matter as compared to the 

original DIP framework.

We also compared the behaviors of different optimization algorithms under the conditional 

DIP framework. The Adam, NAG, and L-BFGS algorithms were compared regarding the 

pre-training process using the real brain data. When comparing different algorithms, we 

computed the normalized cost value, which is defined as

Ln =
ϕAdam

ref − ϕn

ϕAdam
ref − ϕAdam

1 , (29)

where ϕAdam
ref  and ϕAdam

1  is the cost value defined in (1) after running Adam for 700 

iterations and 1 iteration, respectively. Fig. 4 plots the normalized cost value curves for 

different algorithms. The L-BFGS algorithm is monotonic decreasing while the Adam 

algorithm is not due to the adaptive learning rate implemented. The NAG algorithm is 

slower than the other two algorithms. The reason why L-BFGS is faster is due to its using 

the approximated Hessian matrix, which makes it closer to a second-order optimization 

algorithm, while both the Adam and NAG methods are first-order methods. The monotonic 

property is another good advantage of L-BFGS algorithm. Due to the monotonic property, 

the network output using the L-BFGS algorithm is more stable and less influenced by the 

image noise when running multiple realizations. Faster convergence speed and better 

quantitative results are the reasons we chose L-BFGS algorithm to solve subproblem (14) 

and perform the initial network training.

B. Simulation results

Fig. 5 shows three orthogonal views of the reconstructed images using different methods for 

the simulated dataset. The kernel method and the DIPRecon method both reveal more cortex 

structures and have lower noise compared to the EM-plus-filter method and the CNNPenalty 

method. Compared with the kernel method, the proposed DIPRecon method can recover 

even more details of the cortices and the white matter regions are cleaner. Furthermore, 

compared to the kernel method, the tumor uptake using DIPRecon is higher and the tumor 

shape is closer to the ground truth. In this simulation set-up, there are no tumor signals in the 

prior MRI image, and the DIPRecon method can still recover PET signals, which is a sign of 

robustness to potential mismatches between PET and prior images. Besides, by comparing 

the CNNPenalty method and the proposed DIPRecon method, we can also see that updating 

the network parameters inside the reconstruction loop can recover more brain structures and 

reduce the image noise. Fig. 6 shows the CRC-STD curves for different methods. For both 

the gray matter region and the tumor region, we can see that at fixed STD, the CRC of the 

DIPRecon method is higher than other methods. This observation quantitatively shows that 

the DIPRecon method out-performs other methods.

Gong et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Real data results

Fig. 7 shows the reconstructed images and the corresponding MR prior images of the real 

brain dataset with inserted lesion using different methods. Reconstructed images from the 

real dataset without inserted lesion are shown in the supplemental material. The high-count 

images were reconstructed from the combined 40-min scanning for reference. Compared to 

the EM-plus-filter method and the CNNPenalty method, the kernel method and the 

DIPRecon method can recover more cortex details and the image noise in the white matter is 

much reduced. The cortex shape using the DIPRecon method is clearer than the kernel 

method. For the tumor region which is unobserved in the MR image, the uptake is higher in 

the DIPRecon method compared with the kernel method. Fig. 8 shows the CR-STD curves 

for different methods. Clearly the DIPRecon method has the best CR-STD trade-off 

compared with the other methods.

VI. Discussion

The number of training variables for the U-net structure implemented in this work is around 

1.5 million. For both simulation and real data sets, the number of voxels for the network 

input is more than 1.5 million. Compared to the traditional iterative reconstruction, the 

number of unknowns is reduced in our proposed framework. During our implementation, we 

replaced the feature concatenation with feature adding to reduce the network training 

parameters, performed bi-linear interpolation to replace the deconvolution upsampling, and 

finally used the L-BFGS algorithm to train the network. All these three changes improved 

the network performance in our experiments. Finding a network structure with less trainable 

parameters but stronger representation power is our on-going work.

In this paper we used the PET image reconstruction as an example to demonstrate the 

effectiveness of the proposed DIPRecon framework. Subproblem (13) was solved using the 

optimization transfer method, and subproblem (14) was treated as the traditional network 

training with MSE-based loss function. This proposed framework can also be applied to 

other image reconstruction problems where a patient-specific image prior is available. All 

we need to change is the imaging model and likelihood function of the measured data. Here 

the initial network training was performed based on one single patient dataset. We expect 

that if the network was pre-trained from other patient data sets, and later on fine-tuned in the 

DIPRecon framework, the results can be better as the variables in this population-based 

initial network is more robustly estimated.

Benefits of employing patient’s prior images as network input can be observed comparing 

Fig. 3(a) and Fig. 3(b). Currently we only use one T1-weighted MR as the anatomical prior. 

More prior information, such as multiple MR images using different sequences and the 

temporal information from dynamic PET, can be included by adding more input channels. 

As no pre-defined weighting is needed when combing multiple priors, this proposed 

DIPRecon framework can make use of the patient’s prior information more efficiently. Both 

KMRI and DIPRecon are constructed based on representation unknown image x using the 

kernel matrix or CNN. We have calculated likelihood values for the EM, KMRI and 

DIPRecon methods regarding images shown in Fig. 5. From high to low, the likelihood 

values are −7.9588×107 (EM), −7.9649×107 (DIPRecon) and −7.9654 × 107 (KMRI). We 

Gong et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can see that DIPRecon method can better fit the data compared with the KMRI method, 

which is based on the strong approximation ability of CNN.

As for the ADMM algorithm used, there is no convergence theory due to non-convexity of 

the neural network. The reason to use ADMM is to de-couple the image update step and the 

network training step. The network training step ( subproblem 14) needs more update steps 

than the iterative reconstruction step (subproblem 13). If they are coupled together, every 

time updating the network parameters, we need to compute the forward and backward 

projections. As the computation of projections are very time-consuming for fully-3D PET, 

decoupling these two steps will save more computational time. Furthermore, after using the 

ADMM algorithm, subproblem 13 is a traditional penalized reconstruction and can reuse 

current image reconstruction packages, which makes the DIPRecon method adaptable to 

current iterative frameworks. Compared to the DIP framework, the proposed DIPRecon 

framework uses raw sinogram data and the objective function is constructed from imaging 

physics, which exploits more useful information compared with using noisy images as the 

training labels. This can be observed comparing Fig. 3(b) and Fig. 3(c).

Compared to the simulation results shown in Fig. 5, the real data results of the DIPRecon 

method shown in Fig. 7 are a little blurred. Two possible reasons are: (1) the number of 

voxels for the real data is larger than the simulation study and more iterations are needed to 

achieve the similar sharpness as the simulation data; (2) in the simulation, the MR boundary 

are perfectly matched with PET images. For real datasets, there might be boundary 

mismatches between T1 MR and PET images. Currently we only tested our methods on 

simultaneous PET-MR scanning, but does not perform experiments based on data sets 

acquired during different scans, in which cases large registration errors might arise. One 

possible solution is to couple a registration network, such as the spatial transformer network 

[53], to the U-net to perform additional registration. Testing and adjusting the proposed 

framework regarding large registration errors are our future research direction. Finally, our 

evaluations are based on FDG tracers, and the FDG brain uptake has similar patterns as the 

T1 MR images. Further evaluations based on data sets with other tracers are needed to test 

the robustness of the proposed framework.

VII. Conclusion

In this work, we propose a framework to include the personalized deep neural network into 

the iterative reconstruction method. Prior training image pairs are not needed in this process, 

but only the patient’s own prior images. PET image reconstruction was employed to 

demonstrate the effectiveness of the proposed DIPRecon framework. Both simulation and 

real brain data sets show that this proposed personalized medical imaging reconstruction 

framework performs better than the Gaussian filter, the penalized reconstruction using a 

neural network penalty, and the kernel method, in terms of contrast recovery vs. noise trade-

offs. Future work will focus on finding better network structures, evaluations using more 

clinical data sets with different tracers, and testing the robustness of the proposed method to 

registration errors.
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Fig. 1: 
The schematic plot of the Network structure used in this work. The spatial input size for 

each layer is based on the real data experiment described in IV-B.
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Fig. 2: 
The effect of penalty parameter ρ on the likelihood L(y | f (θ | z)) based on the simulation data 

set described in Section IV-A.
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Fig. 3: 
(a,b) One coronal view of the network output according to (a) the DIP framework using 

random noise as network input, (b) conditional DIP framework using the Patient’s own MR 

image as network input and (c) the proposed DIPRecon framework using the Patient’s MR 

image as network input. Images shown are based on the real data set described in Section 

IV-B.
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Fig. 4: 
Comparison of the normalized likelihood for the Adam, Nesterov’s accelerated gradient 

(NAG) and L-BFGS algorithms based on the real brain data set described in Section IV-B.
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Fig. 5: 
Three orthogonal slices of the reconstructed image using different methods for the 

simulation dataset. The iteration number is 100 for all methods. The first column is the 

corresponding MR prior image.
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Fig. 6: 
CRC-STD curves at the gray matter region (left) and the tumor region (right) for the 

reconstruction using the simulation dataset. Markers are plotted every ten iterations. The 

lowest point corresponding to the 20th iteration.
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Fig. 7: 
First three rows show three orthogonal slices through the simulated-tumor region for the real 

brain dataset. Arrows in the high-count image (40 min scanning) indicate the simulated 

tumor. The last row shows one coronal view which contains more cortex structures. The first 

column is the corresponding MR prior image. The iteration number is 100 for EM-plus-filter 

and the proposed DIPRecon method, 50 for the CNNPenalty method, and is 120 for the 

KMRI method.
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Fig. 8: 
The CR-STD plot of the tumor uptake in the real brain data set. Markers are generated for 

every ten iterations for CNNPenalty method and every twenty iterations for other methods. 

For EM-plus-filter and DIPRecon method, the lowest point corresponding to the 40th 

iteration. For KMRI method, the lowest point corresponding to the 60th iteration. For 

CNNPenalty method, the lowest point corresponding to the 10th iteration.
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